
To Stack or Not To Stack

Richard Afoakwa, Lejie Lu, Hui Wu, Michael Huang
Department of Electrical and Computer Engineering

University of Rochester
Rochester, New York, USA

{richard.afoakwa, lejie.lu, hui.wu, michael.huang}@rochester.edu

Abstract— 3D memory technology, such as Micron’s hybrid
memory cube (HMC), has re-energized the architectural pursuit
of computation very close to, or inside the memory chip. Such
a design falls into the broader category of near-data processing
(NDP). The motivation for such design is because the current
Von Neumann architecture of chip-multiprocessors is thought
to make data movement expensive. Current NDP work focuses
on the possibility of architecting computation engines, such as
accelerators, cores, or graphic processing units right below the
memory layers and inside the logic layer of the HMC sub-
system. However, such a stacking design does present a number
of technical challenges such as heat dissipation, power supply, etc.
While these challenges can certainly be overcome, and needs to
be addressed, in this work, we seek to answer a related question
of whether it is necessary to stack general-purpose computation
engines, directly inside the memory unit, in order to achieve
the performance potential of NDP system; thus, to stack or
not to stack. We show that, with computing models used in
current NDP designs, placing the computation engines very close
to, but outside the memory system (not stacking) can provide
comparable performance without significant energy costs. This
can be achieved without inventing any new technology, but
utilizing current state-of-the-art high-speed link design practices.

Index Terms—Near-Data or In-Memory Processing, Silicon
Interposer, High-Speed Links

I. INTRODUCTION

The latency disparity between instruction execution and

main memory access persisted over decades. When the mem-

ory access pattern defies conventional caching, the latency

disparity becomes a significant challenge for performance

improvement. It has long been hoped that some processing

happens inside the memory chip, giving rise to terms such

as processing-in-memory (PIM) or intelligent RAM (IRAM).

Intuitively, by doing computation inside the DRAM chip, we

not only ameliorate the access latency problem but also enjoy

the much higher bandwidth at the DRAM bank level which is

otherwise thrown away when crossing the chip boundary.

Unfortunately, the idea has not seen commercial realization.

Though there are legitimate technical concerns such as heat

dissipation issues, it was thought that market realities are

the major causes that prevented the realization: a© DRAM

fabrication process does not lend itself to efficient inclusion of

large-scale logic; b© the system’s success depends on new pro-

gramming models and close collaboration among the designers

of memory, processor, and software; c© the commodity nature

of the DRAM business ultimately discourages such expensive,

non-standard products.

Today, we are seeing renewed interests of a similar concept

called near-data processing (NDP), thanks to the technology of

3D-stacked memory such as Hybrid memory cube (HMC) [1]

or High Bandwidth Memory (HBM) [2]. Recent studies have

reported performance improvement in excess of 16x [3,4].

With diminishing returns from process technology and the

looming end of Moore’s law, such significant performance

gains are clearly worth the attention of researchers and practi-

tioners alike. To be sure, the 3D stacked memory technology

indeed makes it easier to include high-performance processing

elements directly in the same chip as the main memory, right

under the memory layers. But some of the challenges facing

PIM systems still exist today for NDP designs. Heat dissipa-

tion, for instance, perhaps becomes worse in the presence of

3D stacking. The question becomes: Should we embrace these

design proposals now and set out to address all those technical

challenges? Or can alternative designs, without 3D stacking,

achieve similar benefits?

In particular, some works have compared conventional

uniprocessor system with an NDP-style system, where NDP

utilizes a large number of cores performing parallel processing

right inside the memory cube [5,6]. How much benefit is

really attributable to bringing processors into memory (and

not simply due to using a large number of cores)? We thus

want to perform a more direct control experiment that isolates

the single factor that defines these NDP systems: stacking of

processor cores under the memory layers. In other words, if

we maintain the same processing configuration (many simple

processing engines) and vary their location from being tightly

integrated with the memory chip to being more loosely at-

tached via some fabric, how much impact on performance and

energy is there? In short: to stack or not to stack, that is the

question.

Fig. 1 provides a high-level schematic of the systems under

comparison. On the left, we show a typical implementation of

an NDP system where a layer of logic die under the DRAM

layer contains an array of NDP cores. On the right, we show

a control configuration where those same cores are off the

memory chip and placed next to the memory, interconnected

with the memory via dedicated medium. It is the performance

of these medium that separate the fully-stacked (3D) NDP

system from the non-stacked (2.5D) system. The latter can

access memory with an entirely different latency, bandwidth,

and energy profile. Our goal is to study the impact such a

difference can make on the ultimate performance of represen-

110

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00017

Fig. 1. Comparison between the primary system configurations. Fully
stacked 3D NDP (left) and 2.5D interconnected with dedicated fabric such as
interposer (right).

tative workloads.

Importantly, our goal is NOT to support one particular

design point or another. Instead, we hope to help the process

of articulating the vision of NDP and identifying key focus

areas for future research in realizing the vision.

II. RELATED WORK

As discussed earlier, Fig. 1 provides a high-level view of

our systems under test. From this, we review some previous

work on the three major system components to draw more

insight into this work.

A. Near-Data or In-Memory Processing

Processing-in-memory has long been a subject of investiga-

tion for the architecture community [7]–[11]. Recent indus-

try developments make such an architecture more feasible.

Consequently, there has been a renewed interest to investigate

processing in, or close to, memory. The topics of investigation

include many different aspects such as system-level analysis

of general-purpose processing [3,4,12]–[15]; configuration de-

sign space [16]–[18]; interconnection [19,20]; functional units

[21,22]; GPU-style or other special-purpose processing [6,23]–

[30]; software or runtime scheduling or coordination [31]–

[38]. While new analysis and designs will continue to emerge,

the general theme has been to get processing elements near

the data storage so as to reduce both access latency and energy

overhead. While some prior work tried such a separation on a

narrower scale [39], in this paper, we focus on general-purpose

processing and try to address the single question of whether

“near” dictates physical stacking.

B. Silicon Carrier Systems

On the system level, there has been some work intercon-

necting multiple chips with silicon carriers (aka. interposer).

In most of such work, the interposer substrate contains active

components such as transistors for routing and networking

among multiple processor chips. Given the interposer, the de-

sign space for packet-switching interconnects can be extended

[40]–[43]. Indeed, the interposer system design can impact

exa-scale systems, where diverse memory and processing

components coexist on a singular platform [44,45]. Interposer

also provides the flexibility to interconnect computing chips

together with 3D memory chips [46].

C. Serial Links

The technology of serial links and in particular those

embedded in interposer has seen considerable work. A silicon

carrier test chip has been fabricated specifically for chip-to-

chip communication, showing the capability of driving 2 cm

links at 11.5 Gb/s without equalization [47]. Current-mode

transceivers have been proposed to overcome RC-limited

bandwidth of interposer channel [48]. The technique is an

alternative to aggressive equalization required to compensate

for high channel losses. Other works show significantly

improved link speeds. For example, a 16.8 Gb/s single-ended

transceiver presents a new low-power driver as well as source

follower-type continuous time linear equalizer (CTLE) to

compensate for channel loss [49]. Finally, a 20 Gb/s parallel

interface design uses single-sided signaling, capacitive

termination in the receiver side, and passive equalization in

the transmitter to drastically reduce power consumption, and

obtain 0.3 pJ/b energy efficiencies [50].

In short, state-of-the-art serial links can achieve 10s of

Gb/s transmission per link at sub-pJ/b energy cost, at current

technology nodes. Such links can be embedded into silicon

carriers to provide dense 2.5D chip-to-chip interconnection.

III. ARCHITECTURAL DESIGN SPACE

In theory, when architecting an NDP system, there is a

non-trivial design space with regard to the overall structure,

the connection among the components, and the individual

components themselves. In practice, there are some consensus

about some design decisions. Specifically, the NDP cores are

generally a low-complexity core (e.g., single-issue, in-order)

with a simple memory hierarchy (e.g., one level of caches

only) [3]–[6]. Given that the current promising platform to

support NDP is an HMC-like system, where the cores will

be physically under the memory vaults, the design space is

essentially reduced to that of the interconnection between the

cores and the memory units, which is our focus in this paper.

A. Performance Impact of Interconnects

There are a number of design points worth considering. At

one extreme of the spectrum, these cores are directly connected

to the memory vault that is physically adjacent to the core,

Fig. 2 (a). In this case, there is no extra latency, energy

overhead, or throughput limit imposed by an interconnect. The

constraint is that all data need to reside in the corresponding

memory vault. In reality, this requires extra data shuffling

and copying, perhaps orchestrated from host processor(s). By

ignoring the overhead of fine-grain data shuffling, we obtain

an idealized configuration, which we use for finding upper-

bounds on the benefits of NDP systems.

A second, more realistic configuration connects the cores

through an on-chip fabric to interface with the memory

vaults, Fig. 2 (b). Most recent proposals fall into this category

[3,4,17]. The approach improves the programming flexibility:

as long as the data reside in the memory chip, the cores can

access them. Of course, the price to pay is the additional

111

Fig. 2. NDP interconnection design points. (a) Processor cores are directly
connected to the memory vault, requiring no interconnect overhead. (b) On-
chip fabric connect processing core(s) to memory vaults. (c) Processing
cores and memory vaults implemented on separate chips, requiring off-chip
communication medium.

latency and energy overhead as well as throughput limits

imposed by the fabric.

Finally, once the cores rely on a fabric to connect to

memory, they do not need to be physically on the same chip as

the memory unit. The fabric can allow them to be in a different

die (Fig. 2 (c)). So long as said fabric imposes an insignificant

overhead and/or limitation, from a performance standpoint, the

cores could still be considered as processing near the data. In

other words, it is the performance profile of the interconnect

fabric between the cores and the memory units that determines

whether the system is truly NDP or not. Physical proximity

influences (perhaps significantly) the performance profile of

the interconnect, but is otherwise not a requirement per se to

achieve the goal of NDP. Indeed, physical proximity brings

unwanted thermal coupling and related consequences, among

other architectural issues.

Before we get into more detailed discussions about the

performance profile of various interconnection designs, it is

helpful to get a rough picture of the performance impact of

some readily available configurations. We take a number of

commonly used benchmarks in NDP designs and measure their

execution speed under the different design points mentioned

above. For simplicity, we ignore energy issues for now. To

recap, the configurations are: 1

• Ideal: memory accesses have no extra latency cost, energy

cost, or throughput limit due to interconnect.

• 3-D Integration (3DI): as in recent NDP proposal, an all-

to-all crossbar (with 3-cycle request and 3-cycle response

time) is used between cores and memory vaults.

1Configuration details are explained in Section V-A

• High-performance links (HPL): The cores reside on a

different chip linked to the memory chip via high-

performance communication links equivalent to that envi-

sioned for HMC-based systems [51]. Note that these links

are by no means the state of the art. We refer to them

as high-performance in comparison to legacy interfaces

such as DDR.

• Legacy memory channels (DDR): The cores are con-

nected to legacy (DDR4) memory banks with 4 channels.

Note that in this configuration, not only is the fabric of

lower performance, the DRAM accesses themselves are

somewhat slower as well since we use the DDR4 timing

parameters.

DDR4 HPL 3DI Ideal
0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p Graph

Micro
Map
Parsec
GM

Fig. 3. Performance impact of various interconnection configurations; DDR4,
HPL, 3DI, Ideal. Processing distance to memory decreases from left to right.
Processor cores are on the same chip as memory in Ideal and 3DI, while in
HPL and DDR4 they are on separate chips. Performance results of individual
benchmarks are normalized to that of 3DI before averaged geometrically.

Fig. 3 shows the performance impact of the interconnection

for a range of workloads. While the details of the setup is

discussed in Section IV, we note that many workloads are

commonly used in evaluating NDP systems. To this collection,

we add a microbenchmark with a random access pattern

without reuse to demarcate the extreme of workloads which

lend themselves to NDP systems. In other words, we expect

that the performance curve for realistic workloads will be less

steep than that of this microbenchmark.

From this analysis a number of high-level observations can

be made.

1) We can see that the general concept of processing near

the data is valid. The performance of all benchmarks

improves noticeably as the processing elements get

nearer to the data.

2) While we recognize the performance improvements, we

see that the gain from the weakest configuration (DDR4)

to a more ideal access setup is on the orders of 2x. We

note that while repeating similar experiments as reported

in recent NDP proposals ([3,4]), we obtained similar

results of about 16x performance improvement going

from a conventional uni-processor to a parallel NDP

design (more on that in Section V). Here, we main-

tain the processing elements to be the same across all

configurations to isolate the contribution of interconnect

and thus the importance of nearness.

3) Finally, note that even this 2x improvement is the re-

sult of comparing to an under-provisioned conventional

112

memory interface (DDR). When we model a more ad-

vanced serial link interface, the performance gap shrinks

to about 10% even compared to an ideal interconnect

fabric for all but the microbenchmark.

Combining these observations, we can draw a high-level

conclusion of NDP with caveats: While at the fundamental

level, processing near the data is superior to processing from

afar, there is no significant advantage to get as close to

data as to be on the same chip. There are three caveats to

this conclusion. First, the conclusion applies to the tested

workloads and configurations. With better partitioning of work

to identify the most appropriate parts for NDP, and with newer

workloads, the benefit of NDP could be more pronounced

as suggested by the microbenchmark result. Second, these

advanced serial links must be practical to build, indeed far

more than moving the cores to the memory chip. Third, the

analysis is only on a performance basis without consideration

to energy. To get a better understanding of these latter two

issues, we now investigate the technology of the links.

B. Design of Communication Links

1) Basic overview of link design mechanics: Whether to

connect cores to memory on the same chip or separate chips,

there are different underlying communication link technolo-

gies. The capabilities of the communication substrate directly

translate to the logical nearness between data and processing

into physical distance constraints. Therefore, we only focus

on the high-performance part of the design space using

technologies commonly referred to as high-speed serial links,

illustrated in Fig. 4.

Fig. 4. Basic serial link schematic. Data transmission flows from left to right;
transmitter (with serializer), channel, and receiver (with de-serializer).

Because signals are modulated at comparatively high baud

rates (e.g., 10s of Gbauds) in such a link, designers take into

account every aspect of the link: materials of metals, dielectric

and substrate in the technology, signal attenuation due to more

pronounced skin effect, and the resulting inter-symbol interfer-

ence (ISI). They also control more design elements to achieve

desired metrics: layout and geometry of the transmission

lines; equalization circuits at the transmitter and/or receiver;

and power supply mechanisms to these circuits. The design

space as well as performance metric space are quite large. A

comprehensive exploration is beyond the scope of this paper.

Our plan is thus to take more of a middle-of-the-road approach

and avoid both commodity-level configurations, as well as

overly complex systems aimed for extreme performance.

Finally, some ultra-dense die-to-die communication systems

implement serial links on interposer material (Sections II-B

and II-C). This is therefore a readily realizable technology

option for the off-chip links. Additionally, we consider serial

links for the on-chip component of our fabric. This provides

a singular and rather straight-forward design space compared

to alternative packet-switched interconnects such as meshes.

2) Link design and analysis for this work: The circuit dy-

namics of the transmitter is a designer choice, mostly for high-

performance, low energy, or both. Indeed, any conventional

voltage- or current-mode transmitter can be adopted. Using

cadence tools, we design and analyze our transmitter similar

to prior work, and target high performing non-return-to-zero

(NRZ) or pulse-amplitude modulation (PAM) signaling [52]–

[54].
We model the characteristics of the channel component

through electromagnetic (EM) simulations using Sonnet [55].

We obtain channel-specific s-parameters from such EM simu-

lation. Based on channel characteristics, we choose a differen-

tial coplanar waveguide (CPW) structure for on-chip (shown

in Fig. 5 (a)) and shielded differential strip-line structure for

the off-chip interposer (shown in Fig. 5 (b)). Our geometries

are optimized for maximum bandwidth density using the

analysis suggested in prior work [56]. Our channel dimension

parameters are shown in Table I.

(a) On-chip channel (b) Off-chip interposer channel

Fig. 5. (a) Differential coplanar waveguide topology on-chip links, and (b)
differential strip-line topology off-chip links, metal layers M2 and M3 are
GND.

TABLE I
CHANNEL PHYSICAL CHARACTERISTICS. LENGTHS ARE IN μM. T IS

THICKNESS, W IS WIDTH (W1 FOR SIGNAL AND W2 FOR GROUND), S IS

SPACING, AND P IS PITCH (3S + 2W1 + W2).

Channel Material T W1 W2 S P
On-Chip Aluminum 4 10 5 10 55
Off-Chip Copper 3 5 6 5 31

The on-chip and interposer off-chip channels have different

geometries because of their difference in link distance, metal

materials, and transmission lines structures. We account for all

such properties in our EM simulations. The interposer-based

chip-to-chip links are rather short-reach, often less than a few

centimeters in length. We therefore assume a maximum of

2 cm channel length for these links [47,48]. For on-chips links,

we assume a maximum of 8 cm channel length. We base our

assumption on channel characteristics from other studies, as

well as system level applications of such channels [56,57].
In terms of signal propagation, high-speed links offer near

speed of light propagation, limited only by specific material

113

properties and channel length. In our analysis, we utilize FR4

material (as a conservative baseline) with material constant

εr = 4.2, and channel propagation latency of 6.7 ps/mm (using

the fundamental propagation velocity expression: c/
√

μr ∗ εr).

It must be noted that off-chip interposer channels can be

manufactured from much lower loss material such as ePTFE

(εr = 1.4) for better propagation, 3.9 ps/mm. Our worst-case

end-to-end signal propagation latencies are 536 ps and 134 ps

respectively for on-chip and off-chip links. This translates to

less than a compute cycle in terms of the NDP system clock

rate (see Table VII).

0 7 14 21
Frequency (GHz)

-10

-5

0

L
os

s
(d

B
)

Decreasing Channel Length

-8.67 at Nyquist

0.5 cm
1.0 cm
1.5 cm
2.0 cm

Fig. 6. Off-chip channel loss for diverse channel lengths. Worst-case channel
(2 cm) loss at 14 GHz Nyquist (minimum operating) frequency is 8.7 dB.

TABLE II
INTERPOSER OFF-CHIP CHANNEL POWER BREAKDOWN BY COMPONENT

AT 28 GHZ BAUD RATE. POWER VALUES ARE IN mW .

Component Sub-Component NRZ PAM-4

Transmitter
Mux 10 20

Pre-Driver 9.6 9.6
Main-Driver 5.7 8.2

Receiver
Slicer 1 3

Demux 8 16

Total 34.3 56.8

TABLE III
INTERPOSER OFF-CHIP CHANNEL ENERGY EFFICIENCIES.

Signaling NRZ PAM-4
Baud (GHz) 28 17 12 28 17 12
Power (mW) 34.3 23.5 18.5 56.8 39.0 28.2

Energy (pJ/b) 1.23 1.38 1.54 1.01 1.15 1.18

From our transmitter design choice and channel charac-

teristics, we analyze the performance of the complete link

(Fig. 4). In our links, the channel loss and ISI are relatively

low compared to long-reach backplane links. For example,

our EM analysis showed that the off-chip links have 8 dB loss

at 14 GHz Nyquist frequency (for 28 Gbaud/s applications).

Thus, strong equalization is not required. We therefore only

adopt passive equalization techniques on the receiver side to

compensate for the channel loss. Fig. 6 shows our channel

losses for diverse channel lengths. Passive equalization can

provide better linearity and consume less power compared

to conventional active continuous-time linear equalization

(CTLE). On the receiver side a passive CTLE, comparator,

and de-serializer are employed. The whole link operates on

1 V supply.

Fig. 7. Interposer off-chip link eye diagram at the receiver for PAM-4 signal
rate.

To validate the end-to-end signal integrity of our design,

we obtain the eye diagram at the receiver side, see Fig. 7. We

observe 75 mV minimum eye opening. This is sufficient for a

bit-error-rate criteria better than 10−15. We perform our system

level experiments at the maximum baud-rate of 28 GHz. In

terms of signaling, this translates to 28 Gb/s and 56 Gb/s bit-

rates for NRZ and PAM-4 respectively. We report our power

consumption breakdown at the operating baud rate in Table II.

Our link power accounts for the SerDes components, which

represent more than 60% of total consumption. Finally, we

report our link energy efficiencies in Table III, which is derived

as follows; P /B /M , where P is power, B is bit rate, and

M is modulation index (1 for NRZ and 2 for PAM-4). PAM-

4 encodes 2 bits per symbol, and therefore requires some

component duplication. This fact is evident in the higher

PAM-4 power compared to NRZ (Table II). But multiple bit

encoding in PAM amortizes the overall per-bit energy cost

compared to NRZ.

We observe similar relative energy efficiencies across our

8 cm on-chip and 2 cm off-chip channels per baud-rate and

signaling. Our design and analysis only account for the data-

path of the link, and does not include a clock-path. Therefore,

our system level link power expenditure is proportional to

utilization.

To sum, without using the most advanced design techniques

(let alone inventing new ones) we can create communication

links that offer 10s of Gb/s throughput, near speed-of-light

signal propagation, and low pJ/b energy costs. When evaluat-

ing the benefits of stacking NDP designs, we have to compare

to technology available today. Not just legacy interfaces.

IV. EXPERIMENTAL METHODOLOGY

A. Workloads

We use a diverse set of multi-threaded benchmark suites:

graph, map-reduce, and parsec. We choose applications to

cover the range of thread-level massive parallelism as well

as memory intensity. For graph and map-reduced workload,

114

we use an average of five sets of real-world inputs from the

Stanford large network dataset collection [58], and for parsec,

we use native-sized input set. We choose our workloads and

input set to match previous NDP-related work [4]. Specific

workload descriptions can be found in Table IV.
For each workload and input combination, threads only

execute the parallel phases. We choose input sizes to achieve

a minimum of 1 billion executed instructions. We reduce the

impact of non-determinism typical in multi-threaded execu-

tions by collecting statistics at specific regions of interest, and

we report an average from multiple runs.

TABLE IV
WORKLOAD CONFIGURATION SHOWING 22 APPLICATIONS ACROSS 4

BENCHMARKS SUITES.

Graph [59]

apsp - All Pairs Shortest Path, bece -
Betweenness Centralities, brfs - Breadth
First Search, coco - Connected Compo-
nents, comm - Community Detection, defs
- Depth Search First, pgrk - Page Rank,
sssp - Single Source Shortest Path, trct -
Triangle Counting

Map-Reduce
[60]

hist - Histogram, kmean - K-Means, lire
- Linear Regression, stma - String Match,
mamu - Matrix Multiply, woco - Word
Count

Parsec [61]
cann - Canneal, flui - Fluid Animate, stcl
- Streamcluster

Micro
[Written C++
algorithms for
required access

patterns]

rand - Random memory access over entire
address range, rdck - Random memory
access over specific chunk of address range
per thread, st01/st02 - Linear streaming
memory access at specific offsets

B. System Level Modeling
We evaluate our systems using a modified version of

the GEM5 simulator [62]. HMC sub-system is modeled

using HMCSim which we port into GEM5, and the DRAM

layers are modeled using a modified version of DRAMCtrl

embedded in GEM5 [63]. Prior NDP work utilize 2 NDP

sockets each with 512 cores [3]–[6]. For simulation efficiency,

we only model one such chip with 128 cores. HMC hardware

configuration and timing parameters are derived from

literature and specification 2.1, while DDR parameters are

derived from Micron DDR data-sheets [1,51,64]. Circuit-level

design and simulations are performed with sonnet and

cadence [55,65]. Channel s-parameters are obtained from

sonnet EM simulations.

1) Memory System: We utilize DDR4 and HMC memory

sub-systems in our experiments. For either system, we use

8 GB of total memory capacity. For DDR4 sub-system, we

use 4 memory channels, each accessing 2 GB partition of

total memory. This configuration is indicative of current CMP

systems. High-level memory sub-system configurations are

shown in Table V.
For HMC sub-system, we use 1 HMC cube. This is broken

down as follows; there are 32-vaults, each vault accesses 8

TABLE V
MEMORY SUB-SYSTEM CONFIGURATION.

HMC

Organization: 8GB, 1 units (cubes), 32 vaults, 8
partitions, 32MB devices
Timing: tCK = 0.8 ns, tRAS = 21.6 ns, tRCD =
tCAS = 10.2 ns, tWR = 8 ns, tRP = 7.7 ns

DDR4

Organization: 8GB, 1600 MHz, 4 channels, 4
memory controllers
Timing: tCK = 0.833 ns, tRAS = 32 ns, tRCD =
tCAS = 14.16 ns, tWR = 15 ns, tRP = 14.16 ns

vertical partitions, each partition has 32 MB DRAM device

(32 ∗ 8 ∗ 32MB = 8GB) at 16 MB per bank.

There exists trade-offs in the HMC design parameters. Hav-

ing more vaults, improves vertical concurrency, but decreases

device size. We choose our parameters for good relative

performance characteristics, based on the trade-off analysis

outlined in other work [66,67].

Internally, each HMC vault has a maximum 10 GB/s

vertical bandwidth [51]. This translates to a total of 40 (per

vault) data through silicon vias (TSVs) at 2 Gb/s bandwidth

[1]. The maximum DRAM bandwidth per cube is therefore

320 GB/s (10GB/s ∗ 32 vaults) supplied through 1280

TSVs. Externally, we provide each cube with up to 4 serial

links in each direction, for a full duplex setup. Each link

having 16 differential strip-line channels (see Fig. 5 (b), for

a total of 128 channels. The total external HMC bandwidth

is therefore 448 GB/s or 896 GB/s using our 28 Gb/s NRZ or

56 Gb/s PAM-4 signaling respectively (obtained as follows;

4 links ∗ 2 duplex ∗ 16 lanes ∗ bitrate / 8).

2) Conventional System: Our generic conventional

system is a CMP consisting of 2 out-of-order cores, with

corresponding private L1 caches, shared L2 cache, and unified

L3 cache. The CMP is connected to either DDR or HMC

memory sub-system. We use 2 cores for 1-to-64 ratio when

compared to NDP core count, similar to prior NDP work. All

conventional high-level system configurations are outlined in

Table VI.

TABLE VI
HOST/CONVENTIONAL SYSTEM CONFIGURATION.

Processing
Node

28 nm, 2 core(s), out-of-order, 4-wide, 192 ROB,
96 LSQ, 128INT/128FP PRF, 4INT/ 2MEM/ 4FP
FUs

Operating
Points

1V supply, 3GHz freq.

L1
Cache(s)

Split Private I/D, 32 KB, 4-way, 64B blocks, 3
ports, 1 ns hit latency, 4 MSHRs

L2
Cache(s)

256 KB Bank, 8-way, 64B blocks, 1 port, 10 ns
hit latency, 20 MSHRs

L3
Cache(s)

20MB, 16-way, 64B blocks

115

3) 3D-Integrated NDP System: Our baseline NDP system

consists of a single chip with 128 single-issue in-order cores

implemented in the HMC logic layer, at 28 nm technology

node. The cores operate on 1 V supply at 1 GHz frequency.

Each core has corresponding privately split instruction

and data first level caches. The caches are 32 KB, 2-way

associative, and 64 B blocks. We group 4 cores into a node,

and each node accesses a single vault controller. We connect

the nodes with a 3-cycle fabric adapted from the crossbar

designs of prior work [19,20]. The NDP chip is interconnected

to a conventional CMP (Section IV-B2) for initialization and

synchronization, similar to prior work.

4) Interposer-Based System: An alternative to 3D inte-

grated NDP systems is to use two separate chips one being

an HMC chip, the other essentially a CMP with all the (in-

order) computing cores. The two chips are connected via an

interposer fabric. Fig. 8 shows the high-level schematic of

such a system. The processor chip utilizes cores similar to the

NDP system. 4 cores are grouped into a node, and an on-chip

fabric connects all the nodes as well as interposer transceiver

points (ITP). These ITPs are connected to the memory chip via

dense interposer-based off-chip serial links, such as Fig. 5 (b).

The off-chip links, CMP, and HMC have the same number

of communication pins as per HMC hardware specification

1.2 [51]. The corresponding link configuration parameters are

outlined in Table VII.

Fig. 8. Interposer system architecture. Dense state-of-the-art off-chip high-
speed links are used to connect HMC and CMP chips. Additional on-chip links
(not shown) are used for intra CMP communication, and connects processing
nodes (N) to interposer transceiver points (ITPs) for memory access.

The CMP’s on-chip fabric also uses serial links as a sim-

ple, shared, point-to-point medium (called transmission line
link buses or TLLBs) [68]. These TLLBs offer competitive

throughput at a fraction of the energy cost compared to con-

ventional packet-relayed interconnects [68]–[70]. The TLLBs

can be used for on-chip communication between cores, thereby

eliminating the need for synchronization by a dedicated host

processor, as well as other coherence purposes.

Just like a conventional CMP, when a computing core needs

off-chip data, it creates a request packet and arbitrates for one

of the on-chip links. Here, we adopt the centralized arbitration

scheme from prior work [69]. Upon receiving a grant signal,

the node’s local transmission circuitry transmits the packet

to the designated ITP, which is addressed interleaved. The

ITP then forwards buffered packet(s) on its off-chip interposer

serial links to the HMC. Conversely, on receiving an off-chip

packet from the HMC, the ITP can arbitrate for one of the

on-chip TLLB links and subsequently forward the packet to

the designated node.

TABLE VII
HIGH-SPEED LINK SUB-SYSTEM CONFIGURATION.

On-chip
(Serial)

1.75 GHz clock, 8 B flit (1 flit meta packet, 9 flits
data packets), 9 bidirectional links - 4 channels
per link, 28 Gb/s or 56 Gb/s bit rates, 1 cycle
propagation latency, 4 cycle overhead (2 cycle
SerDes, 1 cycle request, 1 cycle grant/wakeup)

Off-Chip
(Serial)

1.75 GHz clock, 72 B payload, 8 links (4 each
direction) - 16 channels per link, 28 Gb/s or
56 Gb/s bit rates

Off-Chip
(Parallel)

[2]

500 MHz clock, 72 B payload, 4 links (bi-
directional) - 128 channels per link, 2 Gb/s bit
rates

In this configuration, packet latencies are a function of

queueing, serialization, and propagation delays, all of which

are modeled faithfully. Queueing delay varies and is modeled

in the execution driven simulation. Serialization delay is

dependent on data rates. Therefore, for the off-chip links a

72 byte data payload (64 B cache line plus 8 B header) can be

serialized in 2 cycles at moderate 28 Gb/s NRZ or 1 cycle at

high 56 Gb/s PAM-4 as follows;⌈
72 B

16 lanes ∗ bitrate / 8

⌉
=

⌈
36

bitrate

⌉
(1)

Finally, as discussed earlier (Section III-B2), signal prop-

agation delay (134 ps or 0.134 ns) is less than the NDP-core

compute cycle (1 ns). We account for propagation by incurring

a 1 cycle delay in our simulations. Essentially, the minimum

(unloaded) latency of a data packet from the ITP to the HMC

is 3 or 2 cycles respectively for NRZ or PAM-4 signaling.

The corresponding latency details for the on-chip interconnect

component is modeled similar to other work [57].

C. Power and Area Models

We model power and area characteristics of the cores

using a version of McPAT [71], while memory is modelled

with DRAMCtrl. Our NDP and interposer systems use high-

performance and energy efficient cores such as the ARM

Cortex-A5 [72], similar to previous literature. Based on cacti

analysis (embedded in McPAT), at 28nm technology node, we

obtain an approximate 0.70 mm2 area per core. Additionally,

the logic area of a single HMC cube with 4 full-duplex serial

links is estimated to be no more than 90 mm2 (34 mm package

size [51]). We estimate 100 mW core power based on previous

ARM energy characterization for similar processor type [73].

On the memory side, our 896 GB/s maximum aggre-

gate bandwidth at PAM-4 transmission rates (56 Gb/s) have

116

1.01 pJ/b maximum efficiency (see Table III). The peak power

of our links is computed in Eq. 2 as follows:

896
2

GB

s
∗ 1.01

pJ

b
= 448∗8

Tb

s
∗ 1.01

pW

s2b
= 3.62 W (2)

We assume 2.89W peak power for the logic layer [3]. Our

6.51W total HMC logic layer power is approximately half

of previous work. Additionally, at 3.7 pJ/b memory access

energy, the peak power at the maximum 320 GB/s (2.56 Tb/s)

bandwidth is 9.47 W (2.56 ∗3.7). To match previous work, we

attribute 10% of this total power to background activity [3].

On the processor side, our on-chip TLLB is designed to

transmit a maximum 64 byte cache lines. At our PAM-4

transmission rates, it provides 3.6 TB/s bandwidth at 1.19 pJ/b

maximum energy, and 34.3 W peak power.

D. Thermal Models

We model temperature and leakage characteristics using a

version of the HotSpot simulator [74]. We produced a single

high-level floor plan for the processor (cores and caches),

and a separate high-level floor plans for each of the HMC

layers. For our non-stacked systems, we evaluate the processor

and HMC thermal characteristics separately. While for fully-

stacked system, we evaluate a 3D structure with processor

layers below HMC layers. All configurations have appropriate

heat sinks, as well as thermal insulators between layers.

Additionally, power traces required for analysis are obtained

from simulations.

V. EXPERIMENTAL ANALYSIS

In this section, we analyze the performance and energy

benefits that are attributable to physical proximity based on our

experimental results. There is a diverse range of parameters

used in our experiments (or for that matter similar prior

experiments). Each come with its own estimation errors and

uncertainties. A particularly dangerous source of errors is

mixing parameters derived from first principles with product

specifications. This paper is no different. Quantifying these

uncertainties is beyond the scope of our effort. Consequently,

we would present (over-)simplified first-principle analyses

together with simulation results.

A. Performance Analysis

Consistency check: First, as a consistency check that we are

experimenting with a design similar to recent NDP system

proposals, we compare performance of a NDP system to

a conventional general-purpose architecture. The NDP setup

utilizes an HMC system technology, while the conventional

setup utilizes DDR, similar to prior studies [3,4].

In Fig. 9, we see that most applications enjoy more than 10x

speedup when executing on an NDP system. We see variation

among the groups of applications. The graph applications

enjoy a more consistent gain, while the map-reduce workloads

see less gain. Overall, the geometric mean speedup is about

15x. This observation is largely in agreement with earlier

studies [3,4]. However, this significant performance gain is not

entirely due to the architectural feature of stacking memory

on top of processors for maximum proximity. In fact, much

of the difference is attributable to the large number of cores

in the NDP configuration providing a processing throughput

advantage over the single-core conventional system. Accessing

profile does play a non-trivial role as we will see next.

70.2 46.5

ap
sp

be
ce

br
fs

co
co

co
m

m
de

fs
pg

rk
ss

sp tr
ct

hi
st

km
ea lir
e

st
m

a
m

an
u

w
oc

o

ge
om

0

7.5

15

Sp
ee

du
p

Graph MapReduce

Fig. 9. Performance advantage of NDP system (single-issue in-order cores)
over conventional out-of-order cores system. NDP has 64 times more cores
than conventional.

Control experiment: To tease out the performance difference

attributable to 3D stacking, we keep the processing elements

(single-issue in-order cores) and memory (hybrid memory

cubes) the same across all configurations and compare differ-

ent interfaces between them. Starting from the configuration

where processing is nearest to data, we gradually move the

processing away:

• Ideal: This is an idealized configuration where memory

access takes place directly after the cache miss, without

going through any intermediate fabric. We normalize all

results to that of this configuration.

• 3DI: This is the stereotypical NDP configuration where

processor cores are on the same chip as the memory

units and are connected via an on-chip fabric such as

a crossbar.

• HPL & VHPL: The next two configurations use separate

chips for processing cores and for memory vaults. They

are connected with high-speed serial links. Depending on

the materials and circuit design, these links can offer quite

different performance profiles. We thus use two design

points to better characterize the space. The HPL (high-

performance links) configuration represents a more basic

variety assuming NRZ modulation on relatively lossy

transmission lines (e.g., over FR4-based channels). This is

an approximation of what can be achieved via commodity

components today and provides 28 Gb/s throughput per

channel. The VHPL (very-high-performance link) con-

figuration models a more advanced point with low loss

material such as LTCC [75] and PAM-4 modulation (56

Gb/s).

Fig. 10 shows the detailed results for performance compar-

ison of various fabric alternatives. From this more detailed

set of results we can better understand the performance im-

plication of the interconnection between memory units and

the cores. Additionally, we evaluate a parallel link fabric

configuration (PAR). PAR is equivalent to the interposer-based

link interface used in High-Bandwidth Memory systems [2].

The parallel link parameters are given in Table VII under Off-

Chip (Parallel) configuration.

117

PAR HPL VHPL 3DI Ideal
0.50

0.75

1.00

Sp
ee

du
p

apsp

bece

brfs

coco

comm

defs

pgrk

sssp

trct

hist

kmea

lire

manu

stma

woco

cann

flui

stcl

rand

rdck

st01

st02

geom

Fig. 10. Performance comparison of different interconnections between
processing elements and memory, showing speedups for all applications,
normalized to an Ideal interconnection fabric.

• The most extreme performance benefit is seen from the

microbenchmark with random access pattern (rand and

rdck). The difference between the two extreme config-

urations (Ideal vs PAR) is a factor of 1.53x. This is the

“maximum dynamic range” that is due to interconnection,

or in other words, the upper bound on the performance

impact that can be attributable to the decision of stacking

or not.

• Note that not all workloads have a sensitivity indicated by

this upper bound. At one extreme, one benchmark (stma)

is utterly unaffected by the fabric. In fact, excluding the

microbenchmarks, the range of performance difference

narrows to at most 1.33x.

• The bold line represents geometric mean results of our

benchmark suite and is thus a reasonable approximation

of performance profiles of these design points in general.

VHPL and 3DI represents two realistic design points

differing only in the aspect of whether to stack or not.

The performance difference is about 1.08x.

To summarize, over non-optimized conventional design,

stacking processors in memory chips can bring a significant

performance gain (1.53x), but only for a very special class of

applications. For the workloads evaluated, and using a more

realistic alternative for non-stacking design, the performance

benefit is about 8%.

From a simplified first-principle analysis, the average

memory access latency after LLC is about 33 cycles. The

round trip latency using VHPL adds less than 4 processor

cycles. The median cycles-per-instruction (CPI) for these

codes is about 3.6 with a median of 8.1 LLC misses per

kilo instructions (MPKI). In other words, a memory access

happens about once every 440 cycles for each core. The

direct latency overhead is in the neighborhood of 1%. Indirect

overhead such as queuing delay contributes to the rest of the

performance gap. Using the median again, the throughput

demand for 128 cores is about 19 GB/s. This is equivalent to

what 3 wires in the highest performing configuration can carry.

Performance Sensitivity: To understand whether the conclu-

sion is sensitive to processor configuration, we vary core type,

count, cache sizes, as well as frequency. For out-of-order core

systems, we reduce the baseline in-order core count by a factor

of 4 for rough area equivalence. We summarize our sensitivity

options in Table VIII.

TABLE VIII
PERFORMANCE SENSITIVITY CONFIGURATION OPTIONS.

Variable Options
#Cores 128 (in-order), 32 (out-of-order)

Freq. (GHz) 1, 2, 3
L1I/D Size (kB) 16, 32, 64, 128

L1I/D Assoc. 1, 2, 4, 8

Out of all possible combination of configurations, we repeat

our prior performance analysis. For each configuration, only

the suite-wide geometric mean curve is shown. Fig. 11 shows

the final results. In both figures, the maximum performance

gains going from non-stacked (VHPL) to fully-stacked (3DI)

system is no more than 6%. Additionally, there is noticeable

performance groups with out-of-order cores in Fig. 11b, which

is attributable to core frequency.
H

PL

V
H

PL 3D
I

Id
ea

l
0.7

0.8

0.9

1.0

Sp
ee

up

(a) 128-Core IO

H
PL

V
H

PL 3D
I

Id
ea

l

0.7

0.8

0.9

1.0

Sp
ee

up
(b) 32-Core OO

Fig. 11. Performance sensitivity of architectural design points. IO and OO
represent in-order and out-of-order cores respectively. Each line represents the
geometric mean of all applications, and across the different systems, with 82
configurations per figure.

Caveats: Finally, it must be noted that our performance

analysis in no way argues against bring processing closer to

data. It is only isolating the last step of the process of bringing

processing closer to memory, namely stacking the processors

directly under the memory units. From a performance stand

point, our results show that comparable performance can be

obtained even if processors and memory are not stacked

together. As long as a suitable, carefully designed inter-

connecting fabric (such as state-of-the-art high-speed links)

are utilized. Further- more, our results are obtained when

modeling a single, current- generation HMC cube-like device.

If future memory devices support orders of magnitude higher

internal bandwidths, the scalability of high-performance fabric

may deserved a more careful study at that point.

B. Energy Analysis

We next turn to the consideration of energy. Stacking

improves energy in two ways. One is the reduction of commu-

118

nication needed to bring data from memory to the processor.

The other is the savings of cycles and thus fixed-cost energy

overhead such as clock and leakage. For this analysis, we

first ignore leakage energy and thus the effect of elevated

temperatures on the system and return to this later.

ra
nd

rd
ck

st
01

st
02

0

0.5

1.0

E
PI

 (
nJ

/I
ns

tr
)

ap
sp

be
ce

br
fs

co
co

co
m

m
de

fs
pg

rk tr
ct

ss
sp hi
st

km
ea lir
e

st
m

a
m

am
u

w
oc

o

ca
nn fl
ui

st
cl

av
g0

0.2

0.4 Memory
Xbar
Off-Chip
On-Chip
Compute

Fig. 12. Energy per instruction (EPI) for VHPL (left bars for each
application) and 3DI (right bars). EPI for micro-benchmarks, shown on left
y-axis. EPI for real benchmarks on right y-axis due to difference in scale.
Energy is broken down into different components from bottom up: compute,
various interconnects (on-chip, off-chip, crossbar), DRAM access, and other
fixed costs. Note: Off-chip energy is shown but not visible in plot due to the
small magnitude relative to other components.

Fig. 12 shows the breakdown of energy per instruction

for the designs labeled VHPL and 3DI. Excluding micro-

benchmarks (left group of plots in the figure), energy per

instruction increases by 3.5% on average from stacked design

(3DI) to non-stacked design (VHPL). Keep in mind that in

reality, stacking will increase DRAM operating temperature

and may increase background energy, which is not accounted

for in this plot.

Let us return to the simplified first-principle analysis. We

note that our circuit models show an energy on the orders of

1 pJ/b for communication over off-chip high-speed links. This

is more conservative than reported values from real test chips

[50]. In our simulations, excluding DRAM itself, energy per

instruction is on average 188 pJ comparable to measurement

results of a similarly-configured processor [73]. Per bit energy

consumption of DRAM access in the HMC is about 4 pJ/b.

On average, our workload shows about 10 bits DRAM access

per instruction, though there is non-trivial variations among

different applications (the median is 4 bits per instruction).

So from first-order approximation, the direct overhead of

going over an additional high-speed link is not significant. It

represents less than 10% of the DRAM’s access energy, and

about 2% of overall energy cost per instructions.

It is sometimes noted by researchers that data movement

is extremely expensive energy-wise, especially compared to

bare ALU operations. There are two factors to keep in mind.

First, communication is not inherently expensive, but can be

so depending on circuit design and load. Repeated digital

wires, for example, are mainly attractive for their simplicity.

We should not extrapolate their energy consumption over long

distances. Second, general-purpose processors have significant

instruction processing overhead on top of bare functional exe-

cution. Specialized accelerators may be a solution, but moving

the same general-purpose design closer to main memory does

not address this overhead.

C. Thermal Analysis

Stacking involves significant thermal coupling between the

cores and the DRAM stacks. This can create elevated tem-

perature and the concomitant higher leakage. The exact detail

of the thermal impact depends on many aspects of the design

that are hard to estimate accurately. The following analysis is

thus a very crude estimate based on public-domain tools.

60

80

(a) Logic (b) Bottom (c) Middle (d) Top

Fig. 13. 3D NDP stacked system temperature profile, showing layers from
bottom to top. Logic layer (a) contains the computing cores, bottom layer (b)
is DRAM layers closest to logic, middle layer (c) is 4th DRAM layer from
bottom, and top layer (d) is layer closest to heat sink.

60

80

(a) Cores (b) Bottom (c) Middle (d) Top

Fig. 14. 2.5D non-stacked temperature profile. HMC DRAM layers are shown
from bottom to top. DRAM-middle is 4th DRAM layer from bottom.

Fig. 13 and Fig. 14 show the temperature profiles for

stacked 3D and non-stacked 2.5D systems respectively. As

expected, stacking computing cores under memory changes

the thermal distribution property of both. We observe that;
1© the DRAM layer closest to the cores see at least 9◦C
rise in temperature, 2© the overall temperature of the cores

in the 3D stack also increases by last 15◦C compared to 2.5D

counterpart. Temperature dependent leakage models show that

a quadratic relational model in the DRAM operating range

(55◦C to 90◦C) provides more than 99% accuracy [76,77].

Utilizing similar model in our HotSpot analysis, we observe

that a 10◦C rise in temperature incurs 13% leakage overhead

[78].

The exact leakage power depends on many design decisions.

If we take one case where 10% of the transistors used in

the processors are high-performance transistors and ignore the

leakage from the rest of the chip, then the average energy per

instruction for 3DI and VHPL would be 175 pJ and 167 pJ,

respectively. In this case, the improved energy efficiency for

transport is more than offset by the leakage increase due to

higher temperature.

D. Workload Analysis

The analysis so far clearly depends on the workload char-

acteristics. Our workloads include graph applications and

119

map-reduce workloads. These are often used for evaluating

NDP designs. From the memory access statistic shown in

Fig. 15, we can see that there is significant variations among

applications. For instance, the number of bits accessed per

instruction (Fig. 15 (a)) ranges from 0.1 to 26.1 excluding

micro-benchmarks, while the micro-benchmark accesses 77

bits per instruction. But overall, these workloads are not

very different from general-purpose parallel workloads in their

memory access behaviors. For example, most of them have

high L1 hit rates (Fig. 15 (b)). Note in the figure that our

MapReduce applications have significantly low L2 hit rates;

hist - 0.002, kmean - 0.036, lire - 0.119, and stma -

0.0267.

77.6

ra
nd

rd
ck

st
01

st
02

ap
sp

be
ce

br
fs

co
co

co
m

m
de

fs
pg

rk tr
ct

ss
sp hi
st

km
ea lir
e

st
m

a
m

am
u

w
oc

o

ca
nn fl
ui

st
cl

0

50

B
its

/I
ns

tr
.

(a) Intensity measured as bits per instructions.

ra
nd

rd
ck

st
01

st
02

ap
sp

be
ce

br
fs

co
co

co
m

m
de

fs
pg

rk tr
ct

ss
sp hi
st

km
ea lir
e

st
m

a
m

am
u

w
oc

o

ca
nn fl
ui

st
cl

0
50

100

H
it

R
at

e
(%

) L1 L2

(b) Hit rates at L1 and L2 cache levels. MapReduce applications have very
low L2 hit rates.

Fig. 15. Memory access profile for different workloads.

Given such memory access behavior, intensity, and DRAM

products’ access capabilities, the access bandwidth needed for

a current generation product is well matched by the bandwidth

capabilities using today’s high-speed link technologies. The

use of silicon carrier technology provides reasonable future

scalability. In other words, there is no reason to believe high-

speed link will quickly become throughput bottleneck in the

near future.

DDR.2CH

DDR.4CH
HPL

VHPL 3DI
Ideal

0

20

40

60

80

100

120

M
em

o
ry

 L
at

en
cy

 (
C

yc
le

s)

D.Access
D.Queue
TSV
XBAR
Other.Queue

Fig. 16. Memory access latency components; D.Access, D.Queue, TSV,
XBAR, and Other. Queue specify DRAM access, DRAM queuing, through
silicon via, HMC crossbar, and vault queuing latencies respectively.

Fig. 16 compares the memory access latency breakdown

among the several configurations discussed before. We report

a controlled experiment where the only change is the processor

to memory interconnecting fabric. The processor cores are

all the same and the memory structure is HMC. Note that

DDR.4CH and DDR.2CH utilize DDR channel timing with

4 or 2 channels respectively. As we move from right to left,

the interconnect fabric becomes “weaker” (having degrading

performance characteristics), and the queuing delay gradually

increases.

Clearly, processing “nearer” data is better. However, we can

also see that the effect is a gradual one. Physical stacking

represent but a small, incremental step. It is all about the

performance characteristics of the fabric connecting data and

memory. Additionally, even for NDP workloads, caches still

provide substantial filtering such that the latency difference

seen in Fig. 16 is only experienced relatively infrequently.

Therefore, the step of stacking processor directly under the

memory unit is but another step in terms of the performance

(and energy) effect. Utilizing high-speed links and avoiding

stacking altogether is a valid design point.

VI. CONCLUSIONS

Processing-in-memory has long been considered an attrac-

tive model to improve execution efficiency. With the increase

in data set sizes, it is intuitively even more attractive today.

Recent industry development of 3D-stacked memory products

gives rise to the notion of finally allowing the embrace of a

similar architecture. Dubbed Near-Data Processing, the new

proposals advocate for the use of simpler and more energy-

efficient cores placed directly under the stacks of memory

layers. However, embedding a large number of processing

cores and indeed stacking them under the memory layer does

present a number of challenges. In this paper, we investigate

the performance and energy impact of the single decision

in the architecture design space of NDP: that of stacking.

Stacking allows the distance between processors and memory

to be shrunk to the ultimate limit. However, we have shown

that physical stacking is not essential. Indeed if we only apply

the state of the art in high-speed link design practice, we

can provide an interconnection fabric that virtually places

the connected processor near enough to their memory banks.

Such a fabric adds insignificant latency to the access path

and provides sufficient bandwidth to today’s data-intensive

applications. As a result, for the parallel sections of a set of

data-intensive applications, the overall performance impact, at

1.08x is relatively small. In terms of energy, such a fabric

imposes about 4% overhead, if we neglect leakage. If we

account for leakage, 3D stacking may end up costing more

depending on the transistor type used. Overall, while moving

processing closer to the memory is a sensible strategy, the

final step of stacking does not appear essential to performance

benefits.

120

REFERENCES

[1] J. Jeddeloh and B. Keeth, “Hybrid memory cube new dram architec-
ture increases density and performance,” in 2012 Symposium on VLSI
Technology (VLSIT), June 2012, pp. 87–88.

[2] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park,
J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon,
M. J. Kim, J. Lee, K. W. Park, B. Chung, and S. Hong, “25.2a 1.2v
8gb 8-channel 128gb/s high-bandwidth memory (hbm) stacked dram
with effective microbump i/o test methods using 29nm process and tsv,”
in 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), Feb 2014, pp. 432–433.

[3] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “Ndc: Analyzing the impact
of 3d-stacked memory+logic devices on mapreduce workloads,” in 2014
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), March 2014, pp. 190–200.

[4] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing for
in-memory analytics frameworks,” in 2015 International Conference on
Parallel Architecture and Compilation (PACT), Oct 2015, pp. 113–124.

[5] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “Nda:
Near-dram acceleration architecture leveraging commodity dram devices
and standard memory modules,” in 2015 IEEE 21st International Sym-
posium on High Performance Computer Architecture (HPCA), Feb 2015,
pp. 283–295.

[6] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable
processing-in-memory accelerator for parallel graph processing,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), June 2015, pp. 105–117.

[7] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A Case for Intelligent RAM,”
Micro, IEEE, vol. 17, no. 2, pp. 34–44, Mar./Apr. 1997.

[8] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss,
J. Granacki, J. Brockman, A. Srivastava et al., “Mapping Irregular
Applications to DIVA, a PIM-Based Data-Intensive Architecture,” in
Proceedings of the Supercomputing, Nov. 1999, p. 57.

[9] Y. Kang, W. Huang, S. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “FlexRAM: Toward an Advanced Intelligent Memory
System,” in Proceedings of the International Conference on Computer
Design, Oct. 1999, pp. 192–201.

[10] P. M. Kogge, “EXECUBE-A New Architecture for Scaleable MPPs,”
in Proceedings of the International Conference on Parallel Processing,
Aug. 1994, pp. 77–84.

[11] M. Oskin, F. T. Chong, and T. Sherwood, “Active PAGES: A Computa-
tion Model for Intelligent Memory,” in Proceedings of the International
Symposium on Computer Architecture, Jun.–Jul. 1998, pp. 192–203.

[12] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen,
C. Y. Cher, C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer,
T. W. Fox, D. S. Gallo, L. Grinberg, J. A. Gunnels, A. C. Jacob,
P. Jacob, H. M. Jacobson, T. Karkhanis, C. Kim, J. H. Moreno, J. K.
O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D.
Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam, and
Z. Sura, “Active memory cube: A processing-in-memory architecture for
exascale systems,” IBM Journal of Research and Development, vol. 59,
no. 2/3, pp. 17:1–17:14, March 2015.

[13] S. Khoram, Y. Zha, J. Zhang, and J. Li, “Challenges and Opportunities:
From Near-memory Computing to In-memory Computing,” in
Proceedings of the 2017 ACM on International Symposium on Physical
Design, ser. ISPD ’17. New York, NY, USA: ACM, 2017, pp. 43–46.
[Online]. Available: http://doi.acm.org/10.1145/3036669.3038242

[14] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb
2018, pp. 544–557.

[15] C. Zhang, T. Meng, and G. Sun, “Pm3: Power modeling and power
management for processing-in-memory,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb
2018, pp. 558–570.

[16] M. Gao and C. Kozyrakis, “HRL: Efficient and flexible reconfigurable
logic for near-data processing,” in 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), March 2016, pp.
126–137.

[17] yed Minhaj Hassan, S. Yalamanchili, and S. Mukhopadhyay, “Near
Data Processing: Impact and Optimization of 3D Memory System
Architecture on the Uncore,” in Proceedings of the 2015 International
Symposium on Memory Systems, ser. MEMSYS ’15. New York,
NY, USA: ACM, 2015, pp. 11–21. [Online]. Available: http:
//doi.acm.org/10.1145/2818950.2818952

[18] M. Scrbak, M. Islam, K. M. Kavi, M. Ignatowski, and N. Jayasena,
“Exploring the Processing-in-Memory Design Space,” J. Syst. Archit.,
vol. 75, no. C, pp. 59–67, Apr. 2017. [Online]. Available: https:
//doi.org/10.1016/j.sysarc.2016.08.001

[19] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “High performance
AXI-4.0 based interconnect for extensible smart memory cubes,” in
2015 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2015, pp. 1317–1322.

[20] E. Azarkhish, C. Pfister, D. Rossi, I. Loi, and L. Benini, “Logic-
Base Interconnect Design for Near Memory Computing in the Smart
Memory Cube,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 1, pp. 210–223, Jan 2017.

[21] H. A. D. Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, and
K. Bertels, “On the Implementation of Computation-in-Memory Parallel
Adder,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 8, pp. 2206–2219, Aug 2017.

[22] M. Imani, Y. Kim, and T. Rosing, “MPIM: Multi-purpose in-memory
processing using configurable resistive memory,” in 2017 22nd Asia and
South Pacific Design Automation Conference (ASP-DAC), Jan 2017, pp.
757–763.

[23] R. Panda, Y. Eckert, N. Jayasena, O. Kayiran, M. Boyer, and L. K. John,
“Prefetching Techniques for Near-memory Throughput Processors,” in
Proceedings of the 2016 International Conference on Supercomputing,
ser. ICS ’16. New York, NY, USA: ACM, 2016, pp. 40:1–40:14.
[Online]. Available: http://doi.acm.org/10.1145/2925426.2926282

[24] B. Hong, G. Kim, J. H. Ahn, Y. Kwon, H. Kim, and J. Kim,
“Accelerating Linked-list Traversal Through Near-Data Processing,”
in Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation, ser. PACT ’16. New York, NY, USA:
ACM, 2016, pp. 113–124. [Online]. Available: http://doi.acm.org/10.
1145/2967938.2967958

[25] S. H. Pugsley, A. Deb, R. Balasubramonian, and F. Li, “Fixed-function
hardware sorting accelerators for near data mapreduce execution,” in
2015 33rd IEEE International Conference on Computer Design (ICCD),
Oct 2015, pp. 439–442.

[26] W. Wen, J. Yang, and Y. Zhang, “Optimizing Power Efficiency
for 3D Stacked GPU-in-memory Architecture,” Microprocessors and
Microsystems, vol. 49, no. C, pp. 44–53, Mar. 2017. [Online]. Available:
https://doi.org/10.1016/j.micpro.2017.01.005

[27] P. C. Santos, G. F. Oliveira, D. G. Tom, M. A. Z. Alves, E. C. Almeida,
and L. Carro, “Operand size reconfiguration for big data processing in
memory,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2017, March 2017, pp. 710–715.

[28] C. Xie, S. L. Song, J. Wang, W. Zhang, and X. Fu, “Processing-in-
memory enabled graphics processors for 3d rendering,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2017, pp. 637–648.

[29] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in Proceedings of the
43rd International Symposium on Computer Architecture, ser. ISCA
’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 27–39. [Online].
Available: https://doi.org/10.1109/ISCA.2016.13

[30] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), Feb 2018, pp.
531–543.

[31] D. Xu, Y. Liao, Y. Wang, H. Li, and X. Li, “Selective Off-
loading to Memory: Task Partitioning and Mapping for PIM-enabled
Heterogeneous Systems,” in Proceedings of the Computing Frontiers
Conference, ser. CF’17. New York, NY, USA: ACM, 2017, pp. 255–
258. [Online]. Available: http://doi.acm.org/10.1145/3075564.3075584

[32] S. Lee, H. Sim, Y. Kim, and S. S. Vazhkudai, “AnalyzeThat: A
Programmable Shared-Memory System for an Array of Processing-In-
Memory Devices,” in 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), May 2017, pp. 619–624.

[33] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh,
K. T. Malladi, H. Zheng, and O. Mutlu, “LazyPIM: An Efficient Cache

121

Coherence Mechanism for Processing-in-Memory,” IEEE Computer
Architecture Letters, vol. 16, no. 1, pp. 46–50, Jan 2017.

[34] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions:
A low-overhead, locality-aware processing-in-memory architecture,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), June 2015, pp. 336–348.

[35] K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O’Connor,
N. Vijaykumar, O. Mutlu, and S. W. Keckler, “Transparent offloading
and mapping (tom): Enabling programmer-transparent near-data
processing in gpu systems,” in Proceedings of the 43rd International
Symposium on Computer Architecture, ser. ISCA ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 204–216. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.27

[36] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,
O. Mutlu, and C. R. Das, “Scheduling techniques for gpu architectures
with processing-in-memory capabilities,” in 2016 International Confer-
ence on Parallel Architecture and Compilation Techniques (PACT), Sept
2016, pp. 31–44.

[37] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu, “Concurrent data
structures for near-memory computing,” in Proceedings of the 29th
ACM Symposium on Parallelism in Algorithms and Architectures, ser.
SPAA ’17. New York, NY, USA: ACM, 2017, pp. 235–245. [Online].
Available: http://doi.acm.org/10.1145/3087556.3087582

[38] Y. Wang, M. Zhang, and J. Yang, “Towards memory-efficient
processing-in-memory architecture for convolutional neural networks,”
in Proceedings of the 18th ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, ser. LCTES
2017. New York, NY, USA: ACM, 2017, pp. 81–90. [Online].
Available: http://doi.acm.org/10.1145/3078633.3081032

[39] S. F. Yitbarek, T. Yang, R. Das, and T. Austin, “Exploring specialized
near-memory processing for data intensive operations,” in 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2016,
pp. 1449–1452.

[40] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling interposer-based
disintegration of multi-core processors,” in 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Dec 2015, pp.
546–558.

[41] N. Jerger, A. Kannan, Z. Li, and G. H. Loh, “NoC Architectures for
Silicon Interposer Systems: Why Pay for more Wires when you Can Get
them (from your interposer) for Free?” in 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec 2014, pp. 458–470.

[42] A. Kannan, N. E. Jerger, and G. H. Loh, “Exploiting interposer technolo-
gies to disintegrate and reintegrate multicore processors,” IEEE Micro,
vol. 36, no. 3, pp. 84–93, May 2016.

[43] I. Akgun, J. Zhan, Y. Wang, and Y. Xie, “Scalable memory fabric
for silicon interposer-based multi-core systems,” in 2016 IEEE 34th
International Conference on Computer Design (ICCD), Oct 2016, pp.
33–40.

[44] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C.
Brantley, S. Gurumurthi, N. Jayasena, I. Paul, S. K. Reinhardt, and
G. Rodgers, “Achieving exascale capabilities through heterogeneous
computing,” IEEE Micro, vol. 35, no. 4, pp. 26–36, July 2015.

[45] T. Vijayaraghavan, Y. Eckert, G. H. Loh, M. J. Schulte, M. Igna-
towski, B. M. Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang,
A. Karunanithi, O. Kayiran, M. Meswani, I. Paul, M. Poremba,
S. Raasch, S. K. Reinhardt, G. Sadowski, and V. Sridharan, “Design
and Analysis of an APU for Exascale Computing,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2017, pp. 85–96.

[46] G. H. Loh, N. E. Jerger, A. Kannan, and Y. Eckert, “Interconnect-
memory challenges for multi-chip, silicon interposer systems,” in
Proceedings of the 2015 International Symposium on Memory Systems,
ser. MEMSYS ’15. New York, NY, USA: ACM, 2015, pp. 3–10.
[Online]. Available: http://doi.acm.org/10.1145/2818950.2818951

[47] X. Gu, L. Turlapati, B. Dang, C. K. Tsang, P. S. Andry, T. O. Dickson,
M. P. Beakes, J. U. Knickerbocker, and D. J. Friedman, “High-density
silicon carrier transmission line design for chip-to-chip interconnects,”
in 2011 IEEE 20th Conference on Electrical Performance of Electronic
Packaging and Systems, Oct 2011, pp. 27–30.

[48] S. H. Lee, S. K. Lee, B. Kim, H. J. Park, and J. Y. Sim, “Current-mode
transceiver for silicon interposer channel,” IEEE Journal of Solid-State
Circuits, vol. 49, no. 9, pp. 2044–2053, Sept 2014.

[49] H. Lee, T. Song, S. Byeon, K. Lee, I. Jung, S. Kang, O. Kwon, K. Cheon,
D. Seol, J. Kang, G. Park, and Y. Kim, “A 16.8gbps/channel single-

ended transceiver in 65nm cmos for sip based dram interface on si-
carrier channel,” in 2014 IEEE Asian Solid-State Circuits Conference
(A-SSCC), Nov 2014, pp. 125–128.

[50] B. Dehlaghi and A. C. Carusone, “A 0.3 pj/bit 20 gb/s/wire parallel
interface for die-to-die communication,” IEEE Journal of Solid-State
Circuits, vol. 51, no. 11, pp. 2690–2701, Nov 2016.

[51] “Hybrid memory cube specification 2.1,” 2014, hybrid Memory Cube
Consortium, Tech. Rep.

[52] A. K. Joy, H. Mair, H. C. Lee, A. Feldman, C. Portmann, N. Bulman,
E. C. Crespo, P. Hearne, P. Huang, B. Kerr, P. Khandelwal, F. Kuhlmann,
S. Lytollis, J. Machado, C. Morrison, S. Morrison, S. Rabii, D. Ra-
japaksha, V. Ravinuthula, and G. Surace, “Analog-DFE-Based 16Gb/s
SerDes in 40nm CMOS That Operates Across 34dB Loss Channels at
Nyquist with a Baud Rate CDR and 1.2Vpp Voltage-Mode Driver,” in
Proceedings of the IEEE International Solid-State Circuits Conference,
2011, pp. 350–351.

[53] S. K. Lee, S. H. Lee, D. Sylvester, D. Blaauw, and J. Y. Sim, “A
95fJ/b Current-Mode Transceiver for 10mm On-Chip Interconnect,” in
Proceedings of the IEEE International Solid-State Circuits Conference,
2013, pp. 262–263.

[54] L. Lu and H. Wu, “An energy-efficient high-swing pam-4 voltage-mode
transmitter,” in 2018 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), July 2018.

[55] http://www.sonnetsoftware.com/.
[56] Y. Wang and H. Wu, “Design high bandwidth-density, low latency and

energy efficient on-chip interconnect,” in 2017 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), July 2017,
pp. 1–6.

[57] R. Afoakwa, L. Lu, Y. Wang, H. Wu, and M. Huang, “High swing
pulse-amplitude modulation of transmission line links for on-chip com-
munication,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), May 2018, pp. 1–5.

[58] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[59] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono: A benchmark suite
for multithreaded graph algorithms executing on futuristic multicores,”
in Proceedings of IEEE International Symposium on Workload Charac-
terization, 2015, pp. 44–55.

[60] T. Liu, C. Curtsinger, and E. D. Berger, “Dthreads: Efficient determin-
istic multithreading,” in Proceedings of the 23rd ACM Symposium on
Operating Systems Principles, ser. SOSP ’11. ACM, 2011.

[61] C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proceedings
of the International Conference on Parallel Architecture and Compila-
tion Techniques, Sep. 2008.

[62] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,
2011.

[63] J. D. Leidel and Y. Chen, “Hmc-sim: A simulation framework for hybrid
memory cube devices,” in 2014 IEEE International Parallel Distributed
Processing Symposium Workshops, May 2014, pp. 1465–1474.

[64] Micron, “Ddr4 sdram,” 62015, https://www.micron.com/resource-
details/cf8c7ab8-15b4-4052-a39f-179488615ad1.

[65] https://www.cadence.com/.
[66] P. Rosenfeld, E. Cooper-Balis, T. Farrell, D. Resnick, and B. Jacob,

“Peering over the memory wall: Design space and performance analysis
of the hybrid memory cube,” 2012.

[67] P. Rosenfeld, “Performance exploration of the hybrid memory cube,”
2014.

[68] A. Carpenter, J. Hu, J. Xu, M. Huang, and H. Wu, “A Case for
Globally Shared-Medium On-Chip Interconnect,” in Proceedings of the
International Symposium on Computer Architecture, Jun. 2011.

[69] A. Carpenter, J. Hu, O. Kocabas, M. Huang, and H. Wu, “Enhancing
Effective Throughput for Transmission Line-Based Bus,” in Proceedings
of the International Symposium on Computer Architecture, Jun. 2012,
pp. 165–176.

[70] J. Hu, J. Xu, M. Huang, and H. Wu, “A 25-gbps 8-ps/mm transmis-
sion line based interconnect for on-chip communications in multi-core
chips,” in 2013 IEEE MTT-S International Microwave Symposium Digest
(MTT), June 2013, pp. 1–4.

[71] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An Integrated Power, Area and Timing Modeling

122

Framework for Multicore and Manycore Architectures,” in Proceedings
of the International Symposium on Microarchitecture, Dec. 2009.

[72] A. Developer, “Cortex-a5 processors,” 2016, http://infocenter.arm.com/
help/topic/com.arm.doc.ddi0433c/DDI0433C cortex a5 trm.pdf.

[73] E. Vasilaki”, “”an instruction level energy characterization of arm
processors”,” ”2015”, ”Tech. Rep. FORTH-ICS/TR-450”.

[74] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “Hotspot: a compact thermal modeling methodology
for early-stage vlsi design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, no. 5, pp. 501–513, May 2006.

[75] J. Zhou, “Towards rational design of low-temperature co-fired ceramic
(ltcc) materials,” Journal of Advanced Ceramics, vol. 1, no. 2, pp.
89–99, Jun 2012. [Online]. Available: https://doi.org/10.1007/s40145-
012-0011-3

[76] Y. Liu, R. P. Dick, L. Shang, and H. Yang, “Accurate temperature-
dependent integrated circuit leakage power estimation is easy,” in 2007
Design, Automation Test in Europe Conference Exhibition, April 2007,
pp. 1–6.

[77] H. Sultan, S. Varshney, and S. R. Sarangi, “Is leakage power a linear
function of temperature?” CoRR, vol. abs/1809.03147, 2018.

[78] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras, “Predictive dynamic
thermal and power management for heterogeneous mobile platforms,” in
2015 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2015, pp. 960–965.

123

