
A Methodology for Characterizing Sparse Datasets
and Its Application to SIMD Performance

Prediction

Gangyi Zhu Peng Jiang Gagan Agrawal

Department of Computer Science and Engineering

The Ohio State University

{zhu.926, jiang.952, agrawal.28}@osu.edu

Abstract—Irregular computations are commonly seen in many
scientific and engineering domains that use unstructured meshes
or sparse matrices. The performance of an irregular application
is very dependent upon the dataset. This paper poses the
following question: “given an unstructured mesh or a graph,what
method(s) can be used to sample it, such that the execution on
the resulting sampled dataset can accurately reflect performance
characteristics on the full dataset”. Our first insight is that
developing a universal sampling approach for all sparse matrices
is unpractical. According to the non-zero distribution of the
sparse matrix, we propose two novel sampling strategies: Stride
Average sampling and Random Tile sampling, which are suitable
for uniform and skewed sparse matrices respectively. To help
categorize a sparse matrix as uniform or skewed, we introduce
clustering coefficient as an important feature which can be
propagated into the decision tree model. We also adapt Random
Node Neighbor sampling approach for efficient estimation of
clustering coefficient.

We apply our unstructured dataset characterization approach
to modeling the performance for SIMD irregular applications,
where the sampled dataset obtained is used to predict cache
miss rate and SIMD utilization ratio. We also build analytical
models to estimate overheads incurred by load imbalance among
threads. With knowledge of these factors, we adapt a code skele-
ton framework SKOPE to capture the workload behaviors and
aggregate performance statistics for execution time prediction.

I. INTRODUCTION

Irregular computations are commonly seen in many sci-

entific and engineering domains that involve unstructured

meshes or sparse matrices. A key characteristic of these appli-

cations is indirect or data-dependent memory access pattern.

These applications pose many challenges for the various code

generation or optimization steps that are normally taken for

scientific applications. For example, typically it cannot be

determined at compile-time whether a reference will be a

cache hit or not [1], or whether an element needs to obtained

from another node’s memory or not [2].

As a result, the performance and optimization strategy for

an irregular application is highly dependent upon the dataset.

For example, in the large body of research on sparse matrices,

there is considerable work on choosing the right layout for

the matrix, depending upon the sparsity pattern [3]. Similarly,

research on graph algorithms has shown that properties of

certain graphs, for example, the power-law degree distribution,

impact the choice of the implementation approach [4].

The goal of this paper is to answer the question that given

an unstructured mesh or a graph, what method is appropriate

to obtain a sample, such that the performance behaviors on

the sample match the characteristics of the execution with

the original input. While there has been considerable work

on sampling graphs [5]–[7], the goal has been finding repre-

sentative vertices, or preserving properties like the diameter.

We are not aware of any work that has sampled graph or

unstructured datasets with the goal of capturing performance

characteristics on a modern parallel architecture.

In this paper, we sample an irregular sparse dataset using

the following approach. We find that clustering coefficient is

an important measure to classify a sparse dataset as uniform

or skewed. We also combine clustering coefficient obtained

with certain other common features of a sparse matrix and use

a decision tree for classification. Based on the classification,

our framework can select Stride Average sampling for uniform

datasets and Random Tile sampling for skewed datasets.

We propose a technique to accelerate estimating clustering

coefficient based on Random Node Neighbor sampling. We

are able to show that our approach is very efficient and

effective in assessing clustering coefficient.

A. Specific Application: Performance Modeling in Presence
of SIMD Features

Accurate performance prediction plays an important role in

the high performance computing field [8]–[13]. For example,

a supercomputing center planning to upgrade their machines

will like to know what aspects are the most critical to the

performance of the target workload and how does the new

machine improve the performance. Similarly, an application

developer can be interested in estimating the performance

for different implementations and pick the optimal solution.

In the case of irregular applications, where the performance

is dataset-dependent, choosing the best version among a set

of implementations or optimization options can also require

performance prediction.

444

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00042

Performance prediction of irregular applications over sparse

datasets is complicated by at least two factors – cache

performance and SIMD utilization. Although a variety of

approaches have been proposed to study and model cache

behaviors, few of them pay attention to irregular memory

accesses. Among the approaches that consider irregular com-

putations [14]–[16], certain limitations exist, as we will elabo-

rate later. A relatively new (but now important) consideration

in performance modeling of irregular applications is the

potential of use of SIMD parallelism for irregular applications.

Although SIMD parallelism has been available in popular

architectures for over a decade, it had traditionally been con-

sidered suitable only for regular applications. However, recent

SIMD architecture developments including wider SIMD lanes

(up to 512 bits), combination of SIMD parallelism and high

MIMD parallelism, and more flexible programming APIs,

make it possible to apply SIMD architectural advances to

irregular applications. For example, Chen et al. [17] propose

a methodology of tiling and grouping recently which can

achieve high SIMD and MIMD parallelisms for irregular

applications without contentions incurred.

In this paper, we apply our sparse dataset characteriza-

tion approach to modeling and predicting the performance

(execution time) for SIMD irregular applications over sparse

datasets. We obtain a sampled dataset from input using the

strategy automatically selected based on our characterization

method. This sample can be used to predict cache performance

and SIMD utilization. With knowledge of these factors, we

adapt a code skeleton framework SKOPE [18] to capture

the workload behaviors and aggregate performance statistics.

Moreover, we improve the performance model inside SKOPE

to accommodate SIMD irregular applications and incorporate

analytical models to estimate overheads incurred by MIMD

load imbalance.

Experiments are carried out on TACC stampede2 clus-

ter [19] with two irregular reduction applications and one

graph application executed over 100 sparse matrices with

varying characteristics from 37 groups in SuiteSparse Matrix

Collections [20]. The results show that our hybrid sampling

approaches deliver accurate prediction for cache performance

and SIMD utilization, with average error rates of 8.28%

and 7.75%, respectively. Our prediction framework achieves

low average error rates of 8.02% for one thread SIMD case

and 11.95% for four MIMD configurations (2, 4, 16 and

68 threads). Our approach also achieves high efficiency with

overheads of prediction only ranging from 8.24% to 18.14%

of actual execution time.

II. BACKGROUND

This section presents the background of the irregular ap-

plications targeted in our work, latest SIMD features from

Intel, and Chen et al.’s work [17] to apply SIMD advances

to irregular applications.

A. Irregular Applications

We now discuss irregular reductions and certain graph

computations, which are two representative types of irregular

applications.

Irregular reductions arise, for example, from unstructured

grid computations, where the nodes are explicitly connected

by edges. Examples of such reductions include Euler, which

is a simulation of Computational Fluid Dynamic (CFD) [21],

and Moldyn, which simulates the interaction and motion of

molecules during the interaction period [22]. An example of

irregular reduction loop is shown in Figure 1. During each

iteration of the loop, two nodes values X(IA(e, 1)) and

X(IA(e, 2)) are updated. The access to the node array X
is indexed by the indirection array IA, and thus the access is

irregular. When a node is connected by multiple edges, the

updates to this node’s value involve reduction operations.

Fig. 1: An Irregular Reduction Loop

Since graph consists of nodes and edges, graph algorithms

often have an irregular data access pattern. All nodes are

connected by the indirection array (edges) such that the access

to the node array is irregular. For example, PageRank is

widely used in ranking search engine results [23]. It assigns

a numerical weight to the elements of a hyperlinked set of

documents, and measures the relative importance of each

element within the set.

B. SIMD Instruction Set and Irregular Applications

Consider the AVX-512 instruction set proposed by Intel in

July 2013 [24]. The instruction set is currently supported in

Intel Xeon Phi Knights Landing and Skylake-X Core i7 and

i9 models.

AVX-512 has a family of gather/scatter primitives for

loading/storing data at unaligned and non-continuous memory

addresses. It also supports a mask data type with a set

of mask operations, which allow computations on only a

specified subset of lanes within a SIMD vector. Particularly,

there is a class of mask gather/mask scatter instructions that

allow reading/writing data on specified lanes of a SIMD

vector. These features have enabled a broad class of irregular

applications to benefit from SIMD [17], [25]–[27].

While gather and scatter instructions enable processing of

irregular applications, it turns out achieving access locality

is critical for performance. To improve locality and also

to remove conflicts across SIMD lanes, Chen et al. [17]

propose a methodology named tiling and grouping. We briefly

summarize this approach here. Chen et al. observe that such

indirect memory accesses in many irregular applications can

445

be modeled as operations on a sparse matrix as shown

in Figure 2. Specifically, if a graph is represented by an

adjacency matrix M with dimensions of N × N (N is the

number of nodes), an interaction (IA(e, 1), IA(e, 2))

in IA corresponds to a non-zero at the position (IA(e,
1), IA(e, 2)) in M . To improve data locality and ensure

sufficient number of non-zeros (i.e., high SIMD utilization)

in each tile, Chen et al. tile the sparse matrix iteratively.

In the irregular applications targeted in this work, each

iteration involves a pass over all non-zeros in the sparse ma-

trix. For example, for irregular reduction application Euler
and Moldyn, each iteration will pass all edges as shown

in Figure 1. For graph algorithm PageRank, operation of

Sparse Matrix-Vector Multiplication (SpMV) is performed

in each iteration, i.e. all non-zeros are computed once in

each iteration. The outer loop iterates over the inner loop

without adding or removing non-zeros in the sparse matrix.

The computation pattern and memory access pattern remain

unchanged across iterations. These irregular applications we

focus on can be considered as static irregular.

(a) Irregular Reductions (b) Graph Algorithms

Fig. 2: Access Patterns of Irregular Reductions and Graph Algo-
rithms

III. SPARSE DATASET CHARACTERIZATION

As stated earlier, our goal is to obtain a sample of the orig-

inal sparse dataset, such that the performance characteristics

on the sampled dataset match those on the full dataset.

To motivate our work, we experimented with a classic sam-

pling strategy – Random Edge (RE) [6] sampling, which uni-

formly selects an edge at random from the original grid/graph.

We compare the performance behaviors on sampled dataset

with those on the original input. Figure 3 and Figure 4

show the results for predicting L1 cache miss rate and SIMD

utilization ratio, respectively. The experiments are carried out

on a KNL (Knights Landing) node (from TACC Stampede 2

cluster) with one irregular reduction application, Euler. We

use two datasets from the SuiteSparse Matrix Collection [20]

– gsm 106857 and kron g500-logn19. We can observe that

the differences of cache performance and SIMD utilization

between the original input and sample data are significant,

(a) gsm 106857 (b) kron g500-logn19

Fig. 3: L1 Cache Miss Rate – Random Edge Sampling

(a) gsm 106857 (b) kron g500-logn19

Fig. 4: SIMD Utilization Ratio – Random Edge Sampling

which implies that simple random sampling is not capable of

providing accurate performance insights. Different from the

traditional sampling algorithms, the ideal sampling strategies

for SIMD performance prediction should be able to generate

a sample which shares similar SIMD performance behaviors

rather than graph properties with the original input.

A. Approach Overview

(a) gsm 106857 (b) kron g500-logn19

Fig. 5: Distribution of non-zeros in Matrices

In developing more nuanced sampling methods, our first

observation is that sparse matrices vary very significantly

with respect to distribution of non-zeros. A sparse matrix can

have an uniform distribution, where the edges of the graph

it represents are spread relatively evenly among all nodes

(Figure 5(b)). On the other hand, nodes in a graph can also

cluster together or be skewed (Figure 5(a)). As our goal is

trying to obtain a sample that is similar to the original input

in terms of execution performance, the distribution of sparse

matrix is the key to designing our sampling strategies.

Clearly, it is unlikely that the same sampling method

can be effective across different distributions of non-zeros.

However, if we can have some basic knowledge of the non-

zero distribution (either uniform or skewed), it would be easier

446

to design a dedicated sampling algorithm for sparse matrices

with a specific kind of distribution. This, however, still leads

to the following questions: 1) how can we effectively and effi-

ciently characterize a matrix, and 2) what are the appropriate

sampling schemes for each of the uniform and skewed type

of matrices.

In the rest of this section, we first propose two novel

performance-prediction-oriented sampling strategies: Stride

Average sampling and Random Tile sampling, and then we

elaborate how to categorize a sparse matrix and select the

optimal sampling approach.

B. Stride Average Sampling

Given the processing granularity in this work is a tile, an

intuitive idea to sample a uniform matrix is to pick a con-

tiguous square region. Within this region, all the data access

stride information and community information are preserved.

However, an arbitrarily selected region doesn’t necessarily

deliver similar performance even though this region is similar

to the original input in geometry.

In Section II-B, we discussed how an indirection array

can be viewed as a sparse matrix. Based on this sparse

matrix view, we can observe that the elements closer to the

diagonal have shorter data access stride than the elements far

away from the diagonal do. This is because that the node

indices (IA(e, 1), IA(e, 2)) defined by the diagonal

elements are closer to each other. As cache performance is

highly dependent on data access stride, the key of sampling

is to preserve data access stride information. Based on this

observation, we propose an approach named Stride Average
(SA) sampling.

Fig. 6: Stride Average Sampling

The basic idea is to sample the dataset from four repre-

sentative regions, of which two are on the diagonal while the

other two are on the anti-diagonal. The idea originates from

stratified sampling in statistics, where data is divided into

subpopulations of similar elements, called strata, and repre-

sentative samples from each strata are obtained. Compared to

naive random sampling, this approach preserves both the data

access stride characteristics and the community information

while avoids the uncertainty of random sampling.

This means that the sample can be more likely to reflect

actual cache performance and SIMD utilization when the non-

zeros in the sparse matrix have relatively uniform distribution.

Figure 6 shows the Stride Average sampling approach. Given

a 2D matrix as the input, we sample the data from four red

regions in the figure to capture the data access stride and

community information.

Algorithm 1: Stride Average Sampling

1: N : input adjacency list (neighbor list for each node)
2: n: number of nodes
3: p: percentage of sampled edges
4: Ve: output vector for sampled edges
5:

6: l← √(p/4) // Percentage of the side length of sampled square
7: a← (0.25− l/2) · n, b← (0.25 + l/2) · n,

c← (0.75− l/2) · n, d← (0.75 + l/2) · n
8: for u = a, u ≤ b, u++ do
9: for each node v in N [u] do

10: if a ≤ v ≤ b OR c ≤ v ≤ d then
11: Push edge (u, v) into Ve

12: end if
13: if v > d then
14: break
15: end if
16: end for
17: end for
18: for u = c, u ≤ d, u++ do
19: Same as Line 12 to Line 19
20: end for
21: return Ve

The implementation of this method is shown as Algo-

rithm 1. Given a sampling percentage p, we can determine

the relative side length of four squares to be sampled. Then,

a, b, c, and d are starting and ending points for two sides

along two axes shown in Figure 6. When a non-zero falls into

any squares, it will be added into the sample. This sampling

strategy not only captures performance behavior information,

but also delivers high efficiency. This method only scans the

non-zeros sharing the same row within the sampled squares,

and thus the method is very efficient.

C. Random Tile Sampling

For most sparse matrices with uniform distribution of non-

zeros, Stride Average sampling is an efficient, accurate and

stable approach to gain insights from the original input. On

the contrary, for skewed sparse matrices, the sampled regions

are likely unable to represent the entire matrix. Given the

applications are processing the sparse matrices tile by tile,

sampling at the granularity of tile is still helpful (the four

sampled regions in Stride Average sampling can be viewed

as four large tiles). But we can pick multiple randomly

selected tiles rather than four large tiles with fixed positions

to accommodate the skewed distribution. Note that ”tile” here

simply denotes a square region in the original matrix for

sampling.

The choice of tile size involves a trade-off. In order to

capture more information of non-zero distribution, a large

tile is helpful. However, given a relatively small sampling

ratio and skewed distribution, if the tile size is very large,

447

Fig. 7: Random Tile Sampling

then we can sample only a few tiles. In this case, the

selection bias would arise. As we are targeting the sparse

matrices with skewed distribution, the impact of the selection

bias can be significant. On the other hand, if the tile size

is small, although we may reduce selection bias, the non-

zero distribution information inside each sampled tile is not

representative. For example, in the extreme case, we set the

tile size as 1, then this approach will be reduced to Random

Edge sampling, which is unable to capture local non-zeros

distribution, and data access stride information.

To resolve this issue, we propose an adaptive approach

named as Random Tile (RT) sampling. We present our idea

in Figure 7. In this example, the sparse matrix is skewed, and

its upper half is denser than its lower half. We set the default

tile size for sampling as 4. If the sampled region is ”dense”,

the tile size will be incremented to 6 (1.5 times of the default

size, i.e. the largest tile). If the sampled region is ”sparse”

, the tile size will be reduced to 2 (half of the default size,

i.e. the smallest tile). Otherwise, the default tile size will be

applied. With this mechanism, the tile size can be dynamically

updated based on the local non-zero distribution.

The implementation of Random Tile sampling is presented

in Algorithm 2. During each iteration, we first randomly

generate the coordinates (a, b) as left top element of the tile.

Then we compare the average density of the first and last

rows with the overall sparse matrix density to determine the

sampled region is dense or sparse, and then update the tile

size accordingly. With consideration of sampling efficiency,

here we use the density of the first and last rows to estimate

the region density. All non-zeros within this tile will be

sampled. And this process will be repeated until the sampling

percentage is reached.

D. Categorizing A Sparse Matrix

Having introduced sampling methods suitable for dealing

with uniform and skewed matrices, we now return to the

problem of characterizing a given matrix as either uniform

or skewed.

1) Introducing Clustering Coefficient for Characterizing
Sparse Matrix: There are a variety of graph metrics to char-

acterize a sparse matrix [5]–[7]. The common ones include

degree distribution, radius, diameter, density, and others.

Among all these metrics, clustering coefficient [28] is the

Algorithm 2: Random Tile Sampling

1: N : input adjacency list (neighbor list for each node)
2: m: number of edges
3: n: number of nodes
4: p: percentage of sampled edges
5: s: density of the sparse matrix
6: Ve: output vector for sampled edges
7:

8: while Ve.size() < m · p do
9: l← t // Default tile size

10: a, b← Randomly selected two node from original graph
11: if (N [a].size() +N [a+ l].size())/(2 ∗ n) < 0.5 · s then
12: l← 0.5 · l // Reduce tile size for a sparse region
13: end if
14: if (N [a].size() +N [a+ l].size())/(2 ∗ n) > 1.5 · s then
15: l← 1.5 · l // Increase tile size for a dense region
16: end if
17: for u = a, u ≤ a+ l, u++ do
18: for v in N [u] do
19: if b ≤ v ≤ b+ l then
20: Push edge (u, v) into Ve

21: else
22: break
23: end if
24: end for
25: end for
26: end while
27: return Ve

best-fit for our goal of characterizing sparse matrix in terms

of distribution of non-zeros.

Clustering coefficient measures the degree to which nodes

in a graph tend to cluster together. The local clustering
coefficient of a node in a graph quantifies how close its

neighbors are to being a complete graph. Given a graph

G = (V,E) consisting of a set of vertices V and a set of

edges E, and let eij denote the edge connecting the vertex

i and the vertex j. Let Ni be the collection of immediately

connected neighbors for vertex i and ki be the number of its

neighbors. The local clustering coefficient for a directed graph

is defined as:

Ci =
|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
(1)

The local clustering coefficient for an undirected graph is

defined as:

Ci =
2|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
(2)

The overall level of clustering in a graph, i.e., the global
clustering coefficient is measured as the average of the local

clustering coefficients across all the nodes:

C =
1

n

n∑

i=1

Ci (3)

Based on Equations 1–3, calculating global clustering coeffi-

cient over the entire graph is extremely expensive. Given our

goal of performance characterization, analyzing all nodes of

the dataset is infeasible in practice.

448

To overcome this drawback, an intuitive way is to sample

from the original graph and project the clustering coefficient

based on the sample data. However, we can expect that

random sampling (either Random Edge sampling ,or Ran-

dom Row sampling, which randomly select an entire row)

from original graph would lead to an underestimation of the

clustering coefficient. The reason is that for each sampled

node, its neighbors and edges among neighbors in the sampled

dataset are fewer than those in the original dataset so that its

clustering coefficient will be underevaluated.

To precisely estimate the clustering coefficient with high

efficiency, we adapt the Random Node Neighbor (RNN)
sampling method. Our idea to adapt RNN is that for each

uniformly selected node, we calculate its local clustering

coefficient with all the out-going edges and neighbors as well

as the edges among the neighbors, and then obtain a global

clustering coefficient by averaging all local clustering coeffi-

cients for the sampled nodes. The process is implemented as

Algorithm 3. While RNN has been described in the literature

(for example, Leskovec et al.’s work [6]), we are not aware

of any work specifically viewing it or implementing it as an

approach for estimating clustering coefficient.

We evaluated our adapted RNN sampling approach over

100 sparse matrices from SuiteSparse Matrix Collection [20].

The results along with the comparison with Random Row

sampling and Random Edge sampling are shown in Figure 8.

Here the reported error rate is defined as the absolute dif-

ference of clustering coefficient between the sampled dataset

and the original dataset, divided by the clustering coefficient

of the original dataset. The results verified the above analysis.

First, our RNN approach significantly outperforms the other

two sampling approaches in three different sampling percent-

ages. It achieves low error rate (5.13%) even at the case of

1% sampling ratio. Second, both Random Row or Random

Edge sampling approaches underrated the value of clustering

coefficient in most cases (89% and 94%, respectively even at

5% sampling percentage).

Another important advantage of our approach over the other

two is that the estimation is accumulative during the sampling

process so that it is more efficient than the 2-step procedure of

sampling and calculation. And our approach doesn’t generate

a real sample file during the process. Therefore, our approach

is of high efficiency both in execution time and storage space.

2) Beyond Clustering Coefficient: Machine Learning For-
mulation: Though clustering coefficient can be quite effective

in classifying a sparse matrix, we go a step further in adding

other features and developing a machine learning (decision

tree) formulation. Although machine learning techniques have

been commonly seen in the problem of automatically selecting

optimal storage format for sparse matrices [29]–[31], its

application to characterizing sparse matrices for performance-

prediction-oriented sampling is novel.

We use several features presented in Sedaghati et al.’s
work [30] for our work, which are shown in Table I. These

features are used in conjunction with clustering coefficient.

Algorithm 3: Clustering Coefficient Estimation by Ran-

dom Node Neighbor Sampling

1: N : input adjacency list (neighbor list for each node)
2: m: number of edges
3: p: percentage of sampled edges
4:

5: total← 0 // sum of local clustering coefficient
6: while True do
7: u← Randomly selected node from original graph
8: k ← N [u].size() // number of neighbors
9: node ct← node ct+ 1 // counter for sampled nodes

10: edge ct← edge ct+ k // counter for sampled edges
11: if k < 2 then
12: continue
13: end if
14: link ct← 0 // counter for links among neighbors
15: for each node v ∈ N [u] do
16: for each node w ∈ N [u] do
17: if w ∈ N [v] then
18: link ct← link ct+ 1
19: end if
20: end for
21: end for
22: total← total + link ct/(k(k − 1))
23: if edge ct ≥ m · p then
24: break
25: end if
26: end while
27: C ← total/node ct // global clustering coefficient
28: return C

Fig. 8: Estimating Clustering Coefficient by Sampling

Also, it turns out that calculating these basic features is

relatively easier than obtaining clustering coefficient. We can

simply traverse the matrix once or just apply Random Row

sampling to further accelerate the process.

IV. EXECUTION TIME PREDICTION FRAMEWORK

We now apply the sparse dataset characterization technique

from the previous section to developing an execution time

prediction framework. The target architecture we use for

our experiments is Intel Knights Landing (KNL), which is

one of the available systems with advanced SIMD featres.

AVX-512 instruction set is supported, which was described

earlier. The combination of SIMD and MIMD parallelisms

we characterize in the context of KNL is commonly seen in

modern CPUs.

449

TABLE I: Base Features of Matrix

Feature Description
nnz tot Number of non-zeros
nnz frac Percentage of non-zeros

nnz {min, max, mu, sig} Min, max, average and std. deviation
of non-zeros per row

nnzb tot Number of non-zero blocks

nnzb {min, max, mu, sig} Min, max, average and std. deviation
of non-zero blocks per row

snzb {min, max, mu, sig} Min, max, average and std. deviation
of the size of non-zero blocks per row

A. Challenges

The major challenges for predicting the performance of

irregular applications on a system like KNL come from three

aspects: irregular data access patterns, the performance of

gather/scatter operations, and uncertainty with both SIMD

and MIMD parallelism achieved. First, due to the irregular

data access pattern, it is hard to predict cache performance as

the access to the data elements is commonly indexed by an

indirection array. The indirection array itself represents the set

of edges in unstructured grid or the graph, which is what we

have tried characterizing efficiently through our techniques.

Second, since gather/scatter operations are recent develop-

ments for SIMD architecture, it is challenging to estimate the

performance of these operations in irregular computations.

Chen et al. [17] carried out an experiment of comparing

the performance between the gather/scatter and load/store

with varying the access range size. We can observe that

as the access range increases, the performance gap between

gather/scatter and load/store becomes wider. The reason is that

as the 16 elements accessed by gather/scatter operation be-

come further from each other, more cache lines are accessed,

causing a drop in the performance. This result indicates

the non-zero distribution is a dominant factor affecting the

gather/scatter performance. Thus, this performance behavior

of gather/scatter combined with the irregular access pattern

leads to high uncertainty in cache performance.

Third, the level of SIMD (and MIMD) parallelism is also

unknown before actual execution. As stated in Section II-B,

to avoid write conflicts within SIMD lanes, the non-zeros in

the sparse matrix are grouped into conflict-free groups. The

number of non-zeros within each tile is between 1 to 16,

and it indicates the SIMD utilization ratio. Moreover, the tiles

are further partitioned into conflict-free tile groups. Figure 9

shows the average number of tiles in tile group for two

datasets from the SuiteSparse Matrix Collection [20]. We can

observe that as the tile size increases, the average number of

tiles in a tile group significantly decreases. Moreover, certain

tile groups only have a few tiles. The lack of tiles in these tile

groups could magnify the load imbalance among the threads

and impact the actual MIMD parallelism.

B. Overview

Having described the challenges, we now give a high-level

view of our approach. Figure 10 shows an overview of our

framework and the process to obtain projected performance

for SIMD irregular applications. It consists of 5 modules

(a) gsm 106857 (b) kron g500-logn19

Fig. 9: Average # of Tiles in Tile Group

Fig. 10: Framework Overview

– categorizer, sampler, SKOPE front-end, SKOPE back-end,

and performance predictor.

The input significantly impacts or determines the data

access pattern (cache performance), SIMD utilization ratio,

and MIMD parallelism. We use techniques from the last

section to obtain a sample that can be executed with high

efficiency. The categorizer analyzes the input and assigns an

appropriate sampling method to it by our characterization

technique. Then the sampler generates a sample with this

sampling strategy. By either analyzing the sampled dataset or

executing the application over the sample, we could obtain

necessary information (i.e. cache performance and SIMD

utilization) for performance prediction with a small fraction

of the cost of executing the entire application.

In general, SKOPE [18] serves to gather performance

statistics of the source code and predict performance based

on these statistics and the performance metrics we have ob-

tained. The SKOPE front-end takes source code as input, and

converts it to code skeleton. Then SKOPE back-end collects

and aggregates performance behavior statistics from the code

skeleton. All input information and workload performance

statistics as well as a hardware model are propagated into

performance predictor to obtain projected performance. The

hardware parameters in the hardware model include clock

frequency, memory bandwidth, SIMD lane width, and oth-

ers. The performance predictor contains performance models

including our proposed models described in Section IV-C.

C. Modeling Overheads of Load Imbalance

Besides cache performance and SIMD utilization we have

discussed above, another factor to consider is the load im-

balance among threads. As stated in Section IV-A, tiles are

partitioned into conflict-free tile groups, each of which is

executed with all threads. If a tile group does not have

450

sufficient tiles or the tiles cannot be divided exactly by

all threads, some threads may stay idle during execution.

In general, if we have more tiles in each tile group and

fewer threads, it is more likely that each thread keeps busy

during execution. Otherwise, the overheads incurred by load

imbalance are more significant. Based on this observation, we

model this kind of overhead as

TMIMD = a× num threads

avg MIMD
(4)

where a is a factor obtained from training. Here we

use average MIMD parallelism avg MIMD to denote the

average number of tiles in tile group. Based on the results

shown in Figure 9, we can observe that the average number

of tiles in tile group decreases as tile size increases. Besides,

when the dataset has more non-zeros (edges), the average

number of tiles in tile group is larger. Hence, we model the

average number of tiles as:

avg MIMD = b× num edges

tile size
(5)

Combining Equation 5 to Equation 4 (b and a can be

combined to one factor), we can estimate the overheads

incurred by load imbalance.

D. Predicting Execution Time with SKOPE

Although SKOPE supports SIMD application to some ex-

tent, it is not fully applicable in predicting SIMD irregular

applications involving tiling and grouping. To take advantage

of SKOPE, we customize the performance model in SKOPE

to accommodate the properties of irregular SIMD applica-

tions. First, we introduce SIMD utilization ratio to perfor-

mance model. In the original SKOPE performance projection

module, SIMD application is assumed to exploit all SIMD

parallelism. In other words, it assumes the SIMD lanes are

always full during execution. However, in practice, especially

for irregular applications, it is common that the SIMD lanes

are not full due to write conflicts. Hence, we use actual SIMD

lane width instead of theoretical SIMD lane width and derive

it as:

SIMD Widthactual = SIMD Widthorig×SIMD Ratio
(6)

where SIMD Ratio is the SIMD utilization ratio captured

over sampled dataset.

Overall, the process of predicting execution time for ir-

regular SIMD applications involves three major steps. The

first step is to obtain input information with categorizer and

sampler, where the cache miss ratio and SIMD utilization

ratio are estimated. Second, we need to obtain the code

skeleton for the irregular application by using the translator in

SKOPE front-end. This code skeleton is the foundation for the

prediction since it captures the workload behaviors. The last

step is to predict performance. Besides the insights gained in

the first step and performance statistics obtained in the second

step, a hardware model for the target architecture should be

built. The parameters of a hardware model can be obtained

from documentations or benchmark results. By propagating

all these information into the customized performance model,

our framework is able to predict execution time for SIMD

processing of irregular applications.

V. EXPERIMENTAL RESULTS

In this section, we extensively evaluate our approach for

characterization and performance prediction. The first set of

experiments evaluate the effectiveness of our characterization

approach in categorizing sparse matrix inputs. The second set

focuses on evaluating accuracy in predicting three metrics: the

cache miss rate, SIMD utilization ratio, and the overall execu-

tion time on a KNL node. The last set evaluates the efficiency

of our approach by comparing the prediction overheads with

the actual execution time. We experiment with two irregular

reduction applications – Euler and Moldyn, and one graph

algorithm – PageRank. The inputs are 100 randomly se-

lected sparse matrices from 37 groups in SuiteSparse Matrix

Collections [20].

All experiments are carried out on Intel Xeon Phi 7250

(Knights Landing) available from the TACC Stampede2 clus-

ter [19]. Each KNL node has 68 cores with 1.4 GHz clock

frequency and 96 GB DDR4 RAM plus 16 GB high-speed

MCDRAM. As stated before, each node also has 32 KB L1

data cache per core, and 1 MB L2 cache per two-core tile.

The sampling rates used across all experiments are set

as 5% to achieve a good balance between accuracy and

efficiency. The results are measured with absolute error rate
which is defined as:

error rate =
| V alueactual − V aluepredicted |

V alueactual
(7)

where V alueactual and V aluepredicted are actual and

predicted results, respectively. And any random sampling

approaches will be tested 5 times and results are averaged

to reduce random error.

The entire set of 100 matrices is split into two groups based

on the 80%-20% rule. The training of the decision tree model

is conducted over the 80% of the inputs, and the rest 20%

are used for testing. This process will be repeated 5 times to

conduct 5-fold cross validation.

A. Categorizing Sparse Matrices

For this set of experiments, we first apply the Random Row

sampling to generate the main features as shown in Table I,

and we also utilize our adapted Random Node Neighbor

sampling approach to calculate the clustering coefficient as

an extra feature for all matrices. Second, we tag each matrix

with the label of the “better sampling” strategy (either Stride

Average sampling or Random Tile sampling). The label is

selected based on which method better predicts SIMD uti-

lization ratio, calculated over the samples generated by these

two approaches. The reason to choose SIMD utilization ratio

451

Fig. 11: Categorizing Sparse Matrices

as the criterion is that it has the greatest impact on execution

time.

The prediction results by the decision tree model are

presented in Figure 11. We can compare the prediction error

rates of using two different feature vectors: one only include

the base features, and the other has an extra feature – the

clustering coefficient. We can observe that the error rate

of using only the main features is over 30% while adding

clustering coefficient to the feature vector helps to keep the

error rate below 7%.

B. Predicting SIMD Utilization Ratio

Fig. 12: SIMD Utilization Ratio Prediction

In this section, we evaluate the SIMD utilization ratio

prediction results with tile size varied from 128 to 8192.

We compare the results in three cases: using Stride Average

sampling only (denoted as ”StrideAvg”), using Random

Tile sampling only (denoted as ”RandomTile”), and the

hybrid approach by selecting one of two sampling strategies

based on input’s predicted category (denoted as ”Hybrid”).

Besides, a theoretical approach that selects better of these

two (denoted as ”Better”) and the result of Random Edge

sampling (denoted as ”RandomEdge”) are also presented for

comparison.

The results are presented in Figure 12. Each reported data

point is the average error rate of the 100 sparse matrices. The

key observations are as follows. First, the prediction error rates

decrease as tile size increases. As tile size increases, each tile

would have more non-zeros and the overall SIMD utilization

is approaching 100%, and this trend is also visible in Figure 4.

In this case, when the tile size is large enough and the SIMD

utilization almost reaches the ceiling, the prediction error rate

could be reduced.

Second, both Stride Average sampling and Random Tile

sampling outperform the Random Edge sampling in almost all

cases. Compared with Random Edge sampling, which omits

the structure and community information, the two proposed

approaches keep low error rates (¡ 15%) in all cases. The

average error rates for Stride Average sampling and Random

Tile sampling are 10.92% and 10.56% respectively, while

Random Edge sampling has a high average error rate of

24.86%. Note that although the difference between Random

Edge sampling and our approaches becomes negligible when

tile size goes sufficiently large, Random Edge sampling is still

not applicable in practice. Increasing tile size could boost the

SIMD utilization, but large tile size would also involve larger

data access strides, which can negatively impact the overall

performance. The optimal tile size is the one that can balance

SIMD utilization and cache performance. In other words, the

tile size selected in practice would not be very large so that

Random Edge sampling fails to deliver accurate predictions.

Third, our hybrid approach improves the prediction ac-

curacy and reduces the average error rate to 7.75%. which

is very close to the ”better” result (6.83%). By selecting a

sampling approach based on the input’s predicted category,

our hybrid approach is able to avoid the weakness of each

sampling approach.

C. Predicting Cache Performance

Besides the SIMD utilization ratio, cache performance is

another key factor for performance prediction. Compared

with predicting SIMD utilization ratio, predicting cache per-

formance is even more challenging. Cache performance is

dependent on not only the number of non-zeros in each tile,

but also the relative distance (access stride) between two non-

zeros.

Figure 13 is the results of predicting L1 cache miss rate for

three applications. For Stride Average sampling, the average

error rates for three applications across different tile sizes

are 11.02%, 14.23% and 11.05% respectively. For Random

Tile sampling, the average error rates for three applications

are 10.22%, 13.80% and 10.81%. As a comparison, Random

Edge sampling has average error rates of 29.62%, 23.78% and

21.99%, which are much higher than the error rates of other

two approaches.

Our characterization-based hybrid approach further reduces

the error rates to 8.09%, 8.78% and 7.98% in three cases,

which are comparable to the ”better” results (7.12%, 7.96%

and 7.17%). The results prove that our characterization ap-

proach is effective in selecting the right sampling approach

for a given input.

D. Predicting Execution Time

This set of experiments evaluates our framework for pre-

dicting execution time for irregular applications under dif-

452

(a) Euler (b) Moldyn (c) PageRank

Fig. 13: L1 Cache Miss Rate Prediction

(a) Euler (b) Moldyn (c) PageRank

Fig. 14: Execution Time Prediction

TABLE II: Error Rates of MIMD Execution Time Prediction

Application 2 4 16 68 Avg
Euler 9.32% 8.39% 11.87% 13.21% 10.70%

Moldyn 10.41% 11.25% 13.23% 15.21% 12.53%
PageRank 9.14% 10.78% 14.32% 16.28% 12.63%

ferent tile sizes and different number of threads. First, we

evaluate the prediction of execution time in the sequential

scenario (1 thread) with tile size varied from 128 to 8192.

And then we extend the experiments to MIMD cases with

MIMD parallelism varied from 2 to 68.

The results of the sequential experiments are shown in

Figure 14. The average prediction error rates of execution

time by Stride Average sampling are 12.07%, 13.20% and

11.75% for three applications respectively. And average error

rates for Random Tile sampling are 11.64%, 13.40% and

11.97%. Random Edge sampling approach delivers average

error rates of 27.24%, 24.32% and 23.43%. We can observe

that the inaccurate prediction of SIMD utilization and cache

performance leads to inaccurate execution time prediction.

The average error rates of our hybrid approach are 7.92%,

8.27% and 7.87%, while the ”better” results are 6.97%, 7.39%

and 7.00%.

The prediction error rates of MIMD cases are summarized

in Table II. We can observe that even in the MIMD sce-

narios, our framework still predicts the overall performance

accurately with average error rates of 10.70%, 12.53% and

12.63%. Another observation is that the prediction error rate

increases as the MIMD parallelism increases. This is because

when the number of threads is large, the load imbalance

among threads is more significant and some of the threads

cannot be fully utilized. Although our approach models this

kind of overheads to a certain extent and achieves relatively

high accuracy, it is challenging to model it very precisely due

to inevitable uncertainty.

E. Efficiency Analysis

Fig. 15: Efficiency Analysis

453

In this section, we evaluate the efficiency of our approach

by comparing the prediction overheads with the application

execution time. The overheads incurred during the prediction

process involve four components: sampling, categorization,

execution over sample, and final performance prediction.

Results are presented in Figure 15. For this experiment, target

application Euler is executed with tile size of 512 in single-

thread SIMD fashion. The reported value is the average time

for a single iteration. The 100 datasets are sorted by number

of non-zeros and each dataset is assigned a matrix id based

on its ranking.

We can observe that the proportion of prediction overheads

to execution time ranges from 8.24% to 18.14%. Typically,

this ratio is lower for a larger dataset. This is because the over-

heads of sampling (including calculating clustering coefficient

and features) and execution are dependent on the matrix size

while the overheads of categorization and final performance

prediction are more stable (which indicates a smaller share

in the overall overheads for a larger dataset). These results

demonstrates that our approach is much more efficient as

compared to actual execution of the application. Moreover,

since the sampling and categorization are one-time operations

for each matrix, our approach would be more efficient in

predicting performance of multiple execution setups (different

applications using the same dataset, or different tile sizes or

number of threads).

VI. RELATED WORK

Although irregular computation patterns are commonly

seen in many scientific domains, modeling their performance

on modern processors has not drawn too much attention. Song

et al. [32] develop a profiling methodology to estimate a com-

puting node’s computational capability for graph processing

and guide graph partitioning in heterogeneous environment.

Friese et al. [14] proposed an approach for generating perfor-

mance models for irregular applications based on hierarchical
critical path analysis. It uses Intel’s load latency monitoring

technique to estimate the data access costs, but the problem

of quantifying the impact of changes in data access patterns is

not considered. Andrade et al. [15] extended the PME (Prob-

abilistic Miss Equations, originally proposed by Fraguela et
al. [33]) model for irregular codes. Though this extended

approach can model cache behavior for codes with irregular

accesses, the drawback of the original PME model still exists

– most critically, it assumes that all elements in the array

have the same probability of being accessed by the means

of indirection. This assumption does not hold in practice,

especially for graph applications. Langguth et al. [16] present

a quantitative understanding of the achievable performance

of cell-centered finite volume method on 3D unstructured

meshes on GPUs and CPUs. Their focus is on predicting

the performance upper bound instead of the exact running

time. Hence, memory and cache bandwidth are the key factors

they consider in their model. Other factors including data

access pattern and cache behavior are not modeled. None of

the work above considers SIMD scenario. Zhu et al. [34]

proposed an Adaptive Stratified Row sampling approach to

capture irregular cache behaviors, but it does not consider the

impact of tiling and grouping as well as the SIMD scenario.

SIMD performance modeling is discussed in Roofline model

that is designed for floating-point programs and multicore

architectures [35]. Although it considers SIMD throughput

in the model, the Roofline model is not capable of estimating

the impact of irregular access patterns to SIMD performance.

VII. CONCLUSIONS

This paper has three major contributions. First, we have

proposed two novel performance-prediction-oriented sampling

approaches that are able to generate a sample with similar

SIMD performance behavior as the original input. Second,

we have developed a methodology for characterizing a sparse

dataset, from the view-point of performance of an irregular

application using this dataset. By categorizing the input into

different types based on an estimation of clustering coefficient,

our framework chooses the appropriate sampling solution

from our proposed Stride Average sampling and Random

Tile sampling. Third, we have built on this approach to

develop an execution time prediction tool for SIMD (and

MIMD) irregular applications. With the predicted cache per-

formance and SIMD utilization ratio based on the sample,

and performance behavior statistics collected by SKOPE, as

well as customized performance models, our framework is

able to precisely predict execution time for SIMD irregular

applications. Our experimental evaluation has shown that our

approach achieves high accuracy, high efficiency and broad

applicability.

Acknowledgement: This work was funded by NSF grants CCF-
1526386 and CCF-1629392.

REFERENCES

[1] C. Ding and K. Kennedy, “Improving cache performance in dynamic
applications through data and computation reorganization at run time,”
in ACM SIGPLAN Notices, vol. 34, no. 5. ACM, 1999, pp. 229–241.

[2] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang, “Communication opti-
mizations for irregular scientific computations on distributed memory
architectures,” Journal of Parallel and Distributed Computing, vol. 22,
no. 3, pp. 462–479, Sep. 1994.

[3] R. Vuduc, J. W. Demmel, and K. A. Yelick, “Oski: A library of auto-
matically tuned sparse matrix kernels,” Journal of Physics: Conference
Series, vol. 16, no. 1, p. 521, 2005.

[4] X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast sparse matrix-
vector multiplication on gpus: implications for graph mining,” Proceed-
ings of the VLDB Endowment, vol. 4, no. 4, pp. 231–242, 2011.

[5] E. M. Airoldi and K. M. Carley, “Sampling algorithms for pure network
topologies: a study on the stability and the separability of metric
embeddings,” ACM SIGKDD Explorations Newsletter, vol. 7, no. 2,
pp. 13–22, 2005.

[6] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, pp. 631–636.

[7] P. Hu and W. C. Lau, “A survey and taxonomy of graph sampling,”
arXiv preprint arXiv:1308.5865, 2013.

[8] J. Bhimani, N. Mi, M. Leeser, and Z. Yang, “Fim: performance
prediction for parallel computation in iterative data processing applica-
tions,” in Cloud Computing (CLOUD), 2017 IEEE 10th International
Conference on. IEEE, 2017, pp. 359–366.

454

[9] R. Mitra, B. S. Joshi, A. Ravindran, A. Mukherjee, and R. Adams,
“Performance modeling of shared memory multiple issue multicore
machines,” in Parallel Processing Workshops (ICPPW), 2012 41st
International Conference on. IEEE, 2012, pp. 464–473.

[10] B. Putigny, B. Goglin, and D. Barthou, “A benchmark-based perfor-
mance model for memory-bound hpc applications,” in High Perfor-
mance Computing & Simulation (HPCS), 2014 International Confer-
ence on. IEEE, 2014, pp. 943–950.

[11] P. A. Dinda, “Online Prediction of the Running Time of Tasks:
Summary,” in Proceedings of ACM SIGMETRICS, 2001, pp. 336–337.

[12] D. Ofelt and J. L. Hennessy, “Efficient Performance Prediction for
Modern Microprocessors,” in Proceedings of ACM SIGMETRICS 2000,
Jun. 2000, pp. 229–239.

[13] G. Zhu, Y. Wang, and G. Agrawal, “Scicsm: novel contrast set mining
over scientific datasets using bitmap indices,” in Proceedings of the
27th International Conference on Scientific and Statistical Database
Management. ACM, 2015, p. 38.

[14] R. D. Friese, N. R. Tallent, A. Vishnu, D. J. Kerbyson, and A. Hoisie,
“Generating performance models for irregular applications,” in Parallel
and Distributed Processing Symposium (IPDPS), 2017 IEEE Interna-
tional. IEEE, 2017, pp. 317–326.

[15] D. Andrade, B. B. Fraguela, and R. Doallo, “Precise automatable
analytical modeling of the cache behavior of codes with indirections,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 4, no. 3, p. 16, 2007.

[16] J. Langguth, N. Wu, J. Chai, and X. Cai, “Parallel performance model-
ing of irregular applications in cell-centered finite volume methods over
unstructured tetrahedral meshes,” Journal of Parallel and Distributed
Computing, vol. 76, pp. 120–131, 2015.

[17] L. Chen, P. Jiang, and G. Agrawal, “Exploiting recent simd architectural
advances for irregular applications,” in Proceedings of the 2016 Inter-
national Symposium on Code Generation and Optimization. ACM,
2016, pp. 47–58.

[18] J. Meng, X. Wu, V. Morozov, V. Vishwanath, K. Kumaran, and
V. Taylor, “Skope: A framework for modeling and exploring workload
behavior,” in Proceedings of the 11th ACM Conference on Computing
Frontiers. ACM, 2014, p. 6.

[19] “Stampede2 User Guide,” https://portal.tacc.utexas.edu/user-
guides/stampede2, Online.

[20] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Transactions on Mathematical Software (TOMS),
vol. 38, no. 1, p. 1, 2011.

[21] R. Das, D. Mavriplis, J. Saltz, S. Gupta, and R. Ponnysamy, The
design and implementation of a parallel unstructured Euler solver using
software primitives. Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, 1992, vol. 189625.

[22] M. P. Allen et al., “Introduction to molecular dynamics simulation,”
Computational soft matter: from synthetic polymers to proteins, vol. 23,
pp. 1–28, 2004.

[23] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale
hypertextual web search engine,” Computer networks, vol. 56, no. 18,
pp. 3825–3833, 2012.

[24] J. Reinders, “Intel avx-512 instructions,” https://software.intel.com/
en-us/blogs/2013/avx-512-instructions, Jun. 2017.

[25] B. Ren, T. Poutanen, T. Mytkowicz, W. Schulte, G. Agrawal, and
J. R. Larus, “Simd parallelization of applications that traverse irregular
data structures,” in Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), ser. CGO
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 1–10.
[Online]. Available: http://dx.doi.org/10.1109/CGO.2013.6494989

[26] B. Ren, Y. Jo, S. Krishnamoorthy, K. Agrawal, and M. Kulkarni,
“Efficient execution of recursive programs on commodity vector
hardware,” in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’15.
New York, NY, USA: ACM, 2015, pp. 509–520. [Online]. Available:
http://doi.acm.org/10.1145/2737924.2738004

[27] P. Jiang and G. Agrawal, “Efficient simd and mimd parallelization
of hash-based aggregation by conflict mitigation,” in Proceedings of
the International Conference on Supercomputing, ser. ICS ’17. New
York, NY, USA: ACM, 2017, pp. 24:1–24:11. [Online]. Available:
http://doi.acm.org/10.1145/3079079.3079080

[28] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[29] J. Li, G. Tan, M. Chen, and N. Sun, “Smat: an input adaptive auto-tuner
for sparse matrix-vector multiplication,” in ACM SIGPLAN Notices,
vol. 48, no. 6. ACM, 2013, pp. 117–126.

[30] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P. Sadayap-
pan, “Automatic selection of sparse matrix representation on gpus,”
in Proceedings of the 29th ACM on International Conference on
Supercomputing. ACM, 2015, pp. 99–108.

[31] Y. Zhao, C. Liao, J. Li, and X. Shen, “Bridging the gap between deep
learning and sparse matrix format selection,” in Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM, 2018, pp. 94–108.

[32] S. Song, M. Li, X. Zheng, M. LeBeane, J. H. Ryoo, R. Panda,
A. Gerstlauer, and L. K. John, “Proxy-guided load balancing of graph
processing workloads on heterogeneous clusters,” in 2016 45th Inter-
national Conference on Parallel Processing (ICPP). IEEE, 2016, pp.
77–86.

[33] B. B. Fraguela, R. Doallo, and E. L. Zapata, “Probabilistic miss equa-
tions: Evaluating memory hierarchy performance,” IEEE Transactions
on Computers, vol. 52, no. 3, pp. 321–336, 2003.

[34] G. Zhu and G. Agrawal, “A performance prediction framework for
irregular applications,” in 2018 IEEE 25th International Conference on
High Performance Computing (HiPC). IEEE, 2018, pp. 304–313.

[35] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

455

