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Abstract—In the domain of graph analytics, power-law
graphs are prevalent. In such graphs, a small fraction of
vertices are responsible for a large share of all graph
connections. These richly-connected (hot) vertices inherently
exhibit high reuse. However, this work finds that the
state-of-the-art hardware cache management schemes struggle
in capitalizing on their reuse due to highly irregular access
patterns of graph analytics. In response, we argue in favor
of leveraging software knowledge of graph data structures
to accurately pinpoint hot vertices in hardware. To that end,
we propose GRASP, a domain-specialized LLC management
scheme that enables high cache efficiency for graph analytics
with minimal modifications to existing cache structures.

I. INTRODUCTION

A distinguishing property of graph datasets common in

many graph-analytic applications is that the vertex degrees

follow a skewed power-law distribution, in which a small

fraction of vertices (hot vertices) have many connections

while the majority of vertices (cold vertices) have relatively

few connections. Such graphs are prevalent in a variety of

domains including social networks and computer networks.

Graph applications are notorious for exhibiting irregular

access patterns. When processing large graphs, accesses to a

large number of cold vertices cause severe cache thrashing,

often forcing hot vertices out of the cache. Thus, protecting

hot vertices against cache thrashing is crucial for a hardware

cache management scheme to improve cache efficiency, and

in turn, application performance.

The state-of-the-art hardware schemes employ domain-

agnostic prediction-based mechanisms [5, 8, 3] to identify

high-reuse cache blocks. However, we find that graph-

dependent irregular access patterns prevent these schemes

from correctly learning which cache blocks to preserve,

rendering them deficient for graph analytics. Meanwhile,

a recent work [4] proposes pinning high-reuse cache blocks

in LLC to protect them from thrashing. However, we observe

that pinning-based schemes are overly rigid when applied to

graph processing and result in sub-optimal cache utilization.

To address these limitations, we propose GRASP – Graph

Specialized LLC management. GRASP augments existing

cache policies to provide preferential treatment to cache

blocks containing hot vertices to shield them from thrashing.

To cater to the irregular access patterns, GRASP policies

are inherently flexible and allow for caching of other
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Figure 1: GRASP overview.

blocks exhibiting reuse. To accurately pinpoint hot vertices

in hardware, GRASP leverages existing software vertex

reordering techniques [1, 2, 6], and exposes a lightweight

software-hardware interface. GRASP does not require any

additional metadata at the LLC or storage-intensive prediction

tables, making GRASP attractive for commercial adoption.

II. GRASP : CACHING IN ON THE SKEW

GRASP observes that existing software skew-aware vertex

reordering techniques [1, 2, 6] induce spatial locality among

hot vertices by segregating them in a contiguous memory

region as shown in Fig. 1(a). GRASP leverages the contiguity

in designing a lightweight interface, which aids hardware

in pinpointing hot vertices. Meanwhile, GRASP augments

insertion and hit-promotion policies of a baseline cache

management scheme (e.g., RRIP [9]) to protect hot vertices

from thrashing. Overall, GRASP design consists of three

hardware components as follows.

A. Software-Hardware Interface

Prior works characterize cache access patterns for various

graph data structures and show that LLC and main memory

requests are dominated by accesses to the Property Array(s)
that holds the partial or fully computed results for all vertices,

making Property Array(s) the prime target for caching [1, 2].

GRASP exposes a pair of Address Bound Registers (ABR)
per Property Array, which are part of an application context.

To enable GRASP, the graph framework populates each

ABR pair with the start and end virtual address of the

entire Property Array (Fig. 1(b)). Once ABRs are populated,

GRASP does not require any further software intervention.
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Figure 2: Speed-up for GRASP and the state-of-the-art cache management schemes over the RRIP [9] baseline.

B. Classification Logic

Pinpointing the High Reuse Region: GRASP labels two

LLC-sized sub-regions within the Property Array. A region

at the start of the Property Array is labeled as High Reuse
Region; another one starting immediately after the High Reuse

Region is labeled as Moderate Reuse Region (Fig. 1(c)).

Finally, if an application specifies more than one Property

Array, GRASP divides LLC-size by the number of Property

Arrays before labeling the regions.

Classifying LLC Accesses: At runtime, GRASP classifies a

memory address making an LLC access as High-Reuse if the

address belongs to the High Reuse Region of any Property

Array; GRASP determines this by comparing the address

with the bounds of the High Reuse Region of each Property

Array. Similarly, an address is classified as Moderate-Reuse
if the address belongs to the Moderate Reuse Region. All

other LLC accesses are classified as Low-Reuse. When ABRs

are not set, all accesses are classified as Default. GRASP

encodes the classification result as a 2-bit Reuse Hint, and

forwards it to the LLC along with each cache request.

C. Specialized Cache Policies

Insertion Policy: LLC miss tagged as High-Reuse is inserted

in the LLC at the MRU position to protect it from thrashing.

Meanwhile, LLC miss tagged as Moderate-Reuse is inserted

near the LRU position while LLC miss tagged as Low-Reuse

is inserted at the LRU position.

Hit-Promotion Policy: LLC hit tagged as High-Reuse is

immediately promoted to the MRU position whereas any

other LLC hit only gradually promotes associated cache

block towards MRU position with every hit.

Eviction Policy: GRASP does not modify eviction policy

of the baseline scheme, which avoids the need to explicitly

store the Reuse Hint as additional LLC metadata while also

keeping the cache management flexible.

III. EVALUATION

We evaluate three graph applications – Betweenness

Centrality (BC), Single Source Shortest Path (SSSP) and

Pagerank (PR) – from the Ligra framework [7]. Each

application processes four datasets having 5M–64M vertices

and 68M–2147M edges, resulting in 12 datapoints. We

reorder datasets using DBG [1] and simulate one iteration

with the highest number of active vertices for each

application-dataset pair. We evaluate GRASP and three

state-of-the-art thrash-resistant schemes – SHiP-MEM [8],

Hawkeye [3], and XMem [4] – and report the speed-up over

RRIP [9] using the Sniper simulator modeling 8 OoO cores

with 16-way 16MB NUCA (2MB slice per core).

As Fig. 2 shows, GRASP yields an average speed-up of

5.3% (up to 10.2%) over the RRIP baseline. Over the same

baseline, SHiP-MEM, Hawkeye and XMem yield an average

speed-up of -6.4%, -14.1% and 1.1%, respectively. GRASP

outperforms all the evaluated techniques across the datapoints

with an average speed-up of 4.2% over XMem, 5.3% over

RRIP, 12.5% over SHiP-MEM and 22.7% over Hawkeye.

Prior predictive schemes cause slowdown on all datapoints

with max slowdown of 13.6% for SHiP-MEM and 24.6% for

Hawkeye over the RRIP baseline. The result indicates that

the learning mechanisms of the domain-agnostic schemes

are deficient in identifying, and in turn, retaining the high

reuse working set (i.e., hot vertices) for graph applications.

Meanwhile, among prior schemes, XMem outperforms

Hawkeye and SHiP-MEM, which confirms our thesis that

utilizing software knowledge for cache management is a

promising direction over storage-intensive domain-agnostic

design for the challenging access patterns of graph analytics.
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