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Abstract—We propose CogR, a machine-learning based run-
time solution, that enables efficient and dynamic resource
scheduling and performance optimization for high-level program-
ming interfaces on heterogeneous systems. CogR tightly combines
the structural information of programs and fine-grained static
and dynamic statistics into sequenced input data. This structural
and value-embedded representation of programs enables CogR
to accurately model the runtime behaviors of nested loop-based
constructs in the high-level parallel programs. The end-to-end
CogR system consists of compiler and runtime support for feature
collection and input generation, a machine learning model, and
a runtime scheduler with online inference and prediction. The
system provides 11% higher prediction accuracy than models
simulated for prior work and improves kernel performance by
66% compared to the baseline runtime.

I. INTRODUCTION

Modern systems with intra- and inter-accelerator parallelism

pose an unprecedented challenge for the entire software stack

to provide programmability and code/performance portability

while delivering performance. High-level programming in-

terfaces [1] address this challenge with loop-based parallel

and offloading constructs but heavily depend on compiler

and runtime for efficient code generation and scheduling on

heterogeneous systems with varying configurations.

In our effort to explore the machine-learning based approach

as an alternative to traditional heuristics for more flexible and

efficient scheduling, we made the following key observation:

In order to accurately model nested loop-based constructs and

predict their performance, it is crucial to explicitly encode

structural information in the input data and, furthermore,

embed fine-grained static and dynamic statistics at the precise
contextual point in the sequence. Fine-grained value-embedded

representation separates our approach from previous work that

used AST or program source codes [3], [8].

Thus, we propose CogR, a machine-learning based runtime

solution for OpenMP programs on heterogeneous systems. We

aim to guide the OpenMP runtime scheduler by predicting

whether an OpenMP offloading construct will execute faster

on CPU or GPU. The CogR system consists of the three

main components shown in Figure 1: (1) Feature extractor

and input generator in compiler and runtime, (2) machine

learning model trained with the collected features and used

for online inference, and (3) runtime scheduling interface. Our

Fig. 1. The Overall Architecture of CogR

experimental results show that the CogR system provides 11%

higher prediction accuracy on average than models trained

with structural data with top-level counters (simulated for [3]),

structural data only (simulated for [8]) and counters only (sim-

ulated for [4]). It also improves the end-to-end performance

of our training examples by 66% on average, compared to the

baseline that always offloads kernels to GPU.

II. DESIGN AND IMPLEMENTATION OF COGR

Input Definition: We encode the syntactic structure of a

program in our input data and embed fine-grained statistics

precisely next to a related syntactic token. Our input data

is a sequence of such value-embedded syntactic nodes from

traversing the abstract syntax tree (AST) top-down, prefixed

by the y value for labeled data during training and followed

by padding to produced fixed-length input. The vocabulary

for the syntactic tokens includes all OpenMP scoped and

standalone directives, non-declaration program statements with

side effects, and functions calls. For efficient training, we

abstract out lower-level syntactic elements. We embed the

following static/dynamic counters next to the token related to

them: the number of OpenMP map clause and reduction clause

variables, loop instruction count, and loop iteration count.

Feature Extractor and Input Generator: The CogR com-

piler pass extracts syntactic tokens and compile-time statistics

from the AST of a program by visiting each node in an AST

for an OpenMP target region. The CogR runtime profiling

interface collects iteration counts for loops in a target region

from program executions (training) or instrumentation (infer-

ence). It also measures program execution time on both CPU

and GPU to obtain y values. Iteration counts are keyed by

source code location information, e.g., file name/ID and line
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number, which allows us to merge them with the features from

the compiler pass.

Machine Learning Model: We use a variation of recurrent

neural networks (RNN) [6], [5], [2] that are capable of

structurally correlating tokens apart in input sequence using

temporal memory. Our input sequence consists of data of

two distinct types, symbolic tokens for syntactic elements and

numeric counters, which can have values from widely different

ranges. We applied skip-gram model embedding techniques [7]

for syntactic tokens and value normalization for numeric

counters to generate “learnable” feature vectors based on them.

The overall RNN-based neural network is composed of a skip-

gram embedding model, an RNN layer, and then a number of

fully connected (FC) layers. The final output from the FC

layers is the model’s decision for CPU or GPU execution.

Runtime Scheduling Interface: We extended the existing

OpenMP runtime to communicate with the compiler to get

static features, obtain dynamic loop iteration counts, and

combine them to generate final input data online. Right before

executing an OpenMP target region, the runtime performs

inference on the trained model and uses the result to schedule

the region on CPU or GPU. To reduce the online inference

overheads, we overlapped the inference query with program

execution and cached inference results to reuse them for later

instances of the same target region.

III. EXPERIMENTAL RESULT

We extended Clang 4.0 with full support for OpenMP 4+

and LLVM 7 for the CogR compiler pass, and a propri-

etary OpenMP runtime for profiling, online input generation

and inference. For training data, we manually ported sixty

benchmarks and microkernels to OpenMP with offloading

directives and generated 1,027 examples from them. We ran

our experiments on an OpenPower node with POWER 9

processors attached via NVLINK to NVIDIA Volta GPUs. For

online inference, we set up a standard Linux socket server that

serves an inference request from the CogR runtime.

We evaluated the RNN-based model for CogR along with

three models that simulate prior work (CountersOnly, Struc-
tAndCounters, StructOnly) for comparison. Embedding dimen-

sions and network parameters including RNN cell type and

size, and the number of RNN and FC layers are determined

by extensive sensitivity study for each model. The models are

implemented in TensorFlow v1.5, and we performed a k-fold

validation with k=20 to obtain final accuracy numbers.

Prediction Accuracy: Figure 2 shows that the CogR model

outperforms the other models by 11% on average with 88%

prediction accuracy. CogR significantly outperforming Struc-
tOnly and StructAndCounters in all statistics shows that CogR
excels them in truly modeling program behaviors by not

simply adding but tightly integrating fine-grained statistics into

structural data. Overall, our evaluation of the models with

a different input format confirms our hypothesis that struc-

tural and value-embedded data improves learning efficiency

compared to non-structural data or structural data with flat

summary counters.

Fig. 2. Model Accuracy

Client Initialization 87 us
Feature String Generation 6 us
Inference and Server Communication 3.9 ms

TABLE I
COGR RUNTIME OVERHEAD

End-to-End Performance: We measured the end-to-end

kernel execution times on CPU or GPU as predicted by CogR
for all kernels in our training set. Then we calculated the

average difference between them and the execution times by

the baseline runtime that respects scheduling directions from

source codes, which always offloads to GPU if possible. The

result showed that CogR improved kernel performance by 66%

on average compared to the baseline.

CogR Overhead: We found the overhead incurred by the

CogR runtime (as shown in Table III) to be consistent across

the scheduling instances evaluated. The majority of the over-

head comes from inference time during online inference. The

optimizations described in Section II reduced the inference

time from 10ms to 3.9ms by 61% with asynchronous server

communication and eliminated the entire trip by using cached

results with 91% accuracy against actual inference results.

IV. CONCLUSION AND FUTURE WORK

Overall, CogR showed its potential as a realistic machine-

learning based runtime solution with full compiler and runtime

support for input data generation and online inference. Our

evaluation showed that the expressiveness of our structural and

value-embedded input data enabled more accurate modeling of

program behaviors. We plan to extend CogR to a broader range

of problems and target applications, while further improving

the model accuracy and reducing the runtime overheads.
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