2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

POSTER: Exploiting Multi-Level Task Dependencies to Prune
Redundant Work in Relax-Ordered Task-Parallel Algorithms

Masab Ahmad, Mohsin Shan, Akif Rehman, Omer Khan
University of Connecticut, Storrs, CT, USA

Abstract—Work-efficient task-parallel algorithms enforce or-
dering between tasks using queuing primitives. Such algorithms
offer limited parallelism due to queuing constraints that result
in data movement and synchronization bottlenecks. Speculatively
relaxing order of tasks across cores using the Galois framework
shows promise as false dependencies generated by strict queuing
constraints are mitigated to unlock task parallelism. However,
relaxed ordering results in redundant work, for which Galois
relies on static measures to improve work-efficiency. This paper
proposes a dynamic multi-level parent-child task dependency
checking mechanism in Galois to prune redundant work by
exploiting monotonic properties of shared data values. Evaluation
on a 40-core Intel Xeon multicore shows an average of 2x
performance improvements over state-of-the-art ordered and
relax ordered graph algorithms.

I. INTRODUCTION

Ordered algorithms achieve work-efficiency by executing
tasks (or functions) in a particular order. For example, in
graph algorithms, such order is enforced using queuing prim-
itives [1], where graph vertices (parents) create edge tasks
(children). Ordering is required on tasks due to read-write
dependencies on preceding or future tasks with parent-child re-
lationships. Due to the usage of queuing primitives to enforce
order, exploiting parallelism requires thread synchronization to
maintain global order among cores, which limits performance
scalability on parallel machines. Therefore, prior literature has
proposed unordered algorithms that break consistency guar-
antees using data structures that violate atomicity [1]. While
this allows for more parallelism, it results in work inefficiency
since the algorithm requires multiple iterations to converge
on a solution. The Galois framework trades off parallelism
with work efficiency, and enables relaxed ordering of tasks by
only enforcing local order on tasks within a core using per-
core priority queues [2], [3]. Since global ordering of tasks
is not enforced, the Galois framework exposes plentiful task-
level parallelism. However, relax ordering results in redundant
work, which is pruned using static algorithmic mechanisms
(e.g. A-stepping algorithm for shortest path computations).
Such static measures do not fully exploit the work-efficiency
and parallelism tradeoffs, and thus a dynamic work pruning
mechanism is proposed in this paper.

A multi-level task dependency checking mechanism is pro-
posed for relax-ordered algorithms that efficiently prunes out
redundant work at runtime. For example, in graphs, the edge-
based task processing allows speculative shared data value
updates [2]. As global order is not maintained, algorithmic
convergence is iteratively managed over these shared data
updates. Slow propagation of these shared data values results
in redundant processing of tasks. This issue can be solved
by either making races in shared memory faster, or by doing

multi-level parent-child dependency checking to prune tasks
whose parents have been overwritten by new data values.
These checks exploit the monotonic property of shared data
values, where an algorithm’s converging shared data values
either only increase or decrease (e.g. decreasing per-node
distances in shortest path algorithm). Many relax-ordered
algorithms exhibit this property, hence this paper proposes a
novel multi-level task dependency check. When a monotonic
shared data value is updated by a task, it may violate global
order as its latest counterpart task may have been executed
in another core. A check across multiple parent-child levels
detects and prunes this task from being processed redundantly.
This detection is done using shared memory reads of the latest
parent values, and comparing them to the old values that were
stored alongside the task at insertion into the priority queue.
The multi-level task dependency check is then performed
based on the monotonic property of a given algorithm. The
proposed check is implemented on top of the Galois frame-
work, and evaluated on a 40-core Intel Xeon multicore. Results
for a range of relax-ordered algorithms show an average of
2x performance improvement over the Galois relax-ordered,
as well as state-of-the-art ordered and unordered algorithms.

II. TASK PRUNING IN RELAX-ORDERED ALGORITHMS

The Galois framework executes relax-ordered algorithms by
implementing a per-core priority queue, where task ordering is
only enforced locally within a core. To exploit load-balanced
task parallel execution, Galois ordered by integer metric
(obim) scheduler is used. The obim scheduler uses a dynamic
work stealing heuristic to balance the task distribution among
cores. After enqueuing tasks, the framework uses operators to
dequeue tasks from cores. The monotonic property of shared
data values is used to dynamically check multiple parent-child
levels, which improves Galois’s static redundant work pruning
operators. Based on the number of levels being checked, the
shared data values of the parents of this task (that is being
enqueued) are pushed into the queue. These old values are then
checked against the latest value when the task is dequeued.

Consider the single source shortest path (SSSP) algorithm
that operates on the decreasing distances of each task from
the source node. These distances are maintained using the
shared distance array, DJ[]. Once a task (v;q) is pushed to
a per-core priority queue, the current distance of its parent
(or for 2-level check, the parent’s parent) is also stored
alongside the task entry. When this task is dequeued based
on its priority, its state is checked since other core(s) may
have pushed the same task, v;q, with a lower distance. Note,
these distances are atomically updated. The proposed check
extracts the enqueued distances of the task and its parents, and

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00062

o @co[r%EEuter
psoaety

A A NN AR NN AR REEREEEEN S e ———

A% Commit Commit = Gl me
<D[A.old] A2 Task Y2 DY) Task D[Z.;]" T
d <D[Y?] 2. DZold] Commit
Core a —~— ¥ . 7a fzaz® Pathof
b Parent
ot “eor” N s s 2t o
asl a .
< Dlaold] DIA) > DIA% arealsokilled ~ Via 2
‘M y{ D[A] = H D[A] = A%.value |[D[A] = A2.value|
€MOMY) | old.value|[DY] = old.value|[D[Y] = Y2.value

Fig. 1. Two-Level Task Pruning Check based on Monotonic Shared Data
Values in the SSSP Algorithm.

performs data accesses to lookup the latest distance values for
all corresponding D] locations. If the distances of the current
task and/or its parent(s) are lowest in memory, then the task,
v;q 18 executed. Otherwise, v;q is considered redundant and
pruned out. Figure 1 shows how 2-level checking occurs in
the proposed algorithm in a monotonically decreasing case for
SSSP, with task Y? being deemed redundant as another core
updates its parent’s D[] with a lower distance than D[A"].
In this example, two cores, a and b, go down the same path
from task A. Task A® first enqueues task Y, while parent
A® then enqueues child task Y. By the time Core b extracts
task Y® from its priority queue, the lower distance value of
A® has made it to memory and is visible to all cores. Core b
checks D[Y"], and finds that it is the lowest distance (D[Y]
has not propagated to memory yet). Before executing task Y,
Core b also checks if A®’s distance has changed since it was
enqueued. Task Y® was enqueued with a parent distance of
D[A?], but it has been updated with a lower distance in D[A],
hence task Y is pruned out and not executed.

III. EVALUATION

Figure 2 shows the completion times normalized to the
Galois baseline. Various relax-level versions of the proposed
multi-level checks are evaluated to quantify the tradeoffs
between task pruning efficiency and the associated checking
overheads. Unordered benchmarks are acquired by picking the
best performing implementation from a variety of open source
suites, such as Julienne-Ligra [4], PBBS [5], and CRONO [6].
The Kinetic Dependence Graphs (KDG) [7] version of Galois
that parallelizes ordered algorithms is also compared. KDG
globally orders tasks using thread synchronization primitives,
allowing task execution and commits to occur as they do in
the sequential case. Each benchmark is evaluated for a set of
diverse inputs, i.e., California road network, CAGE-14, Orkut,
Friendster, Twitter, and Connectomic graphs [8] [9].

The proposed multi-level checking version outperforms all
other variants, primarily because of the reduction in redundant
work. This reduction in total work is seen in Figure 3,
which shows the total work (number of tasks executed after
dequeues) normalized to work in the Galois baseline. A
geometric work-efficiency improvement of 1.6-3x is observed
for various multi-level checks over Galois. SSSP, A*, and MST
benchmarks add significantly more tasks for the unordered
implementations since their sequential algorithms are highly
work efficient. KDG does not execute redundant tasks, hence
its total work is minimal. However, KDG limits parallelism
due to consistent checking for global ordering. While the

495

.g W Unordered 7% KDG-Ordered N Relax-1-Level
© QEJ 2 Relax-2-Level O Relax-3-Level i Relax-4-Level
w -

o : 1.5

=]

- g 1een

S @os

- Q

gE’

= O

o v

2

Fig. 2. Normalized Completion Time for Unordered, KDG-Ordered, and
Proposed Algorithms Relative to the Galois Relax-Ordered Versions.

- 2 M Unordered 7% KDG-Ordered N Relax-1-Level
g % 2 Relax-2-Level ORelax-3-Level {1Relax-4-Level
8 (G} 3.6 3.5 2.1
o ol5
= =
[-% g 1 .. §....:.. ..\
< . \ \ .
» N 05 N N NI BN RN B
8% o Lio Lims Lim LU LULE BUIE Lim
= £
8 =] * S A) N S
- & - & O S NS 2
e2 NECHRNC

& &

R

Fig. 3. Normalized Total Tasks Executed for Unordered, KDG-Ordered, and
Proposed Algorithms Relative to the Galois Relax-Ordered Versions.

proposed deeper level checks, such as Relax-3-level maximize
work reduction, the additional checking adds computations
that worsen performance. Therefore, Relax-2-Level is picked
since it enables an average 2x reduction in completion time,
while optimizing task pruning over the Galois framework.

ACKNOWLEDGMENTS

This work was funded by the U.S. Government under a
grant by the Naval Research Laboratory. This work was also
supported by the National Science Foundation (NSF) under
Grant No. CNS-1718481.

REFERENCES
[1]

K. Pingali and et. al., “Ordered vs. unordered: A comparison of paral-
lelism and work-efficiency in irregular algorithms,” in Proc. of the 16th
ACM Symp. on Principles and Prac. of Parallel Prog., ser. PPoPP, 2011.
D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure for
graph analytics,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, ser. SOSP "13, NY, USA.

A. Lenharth, D. Nguyen, and K. Pingali, “Priority queues are not good
concurrent priority schedulers,” in Euro-Par 2015: Parallel Processing.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 209-221.

J. Shun and et. al., “Julienne: A framework for parallel graph algorithms
using work-efficient bucketing,” in Proc. of the 29th ACM SPAA, 2017.
J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan, “Brief announcement: the problem based
benchmark suite,” in SPAA, 2012.

M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono: A benchmark suite
for multithreaded graph algorithms executing on futuristic multicores,” in
2015 IEEE International Symposium on Workload Characterization.

M. A. Hassaan, D. D. Nguyen, and K. K. Pingali, “Kinetic dependence
graphs,” in Proceedings of the Twentieth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’15. New York, NY, USA: ACM, 2015.

R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proceedings of the
Twenty-Ninth AAAI Conference on Al, 2015.

C. Demetrescu, A. V. Goldberg, and D. S. Johnson, Eds., The Shortest
Path Problem, Proceedings of a DIMACS Workshop, Piscataway, New
Jersey, USA, 2006. DIMACS/AMS, 2009.

