
POSTER: A Collaborative Multi-factor Scheduler
for Asymmetric Multicore Processors

Teng Yu∗, Pavlos Petoumenos†, Vladimir Janjic∗, Mingcan Zhu†, Hugh Leather†, John Thomson∗
∗University of St Andrews, UK †University of Edinburgh, UK

Email: j.thomson@st-andrews.ac.uk

Abstract—Asymmetric multicore processors (AMP) are neces-
sary for extracting performance in an era of limited power budget
and dark silicon. We have efficient symmetric schedulers, efficient
asymmetric schedulers for single-threaded workloads, and effi-
cient asymmetric schedulers for single program workloads. What
we do not have is a scheduler that can handle all three factors
affecting AMP scheduling: core affinity, thread criticality, and
scheduling fairness.

To address this problem, this paper introduces the first general
purpose asymmetry-aware scheduler targeting multi-threaded
multi-programmed workloads. It estimates the performance of
each thread on each type of core and it identifies communi-
cation patterns and bottleneck threads. With this information,
the scheduler makes coordinated core assignment and thread
selection decisions that still provide each application its fair
share of the processor’s time. We evaluated our approach on
GEM5 through four distinct big.LITTLE configurations and
multi-threaded multi-programmed workloads composed of PAR-
SEC and SPLASH2 benchmarks. Compared against the Linux
CFS scheduler and a state-of-the-art AMP-aware scheduler, we
demonstrate performance gains of up to 25% and 5% to 15%
on average depending on the hardware setup.

I. INTRODUCTION

Over 90% of the processor chips are incorporated into em-

bedded devices, such as smartphones and IoT sensors, which

are by nature energy limited. This makes energy efficiency

and power distribution crucial considerations in the design

of new processor chips. Heterogeneous systems, combining

processors of different types, provide such energy efficiency

for different types of workloads. Among heterogeneous sys-

tems, single-ISA asymmetric multicore processors (AMPs) are

becoming increasingly popular. They provide more flexibility

in terms of runtime assignment of threads to cores, based on

which core is the most appropriate for the workload, as well as

on the current utilization of cores. As a result of this, efficient

scheduling for AMP processors has attracted a lot of attention

in the literature [8]. The three main factors that influence the

decisions of a general purpose AMP scheduler are:

Core sensitivity. Cores of different types are designed

for different workloads. For example, in ARM big.LITTLE

systems big cores are designed to serve latency-critical work-

loads or workloads with Instruction Level Parallelism (ILP).

Running other kinds of workloads on them would not improve

performance significantly while consuming more energy.

Thread criticality. Executing a thread faster does not nec-

essarily translate into improved performance. An applications

might contain critical threads, the progress of which deter-

mines the progress of the whole application and it is these

threads that we want to pay special attention to.

Fairness. In multiprogrammed environments, scheduling

decisions should not only improve the utilization of the

system as whole, but should also ensure that no application is

penalized disproportionately. Achieving fairness in the AMP

setting is non-trivial, as allocating equal time slices in a round

robin manner to each application does not necessarily result

in the same amount of work for each application.

II. BACKGROUND AND RELATED WORK

TABLE I
QUALITATIVE ANALYSIS ON RELATED WORK

Approaches Core
Sens.

Fairness Bottle-
neck

Collaborative

Saez, et al. [9] � �
Craeynest, et al. [10] � �
Cao, et al. [3] �
Joao, et al [6] � �
Kim, et al [7] � �
Jibaja, et al [5] � � �
COLAB � � � �

A summary with qualitative comparison on the related

work is shown in Table I. Among all previous work on

AMP schedulers, only Kim and Huh [7] and Jibaja et al. [5]

targeted the general case of multi-threaded multi-programmed

workloads. The uniformity fairness policy [7] focuses only on

fairness and core sensitivity, without provision for bottleneck

acceleration. WASH [5] is the closest existing scheduler to

ours. It handles core sensitivity, bottlenecks, and maintains

fairness for the general scheduling case but controls only

core affinity, leaving all other decisions to the baseline Linux

scheduler. We use a WASH-like implementation for the Linux

scheduler as our state-of-the-art.

III. MULTI-FACTOR COORDINATED SCHEDULER

Our scheduling algorithm is implemented by overriding the

default Linux task selector pick_next_task_fair() and

core allocator select_task_rq_fair().

Hierarchical Core Allocator: Our core allocator is primarily

guided by the core sensitivity of each thread. To estimate core

sensitivity, we use an offline trained model which predicts the

slowdown of moving a thread from a big to a little core. We

first run each benchmark in single-threaded mode on both full
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Fig. 1. Heterogeneous Average Normalized Turnaround Time (H ANTT) of multiprogrammed workloads. All results are normalized to the Linux CFS ones.
Lower is better.

little and full big core configurations. We record their runtime

and performance counter values, then use PCA and regression

to build the predictive model. This predicted slowdown is used

to classify them into three classes of increasing core sensitivity.

The most sensitive threads are assigned to big cores, the least

sensitive to little cores, and the middle group threads are

assigned to either big or little cores to keep the load balanced.

Finally, we scale the virtual time-slices of threads running on

big cores by dividing them by their predicted slowdown to

keep relative progress between asymmetric cores equal.
Bias-global Task Selector: The proposed task selector aims

to improve criticality in a global way while also balancing it

with core sensitivity. During execution there might be multiple

bottlenecks that need to be accelerated simultaneously. Other

approaches for dealing with thread criticality, such as WASH

[5] or ARM GTS [4], migrate all detected bottlenecks to big

cores, regardless of core sensitivity and processing load on

the destination core. This might result in a costly migration

for little to no speedup. Instead, we prefer to accelerate core

insensitive bottleneck threads in-place by prioritizing their

execution on their assigned core. To monitor communication

patterns and identify bottleneck threads, we instrumented the

Linux futex. For each thread holding a futex, we measure

the cumulative time other threads blocked on that futex. The

threads causing the most waiting are labeled as bottleneck.

IV. EXPERIMENTAL EVALUATION

We ran our experiments on GEM5 [2], simulating an ARM

big.LITTLE-like architecture. The big cores are similar to out-

of-order 2 GHz CortexA57 cores. The little cores are similar to

in-order 1.2 GHz CortexA53 ones. The OS is Linux v3.16. We

cross-compiled the kernel with gcc v5.4.0. We used different

benchmarks pulled from PARSEC3.0 [1] and SPLASH2 [11]

to generate multi-threaded multi-programmed workloads for

evaluation. The results are shown in figure 1. We achieve

performance gains of up to 25% and around 5% to 15%

in terms of Heterogeneous Average Normalized Turnaround

Time compared with the default Linux CFS scheduler and the

heterogeneity-aware WASH scheduler. Our proposed sched-

uler achieves much better performance gain on synchronous-

intensive and communication-intensive workloads compared

with WASH and CFS, while it cannot outperform others well

on workloads with low communication-to-computation ratio.
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