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Abstract—Ensuring fairness or providing isolation between
multiple workloads with different characteristics that are co-
located on a single, shared-memory system is a challenge.
Recent multicore processors provide last-level cache (LLC)
hardware partitioning to provide hardware support for iso-
lation, with the cache partitioning often specified by the user.
While more LLC capacity often results in higher performance,
in this work we identify that a workload allocated more
LLC capacity result in worse performance on real-machine
experiments, which we refer to as MiW (more is worse).
Through various controlled experiments, we identify that
another workload with less LLC capacity causes more frequent
LLC misses. The workload stresses the main-memory system
shared by both workloads and degrades the performance of
the former workload even if the LLC partitioning is used (a
balloon effect).

To resolve this problem, we propose virtualizing the datapath
of main-memory controllers and dedicating the memory virtual
channels (mVCs) to each group of applications, grouped for
LLC partitioning. mVC can further fine-tune the performance
of groups by differentiating buffer sizes among mVCs. It
can reduce the total system cost by executing latency-critical
and throughput-oriented workloads together on shared ma-
chines, of which performance criteria can be achieved only
on dedicated machines if mVCs are not supported. Exper-
iments on a simulated chip multiprocessor show that our
proposals effectively eliminate the MiW phenomenon, hence
providing additional opportunities for workload consolidation
in a datacenter. Our case study demonstrates potential savings
of machine count by 21.8% with mVC, which would otherwise
violate a service level objective (SLO).

Keywords-Memory Virtual Channel, LLC Partitioning, Fair-
ness, More is Worse

I. INTRODUCTION

Modern chip multiprocessors (CMPs) consist of multiple

cores sharing various resources, including shared last level

cache (LLC), on-chip interconnect, and main memory [6],

[32], [49]. CMPs are currently the most popular design

choice for servers used in cloud environments, and such

CMP-based servers consistently run a number of hetero-

geneous applications to satisfy the needs of diverse users.

This trend is becoming more prevalent with the emergence

of virtual machines and containers for cloud services.

When applications run simultaneously, contention and

interference of shared resources in a system can cause per-

formance degradation for some or all of the applications [9],

[18], [30], [39], [47], [48], [49]. As a result, there has

been a significant amount of prior work done to provide

fairness and minimize interference from sharing the on-

chip LLC capacity and main-memory bandwidth [13], [39],

[47], [48], [49]. In particular, when multiple applications

compete for a limited capacity of shared cache, high-priority

applications that need quality-of-service (QoS) guaranteed

(or real-time applications) can suffer from performance

degradation due to excessive cache occupancy from other

applications [6], [18], [32], [42]. To ensure the performance

guarantee for QoS or real-time applications, modern CMPs

provide cache partitioning (CP) [3], [8], [15] where different

portions of LLC are allocated to different applications.

Cache partitioning can allocate an isolated cache region

to high-priority applications, which avoids contention and

interference by preventing concurrently running applications

from evicting high-priority application cache lines [15].

Many prior studies [47], [48] have investigated alternative

CP to maximize overall performance. However, recently,

CMPs [15] provide user-specified CP, and the previously

proposed CP algorithms are not necessarily applicable. In

this work, we propose a mechanism to enforce performance

isolation in user-specified LLC partitioning.

When a CMP dedicates more LLC capacity to a process

group through cache partitioning, the intuitive expectation is

that performance improves [15]. However, we demonstrate

that the opposite can occur as a process group can actually

perform worse when it obtains more LLC capacity. We refer

to this as more-is-worse (MiW) phenomenon and define

MiW degree as the ratio of IPC when maximum LLC is

allocated to a process group to the maximum IPC that can be

obtained through CP. Our evaluations show that MiW degree

can reach up to 39.5% with synthetic workloads, 14.4%
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for SPEC CPU2006 [45], and 547.0% for TailBench [20]

benchmarks, respectively, on Intel Broadwell-based [23]

Xeon systems.
In this paper, we first provide an analysis of why this MiW

phenomenon occurs. When a particular process (e.g., process

A) receives more LLC capacity, another process in the

system (e.g., process B) comes to receive a smaller fraction

of the LLC capacity and experiences higher LLC Miss

Per Kilo Instructions (MPKI). This increases main-memory

bandwidth demand from process B (a balloon effect1) and

results in higher main-memory access latency for all the pro-

cesses. Even though the memory access patterns for process

A and process B are different (i.e., accessing different banks

or ranks), both processes share the same datapath to the

main-memory system, including memory request buffers. As

a result, requests from process B can monopolize the shared

datapath resource in the memory system. This effectively

results in process B “blocking” process A’s requests and

degrades the performance of process A.
To prevent this blocking in the datapath to the main

memory, we propose to virtualize the datapath of memory

controllers with memory virtual channel (mVC) where

a separate memory request buffer is provided for each

group of LLC. The overall memory request buffer storage

is partitioned across the number of groups supported in

the LLC, which is equivalent to the number of mVCs.

DRAM commands from different buffers (or mVCs) are

arbitrated and served independently – thus, each mVC has

effectively a private datapath to the memory channel and

avoids blocking. The memory controller requires a mVC
arbiter that is responsible for arbitrating between the mVCs

– the mVC that receives a grant from the mVC arbiter gains

access to the memory channel. The grant is released only

after a column-level DRAM (RD/WR) command is issued

to avoid unnecessary DRAM row-buffer conflicts.
We discuss mVCs with four different buffer alloca-

tion policies, which are static, proportional, inversely-
proportional (both based on its share of LLC ways), and

dynamic partition. The observations show that static and

proportional partitions are more effective in eliminating

MiW than the other. Furthermore, we explore the design

space by observing the performance of mVC on various

ratios of buffer allocation. As a result, we show that it is

possible to select an appropriate configuration satisfying the

target performance for the group with more LLC capacity,

and also maximizing the performance of the group with less

LLC capacity. Our case study shows that when satisfying

90% of the standalone performance, with mVCs we can

save 21.8% of machines by sharing the machines among

applications in a distributed system.
In summary, this paper makes the following contributions:

1We use the terminology balloon effect since changes in one area (i.e.,
cache partitioning) leads to an adverse effect in another area (i.e., memory
bandwidth).

• This is one of the first work to demonstrate the problem of

MiW (more-is-worse) on a real machine, where allocating

more LLC capacity to a workload leads to worse perfor-

mance due to an increased degree of congestion (blocking)

on the main memory shared by all the workloads (a

balloon effect).

• We propose to virtualize the datapath of memory con-

trollers to mitigate this blocking problem and explore the

design space of memory request buffer allocation.

• We evaluate memory virtual channels (mVC) using a

cycle-level simulator, which effectively eliminates MiW

and recovers lost IPC due to the blocking.

• We perform a case study to demonstrate mVC can provide

additional opportunities for workload consolidation to

save the machine count by up to 21.8%, which would

otherwise violate a service level objective (SLO).

II. BACKGROUND: CACHE PARTITIONING

To overcome the contention and interference on the shared

resources, CMPs provide cache partitioning/allocation tech-

niques [3], [15]. A cache partitioning (CP) divides shared

LLC resource and dedicates each partitioned LLC to a

group (class) of processes. CP allows the cache to be

adequately allocated according to the working set size or

cache sensitivity of a process group, alleviating contention

and interference between processes [39], [47]. For example,

AMD provides CP in Opteron [3], [8], and Intel introduced

Cache Allocation Technology (CAT) starting from Haswell

architecture [15].

CP techniques can be classified as way, set, or block

(line) based partitioning [1], [7], [32], [33], [41], [42],

[53]. Way-based partitioning [7] divides LLC by cache

ways. Processes can replace the cache line only within the

allocated cache ways. Way-based partitioning is relatively

cheap to implement because the process can access all

the cache sets regardless of the number of allocated ways.

However, it is limited to the maximum number of ways in

granularity, and the associativity of each partition can be

greatly reduced depending on the allocated ways [42]. Set-
based partitioning [1], [33] (or page coloring [53]) partitions

LLC by sets instead of ways, and each process gets a number

of sets from the cache. LLC is virtually divided so that the

address of a requested data is mapped to a set in the virtual

cache. The virtual set index is then mapped to the actual

physical cache set index. This translation makes set-based

partitioning more expensive than way-based partitioning,

especially when resizing the partition. For finer-grained

partitioning, block-based partitioning was also proposed to

partition the cache by cache block (line) granularity [41] and

provide more cache partitions. However, the complexity and

overhead for managing and storing the mapping information

identifying the owner of each cache line are high [32].

AMD Opteron [3] implements set-based cache partition-

ing. To minimize the amount of LLC data being evicted by
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Table I: Hardware setup used in Section III.

Hardware Info Settings

CPU Model Intel Xeon E5-2698 v4
CPU Clock, # of cores 2.2GHz, 20
# of memory controllers per CPU 2
Per core:

L1 I/D $ type/size/associativity Private/32KB/8
L2 $ type/size/associativity Private/256KB/8
L3 $ type/size/associativity Shared/2.5MB/20
# of Hardware threads 2
Hardware prefetch Off

Per 32GB DDR4-2400 memory controller:
# of channels 2
(# of ranks, bandwidth) per channel (2, 19.2GB/s)

a core that does not allocate the data, the Opteron processor

can direct L2 victim traffic to a specified set of the LLC.

However, the unit of partitioning is a quarter of the total

LLC capacity, which is too coarse-grain. By contrast, Intel

CAT [15] adopts way-based CP for the shared LLC. With

CAT, each class of service (CLOS) consists of one or more

applications. A bitmask (each bit representing a single cache

way) is used to determine the amount of LLC allocation for

each CLOS, and the bitmask can be changed dynamically at

runtime. CLOS can be allocated exclusively (isolated mode),

or allocated to overlap with other CLOS (overlapped mode).

CAT has been supported since Haswell microarchitecture

with 4 CLOS; more recent Broadwell and Skylake-based

servers support up to 16 CLOS.

Herdrich et al. [15] demonstrated the performance im-

provement of up to 4.5× from CAT when running SPEC

CPU2006 applications together as CAT significantly alle-

viated the performance degradation of an application from

interference. With CP (e.g., CAT), more LLC capacity can

be dedicated to a certain application to prioritize and im-

prove its performance effectively. However, contrary to this

intuitive expectation, we observed that a group of processes
could actually perform worse when they receive more LLC
capacity.

III. MORE-IS-WORSE PHENOMENON

We first demonstrate and analyze how the performance of
a process group decreases as we allocate more LLC capacity
with cache partitioning on real machines. To the best of

our knowledge, this un-intuitive phenomenon has not been

reported on real machines.2

A. More LLC Leading to Performance Drop

We evaluated a system with a single socket Intel Xeon

Broadwell server with 20 cores (40 hardware threads with

HyperThreading), 50MB of shared LLC, and 76.8GB/s of

peak main-memory bandwidth. The Intel machine has CAT

2We used the isolated mode because the overlapped mode can cause
unnecessary contention between the benchmarks on LLC, making the
analysis more complicated.

(Cache Allocation Technology) for cache partitioning (CP).

Details of the experimental setup are described in Table I.

Our initial evaluation uses SPEC CPU2006 benchmarks [45]

and executed SPEC rate of N , running N instances (pro-

cesses) of a benchmark simultaneously. We bundled the

cores that execute the same benchmark into one CLOS (class

of service).

Figure 1(a) shows the IPC and LLC Misses Per Kilo

Instructions (MPKI) variation as the number of allocated

LLC ways increases when executing 473.astar and 403.gcc

benchmarks alone with rate 20. Each core runs two in-

stances, and thus, we use 10 out of the 20 cores. The

evaluated Intel processor has 20 LLC ways per cache set,

and thus, we swept the LLC ways from one to 20. The

presented IPC is the mean IPCs from all the cores running

the same application. The results are intuitive – as more

LLC is allocated, MPKI decreases and performance (IPC)

monotonically increases. Initially, more LLC results in a

significant decrease in MPKI and correspondingly a signifi-

cant performance improvement but afterward, the change in

MPKI is limited as performance saturates [39].

We then executed the two benchmarks together with each

running on 10 physical cores and each with a rate of 20.

We dedicated varying numbers of LLC ways to the two

application groups; N to one and (20 − N) to the other.

Figure 1(b) shows the normalized IPC and LLC MPKI when

executing 473.astar and 403.gcc together, with the IPC and

MPKI values of the two applications without CP in the right-

most column. Using CP improves the aggregate performance

of the two application groups sharing the LLC. When we

allocate nine LLC ways to 473.astar (11 for 403.gcc), its

performance is the same as (2.7% better than) that without

CP, showing CP is effective.

The expected behavior is a trade-off between LLC ca-

pacity and performance. As more LLC capacity is allocated

to a workload, the performance is expected to continue to

increase or saturate. However, our evaluation shows that per-

formance can be actually degraded with more LLC capacity.

For example, for 473.astar, performance first increases as

LLC capacity increases, but beyond 15 LLC ways, the

performance drops by up to 8.9%. This is seemingly counter-

intuitive as the performance of both 403.gcc and 473.astar

are degraded when 473.astar occupies more than 15 LLC

ways. We call this MiW (more-is-worse) phenomenon.

In addition to 403.gcc and 473.astar, similar behaviors

were also observed in other SPEC CPU2006 and SPEC

CPU2017 [46] benchmarks. The degree of MiW, the ratio of

IPC when maximum LLC is allocated to a process group to

the maximum IPC that can be obtained through CP, for some

of the SPEC benchmarks are summarized in Table II(a).

We observe up to 14.4% performance degradation when

the former benchmark of the pair occupies more LLC

capacity over a certain threshold, respectively. Note that

MiW does not happen always. For example, on the pair of

99



0

6

12

18

24

30

36

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
PK

I

IP
C

MPKI_astar IPC_astar

0

6

12

18

24

30

36

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
PK

I

IP
C

# of cache ways allocated

MPKI_gcc IPC_gcc

(a) IPC, MPKI of 473.astar and 403.gcc when executed alone.

0
5
10
15
20
25
30
35
40

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

  1
 :1

9
  2

 :1
8

  3
 :1

7
  4

 :1
6

  5
 :1

5
  6

 :1
4

  7
 :1

3
  8

 :1
2

  9
 :1

1
10

 :1
0

11
 : 

 9
12

 : 
 8

13
 : 

 7
14

 : 
 6

15
 : 

 5
16

 : 
 4

17
 : 

 3
18

 : 
 2

19
 : 

 1
N

o-
C

P

M
PK

I

N
or

m
al

iz
ed

 IP
C

# of cache ways allocated to (astar : gcc)

MPKI_astar MPKI_gcc IPC_astar IPC_gcc

(b) IPC, MPKI of 473.astar and 403.gcc when executed together.

Figure 1: IPC and LLC MPKI for 473.astar and 403.gcc

(a) when executed alone as LLC capacity is increased and

(b) two benchmarks are executed together, with the IPC

normalized to when each runs alone and occupies the entire

LLC capacity (20 ways). IPC of 473.astar decreases by up
to 8.9% after reaching the peak when it is allocated with 15
LLC ways.

473.astar-473.astar, the performance of both groups increase

monotonically as more LLC ways are allocated.

B. Synthetic Workload Evaluation

In this section, we evaluate the MiW phenomenon using

synthetic workloads to better control workload’s memory

access characteristics and analyze performance degradation

when allocating more LLC capacity. We use a pointer

chasing synthetic workload, whose performance is sensitive

to memory latency because of true dependency between

each memory access. We controlled the degree of memory

bandwidth pressure by varying the amount of data read per

step of pointer chasing.

Without loss of generality, we call a group (class) of

applications that are allocated more LLC capacity and ex-

pects higher performance ‘group-A’, and the other group

that receives the remaining LLC capacity ‘group-B’. To

differentiate the characteristics of workload group-A and

Table II: The degrees of MiW (more-is-worse) over pairs

of applications (App A/B) which divide up LLC. The MiW

degree is measured by comparing (a) the aggregated IPC,

and (b) the tail (95th percentile) latency of App A when

it occupies the maximum share of LLC (numerator) with

the one when it performs best over all possible LLC shares

(denominator) through CP. For latency-critical workloads,

403.gcc has been used for App B.

(a) SPEC benchmarks

App A App B MiW

omnetpp gcc 14.40%
astar gcc 8.94%
sphinx gcc 8.43%
gcc gcc 6.01%
xz xalancbmk 5.27%
mcf blender 3.22%

(b) TailBench benchmarks

App A MiW

moses 547.00%
masstree 142.83%
img-dnn 10.20%
specjbb 9.00%
xapian 8.51%
silo 8.39%

group-B, we set group-A to read only one cache line (64B)

per pointer chasing step over 1GB of working set, which

is 20× larger than the LLC capacity. Thus, group-A is less

sensitive to changes in LLC capacity but more sensitive to

changes in main-memory access latency. group-B reads 1KB

of data per pointer chasing step over 5MB of working set,

which is only one-tenth of the system’s LLC capacity, to

generate frequent LLC misses when smaller LLC capacity

is allocated. We read 1KB of data per step to generate

more bandwidth pressure to memory compared to group-

A. We evaluated with the same system described earlier in

Table I, except only a single memory channel instead of four

channels is used to stress main-memory bandwidth.

Figure 2(a) shows the IPC and LLC MPKI as the number

of LLC ways allocated to group-A and group-B is varied.

For group-A that uses 1GB of memory and much larger

than LLC capacity, its performance is mostly insensitive to

the change in the allocated LLC capacity, and the mem-

ory bandwidth usage is maintained at a constant level of

1.8GB/s. By contrast, group-B uses only 5MB of memory

and allocating a large amount of LLC capacity leads to

negligible LLC misses. However, when the allocated LLC

capacity is small, there are LLC misses and memory access

rates increase rapidly. Therefore, the IPC decreases by 68%

and the memory bandwidth usage increases to 5.8GB/s.

The result when both group-A and group-B are executed

is shown in Figure 2(b). When allocating more LLC capacity

to group-A, we expect performance to increase or reach

a steady-state, but performance actually decreases when 5

(25% of LLC capacity) or more LLC ways are allocated

to group-A, reproducing MiW observed with SPEC bench-

marks. Since group-A and group-B alone cannot fully utilize

the system memory bandwidth, we executed group-A and

group-B with rate four. The performance degradation (MiW)

gets worse as more instances of the group-A and group-B

are populated. The synthetic evaluations demonstrate that
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LLC ways allocated. The IPC of group-A drops up to 39.5%

after reaching the peak when it occupies 4 LLC ways.
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MiW can be reproduced with a simple, synthetic workload

but more interestingly, MiW can start even if an application

group occupies only a smaller portion of the shared LLC

resource.
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Figure 4: Load-latency values of the tested system (Table I)

with 76.8GB/s of max main-memory bandwidth. Latency

rises rapidly when system bandwidth gets closer to the peak.

C. Impact on Latency-critical Workloads

In addition to the SPEC benchmarks, we evaluate the

impact of MiW on latency-critical (LC) workloads. In partic-

ular, it is well-known that LC applications, especially in dat-

acenters, often require predictable and small tail latency [5],

[10], [29]. However, as shown in Section III-A, MiW in-

creases MPKI – thus, higher memory access latencies can

significantly impact the tail latency problem [21]. Therefore,

MiW can be even more critical for LC workloads.

To evaluate the impact of MiW on LC workloads, we used

TailBench [20], [21] and executed each TailBench bench-

mark together with 403.gcc from SPEC CPU2006. Similar to

the previous evaluations, we vary the number of LLC ways

for the two benchmarks, but for the TailBench benchmarks,

performance is measured in terms of tail latency. We used

the single-node integrated configuration of TailBench, where

a client and the corresponding LC application are integrated

into a single process.

Figure 3 shows the normalized 95th percentile latency

of masstree, where normalized to the tail latency when

runs alone occupying the entire LLC. The result shows that

the tail latency increases by up to 143%, as it occupies

more LLC ways. Table II(b) summarizes the degree of

MiW of other TailBench benchmarks. Moses and masstree

have significantly higher MiW degrees compared to other

benchmarks (as high as 547% with moses), due to higher

LLC MPKI from these workloads, and thus, results in longer

queuing time. Due to space constraints, additional results are

not shown, but similar trends were observed in evaluation of

Intel Skylake machines, with tail latency increasing by up

to 210% due to MiW.

D. The Root Cause of the MiW Phenomenon

To understand the root cause of MiW, we first pay

attention to the fact that MiW occurs when applications

stress the main-memory bandwidth of a system. Figure 4

shows the relationship between the bandwidth load and the

observed latency of a main-memory system with the peak

bandwidth of 76.8GB/s specified in Table I. Main-memory

access latency values increase slowly when the memory
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system is lightly loaded, but they increase rapidly as the

load gets closer to the theoretical peak bandwidth, similar

to interconnection networks [9]. When a larger portion of

LLC capacity is allocated to the synthetic workload group-

A in Figure 2, the other workload group-B receives smaller

LLC capacity, experiences higher LLC MPKI, stresses main-

memory bandwidth that is shared between group-A and

group-B, and hence increases memory access latency for

both group-A and group-B. In other words, when group-
B stresses the main-memory bandwidth due to fewer LLC
ways allocated, group-A also experiences high memory
access latency breaking the performance isolation between
the workload groups, which is the very intention of CP.

Therefore, the group with more LLC capacity (group-A)

has higher memory access time for memory requests that

miss LLC; this overhead can even outweigh the benefits of

lower LLC MPKI due to larger LLC capacity, resulting at

performance drop especially if group-A is highly sensitive

to main-memory latency.
It might appear as if memory requests from different

applications are heading to the same destination (a memory

channel) and hence these requests cannot be isolated, leading

to a surge in access latency values on all the requests; but

in reality, they are likely headed to different destinations.

When the requests from both processes access the same

target in main memory (e.g., the same DRAM bank), they

all should experience high loaded access latency due to

the elevated degree of queuing delay. However, different

processes mostly access different targets (e.g., different

DRAM banks) as modern CMPs typically have dozens of

DRAM banks per channel; so the chances that two requests

from different processes access the same bank are meager.3

Then, the reason why a surge in LLC MPKI of one

process (group-B) negatively affects the performance of the

other (group-A) could be due to blocking of the datapath that

a request handling an LLC miss experiences, a well-known

problem in designing the flow control of interconnection

networks when requests from different source-destination

pairs share the same intermediate datapath (e.g., buffers) [9].

This blocking occurs when the oldest packet in an inter-

mediate shared buffer cannot be transferred because the

next node on the route for its destination is congested, the

“younger” packets in the shared buffer are blocked, resulting

in a performance drop. A solution for this blocking is to

virtualize the datapath, such as virtual channels [9].
Moreover, requests from one process (group-B) can oc-

cupy a significant portion or even all of the shared in-

termediate datapath (memory request buffer), which is a

valuable/scarce resource. This limits the memory controller’s

visibility of the processes (group-A and -B) with different

access behaviors, and lead to a poor scheduling decision.

3Techniques to partition main-memory such that a bank is dedicated to
a process (e.g., PALLOC [52] and [28]), can be used to ensure banks are
not shared between processes.
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Figure 5: The impact of Memory Bandwidth Allocation

(MBA) on 403.gcc-403.gcc. MBA cannot eliminate MiW.

Virtualizing the datapath can help to solve this problem.

We first show that existing hardware does not have vir-
tualized datapath in memory controllers. We control main-

memory bandwidth demands from two groups of processes

(group-C and -D) such that group-C alone spends half the

peak bandwidth of a system, and group-D alone spends

the entire bandwidth. When we run group-C and group-

D together, we observed that group-C burns 1/3 of main-

memory bandwidth, whereas group-D uses the other 2/3. If

the memory requests from group-C and group-D are through

virtualized datapath, as group-C and group-D both have the

same priority level, they should both utilize 1/2 of main-

memory bandwidth.

IV. LIMITATIONS OF EXISTING SOLUTIONS

Before exploring the idea of virtualizing the datapath of

memory controllers, we first assess if the ideas that are

already implemented in hardware (main-memory bandwidth

throttling [17]) or have been extensively studied before

(memory scheduling considering fairness [27], [36]) can

address MiW. Through experiments with the latest HW

and simulation, we observe these existing solutions cannot

eliminate MiW.

A. Memory Bandwidth Throttling

The latest Skylake-based [11] Xeon systems support a

feature named Memory Bandwidth Allocation (MBA) [17],

which limits the memory bandwidth dedicated to each group

(class). We evaluated a system with a single socket Skylake

server with 24 physical cores (HyperThreading enabled),

33MB of shared LLC with 11 ways, and 21.3GB/s of peak

main-memory bandwidth. MBA limits memory bandwidth

by the granularity of 10% (we used the linear mode [17]).

Figure 5 shows the normalized IPC and stacked-up MPKI

values of a pair of 403.gcc and 403.gcc, similar to the ex-

periments in Section III-A except that MBA is enabled here.

We allocated 90% of bandwidth allocation (the higher, the

more bandwidth allocated) to group-A and 10% to group-B.

The result shows MiW is still observed for the machine with

MBA. We tested different bandwidth allocation ratios (e.g.,

10%/90% and 50%/50% to group-A/-B), but MiW persists.
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Figure 6: Simulation results of augmenting the default mem-

ory access scheduling (FR-FCFS [40], BASE) with token-

bucket (TOKEN [27]) and virtual clock (CLOCK [36]) algo-

rithms. These fairness-aware memory scheduling algorithms

do not resolve MiW.

However, if we change the configurations such that main-

memory is not bandwidth saturated by either decreasing

SPEC rate, increasing peak main-memory bandwidth by

populating more channels (Skylake supports up to 6 channels

per socket), or lowering the bandwidth allocation values of

MBA to all the application groups, MiW mostly disappears.

This also indicates that the blocking in congested memory
controllers is a likely source of MiW.

The memory bandwidth throttling looks like a plausible

solution, but MBA has a limitation in that it controls memory
bandwidth indirectly and approximately [17]. MBA places

a programmable rate controller in L2 MSHR, a boundary

between private L2 caches and share LLC. This enables

per-core rate control (source throttling) without introducing

virtualized datapath. However, as L2 misses are then filtered

through LLC (whose miss rates are hard to predict as it is

shared among many cores), this indirect bandwidth control

is inevitably approximate. Therefore, MBA must conserva-

tively limit memory bandwidth to prevent the blocking (over-

throttling), and hence the performance of all the application

groups would be sub-optimal due to this main-memory

bandwidth underutilization.

B. Fairness-aware Memory Scheduling

Among the proposals of providing fairness on top of

memory access scheduling (the control part of a memory

controller), we selected two representative ones and tested

if they can address MiW. First, we chose the token bucket

algorithm (TOKEN), which was originally introduced as

an arbitration method for interconnection networks [27],

[38], [54]. For TOKEN, each request can be processed

when it has a matching token in the respective bucket (each

for the corresponding group). A token generator distributes

tokens to different buckets at the rates proportional to the

fractions allocated to different groups. Second, a request

prioritization method, which gives priority based on a virtual

clock (CLOCK) [36], is a memory version of deadline-based

arbitration frequently adopted in interconnection networks.

CLOCK prioritizes 1) ready commands, 2) column-level

commands, and 3) commands with the earliest virtual finish-

time. The virtual finish-times of the DRAM commands

from each memory request are calculated based on prior

work [36]. To prevent priority inversion by bank priority

chaining, after a DRAM bank has been restored in the course

of row activation (around 32ns in modern DRAM devices),

rule 3) is applied first over rule 2) among the requests

heading to the same bank. We set both TOKEN and CLOCK

to treat all the application groups equally.

Because these schemes are not implemented in existing

hardware, we used simulation, whose setup is detailed in

Section VI. Two benchmark pairs from SPEC CPU2006 [45]

are used (see Figure 6). Both TOKEN and CLOCK perform

on par with or better than the baseline memory-access-

scheduling scheme of FR-FCFS (BASE in Figure 6), but

MiW persists. When two application groups are executed,

TOKEN keeps each group from using more than half of

the system’s peak memory bandwidth. Therefore, TOKEN

restricts a group’s memory bandwidth only when it requires

more than half of the system’s peak memory bandwidth,

allowing both groups to utilize memory bandwidth more

fairly. CLOCK prioritizes a request with the earliest deadline

(finish-time) and hence tries to divide the system’s memory

bandwidth equally for each group. However, because neither

TOKEN nor CLOCK eliminates the blocking problem when

the main-memory system is bandwidth saturated, MiW does

not disappear.

These and other recent memory access scheduling propos-

als [4], [47], [48] pursue fairness in scheduling by limiting

the number of consecutive requests to a specific DRAM

bank, by limiting the number of reordering a request can

experience to serve other requests with a higher priority,

and by rotating the priority among the requests originating

from different sources (e.g., cores). However, these proposals

prioritize requests within a buffer; if a certain request cannot

enter the memory request buffer (as the buffer are full due

to blocking, for example), the scheduler cannot address the

problem, and the system suffers from MiW.

V. VIRTUALIZING MEMORY CHANNELS

A. Memory Virtual Channel (mVC)

To prevent/alleviate the blocking in main-memory sys-

tems, we propose to virtualize the datapath of memory

controllers (MCs) by providing a separate request buffer
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Figure 7: Comparison of the conventional memory request buffering (a) and four buffer allocation strategies for mVC (b)-(e).

per group (class) of LLC. As opposed to the previous

works utilizing per-source (CPU vs. GPU) [4] or per-

thread [36] request buffers, we use per-group (per-class)

separate buffering called memory virtual channel (mVC).
Per-source separate buffering is too coarse-grain as it does

not separate requests from different cores within CPU or

GPU, and per-thread separation is too expensive as the

number of hardware threads in modern shared-memory chip

multiprocessors can exceed a few hundred. We assume that

NoC (network-on-chip) is not a source of blocking4; if so,

it should be virtualized as well or support other blocking

prevention feature (e.g., bufferless flow control [34]).

Similar to Intel MBA, we align the class of MC and

that of LLC; therefore, a group (class) of applications

have both dedicated LLC capacity and MC’s buffer (queue)

space. As opposed to the source throttling of Intel MBA,

which cannot prevent blocking in MCs because it does

not precisely know the amount of traffic filtering by LLC,

mVC guarantees blocking prevention. All datapath within

a MC must be virtualized. If a MC has multiple stages

of buffers (e.g., staged memory scheduling [4]), they all

should be virtualized (separated by groups). Otherwise, this

un-virtualized portion of datapath becomes the source of

blocking.

The control part of a MC (i.e., memory access sched-

ulers) must be augmented to provide fairness among

the groups/classes (see Figure 7(b)). For example, FR-

FCFS [40] gives a higher priority to a ready request (which

can be serviced with a RD or WR DRAM command without

any timing constraint) over non-ready requests, on top of

the baseline priority rule of first-come-first-serve. With the

4To the best of our knowledge, the NoC prior to Intel Skylake-based
Xeon systems implements a ring NoC with prioritized arbitration and thus,
blocking does not occur within the NoC itself.

mVC support, there should be a round-robin arbitration logic

between the classes, which should be the highest priority tier

compared to both FR and FCFS.

A MC with mVCs requires a round-robin arbitration logic,

which we refer to as mVC arbiter, that selects a DRAM

command at a given cycle among the command candidates

from different groups (classes). This round-robin arbiter

responds with a single grant. Any buffer without an available

DRAM command is simply skipped over and ignored by

the mVC arbiter. However, as opposed to NoC arbiters, an
arbiter grant is not released after servicing a single DRAM
command but held until a column-level (RD/WR) command
is served. This ensures that if two (or more) request buffers

target the same DRAM banks, it avoids DRAM row-buffer

conflicts by continuously issuing a sequence of ACT and

PRE commands, avoiding deadlocks and providing fairness.

The multiple per-group request buffers do not necessarily

increase the cost (in terms of storage) as the total amount of

storage for the buffers are held constant; the only difference

is the amount of storage per request buffer which can

be smaller compared to the baseline request buffer. The

additional cost for the mVC arbiter is also relatively small

because the number of groups is usually much smaller than

the aggregate number of entries in the request buffer.

B. mVC Buffer Allocation Strategies

One design question for mVC is how to allocate buffer

space in the memory request buffers to the different mVCs.

Figure 7 compares the conventional memory request buffer-

ing (Figure 7(a)) with the following four different buffer

allocation strategies for mVC (Figure 7(b,c,d,e)):

• Static (mVC-STATIC): A simple strategy is to partition

the request buffer statically in the same size among all

the mVCs. While preventing starvation of either flow, this
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scheme may lead to underutilization of request buffers

when the memory request rate from the LLC is highly

skewed between the two groups.

• Proportional (mVC-PROP): A second strategy is to

allocate buffers to each group in proportion to its share

of LLC ways. For example, if group-A and group-B are

allocated 15 and 5 LLC ways, they receive 9 and 3 entries

in the request buffer, respectively (see Figure 7(c)). The

rationale of this strategy is to partition storage resources

along the shared memory access path by the same ratio.

It can alleviate MiW by preventing the group with fewer

resources (say, group-B) from flooding the entire request

buffer and slowing down the other group.

• Inverse Proportional (mVC-INVPROP): The next strat-

egy is to allocate buffers to each group inversely propor-
tionally to its share of LLC ways. In contrast to mVC-

PROP, group-A and group-B receive 3 and 9 entries in

the request buffer when 15 and 5 LLC ways are allocated

to them, respectively (Figure 7(d)). Because groups that

receive fewer LLC ways are likely to incur more LLC

misses, this strategy tends to allocate more buffers to

groups incurring LLC misses more frequently.

• Dynamic (mVC-DAMQ): We also consider a dynamic
buffer allocation strategy based on DAMQ (dynamically

allocated multi-queue) [9]. DAMQ partitions the request

buffers dynamically among mVCs based on the request

rate of each mVC. By partitioning the request buffer into

shared and dedicated regions, a deadlock which would

occur when a memory-intensive workload claims all of

the buffer entries can be avoided. The shared region is

dynamically allocated based on demands; the dedicated

region is equally partitioned and dedicated to each mVC.

A mVC first uses its dedicated region to store memory

requests. Once its dedicated region is full, it claims an

entry from the shared region for the next memory request

(Figure 7(e)).

VI. EXPERIMENTAL SETUP

We simulated a CMP system to evaluate the effectiveness

of mVCs, whose parameters are summarized in Table III.

McSimA+ [2] simulator was modified for the simulation.

The baseline memory controller has a 20-entry request buffer

and adopts FR-FCFS [40] as a memory request scheduling

policy and adaptive open policy (which is also adopted at

Intel Xeon processors) as a DRAM page management policy.

SPEC CPU2006 [45] and SPEC CPU2017 [46] benchmark

suites were used for evaluation. Simpoint [43] was used to

extract the most representative simulation points of each

application, each including 100 million instructions. We

sorted and selected cache-sensitive applications in SPEC

CPU2006 and SPEC CPU2017 benchmarks, and used them

for evaluations.

We compare four buffer allocation strategies for mVC:

mVC-STATIC, mVC-PROP, mVC-INVPROP, and mVC-

Table III: Parameters used in the simulated system.

Resource Value

Number of cores, MCs 16 cores, 1 MC
Coherence policy MOESI
Cache line size 64B
Per core:

Frequency, issue/commit width 3.6GHz, 4/4 slots
Issue policy Out-of-Order
L1 I/D $ type/size/associativity Private/32KB/8
L2 $ type/size/associativity Private/256KB/8

L3 $ type/size/associativity Shared/40MB/20
Per DDR4-2400 memory controller (MC):

# of channels, Request Q size 1, 20 entries
# of ranks, bandwidth per channel 2, 19.2GB/s
Scheduling policy FR-FCFS [40]
DRAM page policy Adaptive Open [16]
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Figure 8: Simulation results on SPEC CPU2006 and Tail-

Bench showing trends similar to hardware experiments.

DAMQ. For static buffer allocation (mVC-STATIC), 10

entries are allocated to each mVC with two mVCs, which

is equal to a total memory request buffer size of 20. For

proportional buffer allocation (mVC-PROP), the number of

buffer entries allocated to each mVC is based on the number

of LLC ways allocated to each mVC. On the contrary, for

inverse proportional buffer allocation (mVC-INVPROP), the

number of buffer entries allocated to each mVC is (20

- the number of LLC ways allocated to each mVC). We

also evaluated mVC with dynamic buffer allocation (mVC-

DAMQ) based on 80% shared region size in the request

buffer.
VII. EVALUATION

Before evaluating the proposed mVCs, we reproduced the

hardware results through simulation (Figure 8). Xapian in

Figure 8(b) is an application in TailBench, and the group-

A consists of its single-threaded instance. The normalized
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Figure 9: Simulation results of mVC with different mem-

ory request buffer allocation policies: mVC-STATIC, mVC-

PROP, mVC-INVPROP, and mVC-DAMQ. The normalized

IPC is normalized based on those when each benchmark

runs alone with 20 LLC ways allocated.

IPC and 95th percentile latency are normalized based on

those when each benchmark runs alone with 20 LLC ways

allocated. Similar trends as the hardware results are observed

(Figure 1(a,b) and Table II(b)) and clearly show MiW. The

other case also matches with Table II(a).

Mitigating MiW through mVC. We evaluate the effective-

ness of virtualizing the datapath of memory channels by

executing multi-programmed workloads on the simulator.

Figure 9 shows the IPCs of three workload pairs that

demonstrate MiW in Section III-A (Table II), normalized to

the IPCs with standalone execution. We compare four buffer

allocation strategies for mVC in Section V-B: static (mVC-

STATIC), proportional (mVC-PROP), inverse proportional

(mVC-INVPROP), and dynamic (mVC-DAMQ). Because

there are 16 cores, we executed each benchmark with a rate

of 8.

We made the following key observations. First, mVC

effectively addresses the blocking problem except for mVC-

INVPROP and mVC-DAMQ. As group-A gets allocated

with more LLC ways in the baseline without mVC, the

requests from group-B flood the request buffer to cause

starvation of group-A. With mVCs, however, group-A has

a guaranteed share of the request buffer entries and a fair

chance for DRAM accesses via round-robin scheduling,

alleviating the problem of blocking and eliminating MiW.

For example, Figure 9(a) shows the results using a 473.astar-

403.gcc pair. With mVC-PROP and mVC-STATIC, 473.as-

tar achieves 95.2% and 86.4% of the IPC of standalone

execution, respectively, while the baseline achieves only

75.0% without mVC due to MiW. MiW is also eliminated in

Figure 9(b) and (c). By recovering lost IPC from MiW, this

opens up additional opportunities for consolidating work-

loads requiring an IPC service-level objective (SLO) [30]

with other best-effort workloads.

Second, mVC-PROP more effectively eliminates MiW

than mVC-STATIC at the cost of penalizing the group with

fewer resources, while mVC-DAMQ and mVC-INVPROP

fail to eliminate MiW. In mVC-PROP, as group-A receives

more LLC ways, more request buffer entries are allocated to

it, yielding higher memory throughput due to a larger mem-

ory scheduling window. mVC-STATIC allocates memory

requests fairly, which may increase system-wide throughput

in some cases. Assuming an 80:20 division of the shared

and dedicated regions, mVC-DAMQ performs slightly better

than the baseline, but cannot eliminate MiW because group-

B experiences a high LLC MPKI to flood the shared region

of the request buffer, leading to starvation of group-A. If

the dedicated region is expanded to alleviate this problem,

mVC-DAMQ eventually behaves like static buffer allocation

(mVC-STATIC) to lose the benefits of dynamic allocation.

mVC-INVPROP allocates buffer entries in an opposite way

of mVC-PROP. Therefore, in contrast to mVC-PROP, which

eliminates MiW, mVC-INVPROP can deteriorate MiW by

allocating fewer buffer entries to the group. This trend is

clearly observed in our simulated cases.

Potentials for operating cost savings with mVC. mVC

provides another knob to control resource allocation between

two (or more) groups of applications. Figure 10 shows

the results of a two-dimensional parameter sweeping for

a 403.gcc-403.gcc pair, which demonstrates the greatest

degree of MiW among the three SPEC CPU benchmark pairs

we evaluate. X- and Y-axis represent the number of LLC

ways allocated to group-A and the number of request buffer

entries allocated to group-A, respectively. Figure 10(a) and

(b) show the IPC normalized to standalone execution for

group-A and group-B, respectively. As we run two copies of

the same application, Figure 10(a) and (b) actually have the

same shape but are oriented to the opposite direction (i.e., (x,

106



1
4

710
13

16
19

0.0
0.2
0.4
0.6
0.8
1.0

1 4 7 10 13 16 19

N
or

m
al

iz
ed

 IP
C

0.0 -0.2 0.2 -0.4 0.4 -0.6 0.6 -0.8 0.8 -1.00.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-0.9 0.9-1.0

(a) Simulation result of 403.gcc (group-A)

1
4

710
13

16
19

0.0
0.2
0.4
0.6
0.8
1.0

1 4 7 10 13 16 19

N
or

m
al

iz
ed

 IP
C

(b) Simulation result of 403.gcc (group-B)

Figure 10: Simulation result of 403.gcc-403.gcc, showing the

design space of LLC ways and memory request buffer size

allocated to 403.gcc (group-A). The colored region in the top

figure displays the design space where satisfying normalized

IPC higher than 0.9, and the bottom figure shows only the

remaining region of 403.gcc (group-B).

y)=(1, 1) in (a) has the same IPC with (19, 19) in (b)). Note

that the configurations that yield >90% of the standalone

IPC for group-A are colored in red in Figure 10(a) and that

we only show the IPCs of the corresponding configurations
for group-B in Figure 10(b).

With a simplifying assumption of (1) cache ways being

the only knob we control for resource allocation and (2) a

service level objective (SLO) of 90% of the standalone IPC

for group-A (group-B has no SLO), we estimate the potential

for saving machine count from workload consolidation. We

further assume it takes 1,000 dedicated machines for each

of the two application groups in standalone mode to satisfy

the application throughput requirement. From Figure 10,

we can select an appropriate configuration of the number

of LLC ways and that of buffer entries to meet the SLO

target for group-A and also to maximize the throughput of

group-B. For example, if we choose the point of 49.1%

IPC for group-B, which is the best IPC achievable while

providing a 90% IPC for group-A, we can run group-A and

B concurrently on 1,111 machines for group-A and B, and

dedicate 454 extra machines to group-B to maintain the same

throughput as 2,000 dedicated machines. This consolidation

is only possible with mVC because, without it, group-

A cannot satisfy the IPC SLO in a consolidated machine

due to MiW. Thus, mVC can save 21.8% of machines

compared to the baseline with LLC partitioning only, which

would still require 2,000 dedicated machines to satisfy the

throughput and IPC SLO. Applying the same methodology,

we can save the operating cost by 7.9% and 13.3% for the

other two pairs of SPEC benchmarks (473.astar-403.gcc and

523.xalancbmk-523.xalancbmk) without violating SLO.

VIII. RELATED WORK

Component-wise QoS/fairness for shared resources. A

myriad of techniques has been proposed to support quality-

of-service (QoS) and fairness for shared on-chip resources,

such as caches [15], [18], [31], [39], [49], [50], [51],

on-chip interconnects (NoCs) [14], [25], [37] and DRAM

bandwidth [22], [35], [36], [48], [52]. For caches, Suh et

al. [49] introduce a dynamic monitoring scheme for the

shared cache accessed by multiple concurrent threads and

apply it to cache partitioning to minimize the total miss

count. Qureshi and Patt [39] improve this by using utility-

based cache partitioning (UCP). CQoS [18] identifies the

QoS problem in the shared LLC among concurrent threads to

propose cache partitioning based on priority classifications.

Locally-fair arbitration in NoC can result in global un-

fairness, creating parking lot problem where remote traffic

is penalized by going through more arbitrations. Recent

proposals addressing this problem include Globally Syn-

chronized Frames (GSF) [25], Preemptive Virtual Clock

(PVC) [14], probabilistic arbitration [26], and LOFT [37],

providing fair bandwidth allocation. Song et al. [44] observe

an opposite problem in processor-interconnects of NUMA

servers, where a remote flow may receive more bandwidth

than highly-contended local flows. However, these prior

work do not address unfairness from cache partitioning.

Finally, DRAM banks and channels are other major

sources of inter-thread interference. Multiple access streams

from different threads may be interleaved to reduce the

row buffer locality of DRAM accesses, hence degrading

QoS and overall throughput. A variety of DRAM access

schedulers have been proposed to recover locality and

provide QoS [22], [35], [36]. For example, ATLAS [22]

prevents memory-intensive processes from monopolizing the

memory bandwidth by prioritizing requests from the least-

attained memory service thread (the expected shortest job).

Though effective for QoS, ATLAS is originally designed

to maximize total throughput. MISE [48] estimates the

slowdown of an application caused by memory interference

through occasionally prioritizing the application over other

co-running workloads; it then applies the model to devise

scheduling schemes with better QoS.

However, these component-wise QoS techniques fail to

provide robust performance without considering a complex

interplay between different resources (e.g., LLC ways vs.
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DRAM bandwidth) as demonstrated in this paper and other

literature [12], [30].

Holistic approaches to QoS/fairness. Unlike the

component-wise QoS techniques, some QoS frameworks

propose to manage multiple shared resources holistically.

Fairness via Source Throttling (FST) [12] and GSF memory

system (GSFM) [24] aim to achieve better QoS along the

shared memory access path by memory injection control at

each source. ASM [47] extends MISE [48] by quantifying

the effect of interference from co-running applications at

a shared cache by using an auxiliary tag store. Then it

models application slowdowns due to interference at both

the shared cache and main memory and applies the model

to improve performance and fairness of the applications.

Iyer et al. [19] and Heracles [30] provide performance

isolation by jointly partitioning both cache space and

memory bandwidth. While providing better end-to-end

QoS than component-wise QoS approaches, their solutions

are incomplete as they do not prevent blocking caused by

shared DRAM request buffers. We show the existence of

this problem and propose mVC to resolve it.

IX. CONCLUSION

In this work, we have demonstrated on real server ma-

chines how applications with more allocated LLC capacity

can perform worse. Cache partitioning is promising for

performance protection of a process by dedicating a portion

of LLC, alleviating contention and interference from other

processes. Because LLC is a shared resource with limited

capacity, when we allocate more LLC capacity to one

application, others receive relatively small LLC capacity.

This results in a higher LLC MPKI and stresses the con-

gested datapath within memory controllers, which is another

shared resource below the shared LLC, causing blocking,

slowing down the entire system (a balloon effect). In par-

ticular, we identified this MiW phenomenon on latency-

critical workloads could deteriorate 95th percentile latency

as worse as 547%. To overcome this MiW, we proposed

to virtualize the shared datapath of memory controllers by

mVCs. mVCs mostly eliminate the MiW phenomenon and

improve the performance as the allocated LLC capacity

increases, restoring the performance protection intended by

cache partitioning. We can reduce the overall system cost

using mVCs with a proper memory request queue size and

LLC capacity while satisfying the target performance of

latency-critical workloads even when executed with multiple

workloads together. Results show that on SPEC CPU2006

workloads, up to 21.8% system cost can be saved while

obtaining 90% of the performance compared to stand-alone

execution on a dedicated machine.
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