
Multiversioned Page Overlays: Enabling Faster
Serializable Hardware Transactional Memory

Ziqi Wang
Carnegie Mellon University

ziqiw@cs.cmu.edu

Michael A. Kozuch
Intel Labs

michael.a.kozuch@intel.com

Todd C. Mowry
Carnegie Mellon University

tcm@cs.cmu.edu

Vivek Seshadri
Microsoft Research India

visesha@microsoft.com

Abstract—Practical and efficient support for multiversioning
memory systems would offer a number of potential advan-
tages, including improving the performance and functionality of
hardware transactional memory (HTM). This paper presents a
new approach to multiversioning support (Multiversioned Page
Overlays) along with a new HTM design that it enables: Over-
layTM. Compared with existing HTM designs, OverlayTM takes
advantage of multiversioning to reduce unnecessary transaction
aborts while providing full serializable semantics (in contrast with
multiversioning HTMs that improve performance at the expense
of being vulnerable to write skew anomalies). Our performance
results demonstrate that OverlayTM is especially advantageous
in read-heavy workloads.

I. INTRODUCTION

Hardware Transactional Memory (HTM) [1] has gained

considerable traction in recent years due to its usefulness in

avoiding synchronization bugs while writing parallel software.

While today’s commercial HTM implementations [2]–[6] are

helpful for programmers, they typically experience more

transaction aborts than are strictly necessary due to limitations

such as the sizes of the caches (or other hardware buffers), the

conservative nature of eager conflict detection, etc. To help

address these limitations, there has been research on techniques

for supporting unbounded transactions [7]–[10] as well as lazy
conflict detection [11]–[14].

Challenge: Achieving both High Performance and
Strong Semantics with HTM. Across the spectrum of HTM

designs, there is a fundamental tension between providing the

highest performance and providing the strongest correctness
guarantees (aka “semantics”) to programmers. This is roughly

analogous to the performance-versus-correctness tradeoffs with

memory consistency models [15]: programmers would prefer

the strong semantics of sequential consistency (to help avoid

correctness bugs), but weaker consistency models can offer

higher performance. As illustrated in Fig. 1, the strongest

semantic model for HTM is full serializability of transactions.

At the other end of the spectrum is unsynchronized transactions,

which offer high performance but no isolation guarantees.

Snapshot isolation is an interesting semantic model in the

middle of this spectrum. By maintaining a consistent snapshot

of memory that a transaction can read from throughout its

execution, snapshot isolation eliminates the need to check

for read-write conflicts across transactions. Hence HTM

designs based upon snapshot isolation (e.g., SI-TM [14])

have been shown to outperform previous HTM designs with

Parallelism

Seman cs

Unsynchronized

Snapshot
Isola on

(e.g. SI-TM)

Two Phase
Locking

(2PL)

Forward
Op mis c
(e.g. TCC)

Backward
Op mis c

IdealMul versioned
Op mis c

(OverlayTM)

Low High

Serializable

Snapshot
Isola on

Non-Isolated

Fig. 1: Trade-off Between Parallelism and Semantics for HTM

serializable semantics due to reduced abort rates (especially

in workloads with frequent read-only transactions). While the

weaker semantic model of snapshot isolation offers performance

advantages, it does so at the cost of enabling concurrency bugs

due to write skew anomalies [14]. For example, we observe

that one of the STAMP benchmarks [16] (genome) does not

run correctly under snapshot isolation (when compiled with

standard libraries) due to a write skew anomaly.

Similar to how researchers have explored techniques for

closing the performance gap between sequential consistency

and relaxed memory consistency models [18], our goal in

this paper is to offer the strong transactional semantics of

full serializability while closing as much of the performance

gap with snapshot isolation (e.g., SI-TM) as possible. Similar

to snapshot isolation, our design also maintains snapshots of

memory, but we use them to accelerate performance while still

providing the strong semantics of full serializability. For both

snapshot isolation and our design, however, a key technical

challenge is efficiently maintaining these snapshots through

some form of multiversioned memory system.

Multiversioned Page Overlays (MPO): Efficient Support
for Multiversioned Memory. Our multiversioning design

builds upon page overlays [19]. The page overlays framework

maps each virtual page to a default physical page (similar to

today’s virtual memory systems), but it additionally enables

the optional mapping of cache-line-sized portions of the virtual

address space to alternate physical addresses (called “overlays”).

During a memory access, if an overlay exists for the particular

394

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00038

TABLE I: Qualitative comparison of OverlayTM with prior work.

Conflict Serializable Read-Only Hardware Unbounded No No Commit-Time
Design Detection Semantics Optimization Multiversioning Transactions Broadcasting Cache Flush

2PL [1] Two Phase Locking � � � � � �
TCC [17] Forward OCC � � � Partly � �

SI-TM [14] Snapshot Isolation � � � � � �

OverlayTM Backward OCC � � � � � �

virtual address, it will access that overlay; otherwise, the

default physical page will be accessed. In the original page

overlays design, only a single overlay can exist for a given

virtual address. As described in detail later in Section III, we

extend this design to support multiple overlays per virtual

address where the desired overlay is specified through an

Overlay ID (OID). To handle version requests from multiple

processors, we also propose adding a version directory that

tracks which version is cached by which processor. The

version directory is comparable to a coherence directory,

and can be implemented with similar hardware costs. The

original page overlays paper [19] discussed six interesting use

cases for overlays beyond HTM: i.e. overlay-on-write, sparse

data structures, fine-grained deduplication, checkpointing, fine-

grained metadata management and flexible super-pages. Each

of these techniques can potentially benefit from MPO (e.g.,

when N processes are sharing the same data structures, etc.).

While it would be relatively straightforward to use MPO’s

multiversioning support to implement an HTM with snapshot

isolation, our goal was to deliver comparable performance but

with much stronger (fully serializable) semantics. We call our

new HTM design OverlayTM.

OverlayTM: A Fast Serializable HTM that Combines
Multiversioning with Optimistic Concurrency Control. A

key performance benefit of an HTM based upon snapshot

isolation (e.g, SI-TM) compared with previous serializable

HTM designs is that read-only transactions can always

successfully commit under snapshot isolation. This is because

the snapshot guarantees the consistency of any data that is

read throughout the read-only transaction. As illustrated in the

qualitative comparison in Table I, our OverlayTM design also

leverages multiversioning to enable read-only transactions to

commit successfully. However, a key difference is that our

conflict detection in OverlayTM is not based upon snapshot

isolation (SI), but rather upon backward optimistic concurrency
control (backward OCC). As we describe in detail later in

Section IV, this key difference means that OverlayTM detects

conflicts that would cause serializability to fail.

Compared with most of today’s commercial HTM imple-

mentations that have pessimistic two-phase locking (2PL)

conflict detection, OverlayTM offers better performance by

enabling conflicting transactions to co-exist through OCC. By

combining backward OCC with MPO’s multiversioning support,

OverlayTM not only ensures that transactions are isolated

from each other, it also improves performance by allowing

read-only transactions to successfully commit. Hence within

the spectrum of HTM designs, OverlayTM appears near the

 Both commit One must abort ? Non-serializable

Ti
m

e

Txn X Txn Y

Read A

Commit X

Write A
Read B

Commit Y

2PL | Op mis c | SI

Uncommi ed
WAR

(a) Uncommited WAR

Ti
m

e

Txn X Txn Y

Read A

Commit X

Write A
Read B

Commit Y

2PL | Op mis c | SI

Commi ed
WAR

(b) Committed WAR

Ti
m

e

Txn X Txn Y

Read A = 2

Read B = 5
while(B++ != A);

Write A = 9
Write B = 5
Commit Y

2PL | Op mis c ? | SI ?

Ini ally, A = 2, B = 0

Commi ed
WAR

(c) Inconsistent Read

Ti
m

e

Txn X Txn Y

Read A

Write B
Commit X

Write A
Read B

Commit Y

2PL | Op mis c | SI ?

Write
Skew

(d) Write Skew

Fig. 2: False Aborts and Anomalies in Conflict Detection – As
semantics are relaxed, more read-write interleavings become possible.
In the meantime anomalies may also occur.

upper-right corner in Fig. 1, achieving strong semantics (full

serializability) and relatively high parallelism.

This paper makes the following contributions:

• We propose Multiversioned Page Overlays (MPO), a

novel technique based upon Page Overlays [19] for

creating memory snapshots and supporting multiversioning

on the entire address space with relatively low cost.

• We propose OverlayTM, a multiversion-based HTM

design that supports unbounded transactions and fast read-

only transactions. OverlayTM requires relatively modest

hardware changes.

• We evaluate the performance of OverlayTM. Our results

show that OverlayTM often offers signficant reductions

in abort rates compared with previous HTM proposals,

and it achieves performance that is either better than or

comparable to the state of the art. Compared with SI-TM,

OverlayTM achieves similar performance while offering

serializability (as opposed to snapshot isolation, which

risks write skew anomalies).

II. BACKGROUND: CONFLICT DETECTION IN HTM

Conflict detection in HTM has a close relationship with

concurrency control algorithms in transaction processing.

395

Herlihy et al. [1], one of the earliest HTM proposals, uses a

variant of Two-Phase Locking (2PL) in which the lock holder

gives up the lock and aborts when the lock is requested. Read

and write locks on individual cache lines map to read-shared

and read-exclusive requests in invalidation-based coherence

protocols such as MESI. Fig. 2a gives an example of read-

write conflict in 2PL. X must abort because it will receive

a read-exclusive request when Y writes A. LogTM [7], [20]

implements 2PL in the coherence directory as “sticky bits”.

Instead of forcing transactions to abort on conflict, LogTM

allows processors to be stalled until the lock holder completes.

VTM [8] extends coherence-based 2PL by adding an auxiliary

data structure called XADT. Speculative status of in-cache

blocks are represented by their coherence states as in the

baseline 2PL protocol, while those evicted from the cache

are entered into the XADT. The XADT is searched against

incoming coherence requests to ensure that conflicts with

evicted lines are still detected.

Detecting conflicts eagerly (as in 2PL) may introduce

unnecessary aborts or stalls, since conflicts are only harmful

when they form cycles. TCC [11], [17] and Bulk [12], [21]

overcome this problem by detecting conflicts lazily before

transaction commit. This is similar to Optimistic Concurrency

Control (OCC) commonly seen in database engines [22]–[24].

OCC divides transaction execution into three phases: read,

validation and write. In the read phase, the transaction body

is executed. Speculative data is buffered and invisible to other

transactions. Every transaction should maintain a local read-

and write-set (RW set) for transactionally accessed data. In the

validation phase, each transaction attempts to commit by testing

its RW sets against the RW sets of concurrent transactions–

those recently committed and possibly also those still executing.

In the write phase, speculative data is made globally visible.

Based on the validation algorithm, OCC can be further divided

into two categories: backward and forward. Backward OCC

tests the read set of the committing transaction with write sets

of concurrent transactions that committed before the validation

begins. Forward OCC, on the other hand, lets the validating

transaction broadcast its write set to running transactions

whose read sets are then tested with the broadcasted write

set. Validation succeeds in both cases if all intersections are

empty sets.

OCC provides better parallelism than 2PL, as illustrated

by Fig. 2a in which a write does not commit until after an earlier

transactional read commits, forming an uncomitted Write After

Read (WAR) dependency. In fact, with OCC, uncommitted

writes never incur conflicts as they are “invisible” to other

transactions. Committed WAW conflicts are also harmless

because OCC serializes writes to the same address with global

coordination1 (e.g. commit token in TCC, bus arbitrator in

Bulk). However, committed WAR conflicts (where a transaction

including a write to A commits before a transaction including

an earlier read of A) will cause the reading transaction to abort

during validation, as shown in Fig. 2b.

1In practice, synchronization occurs at the granularity of cache lines.

DRAM

Core

Cache

TLB

OMC OMT

Way

Set

OBitVector

Overlay Bit + OID

Generic Interconnec on Network

Fig. 3: Page Overlays – This diagram shows how memory system
handles overlay. 1© TLB lookup using VA; 2© TLB outputs either
translated PA or VA based on OBitVector; 3© Cache lookup using
TLB output; 4© On cache miss (or eviction), include (OID, VA) in
the fetch (eviction) request; 5© If address is PA (or not an overlay
cache line), send request to the main memory; 6© If address is VA
(or is an overlay cache line), send request to OMC; 7© OMC queries
OMT using (OID, VA), obtains PA, and fetches from memory.

Despite increased parallelism, naive forward and backward

OCC have implementation issues that hinder their adoption.

Forward OCC, as is the case with TCC and Bulk, requires a

broadcasting medium to perform validation, which is expensive

on modern multicore architecture. Backward OCC, on the other

hand, may expose inconsistent states that will never be seen

during serialized execution, causing undefined behavior [25].

As shown in Fig. 2c, txn X reads an old value of A but a new

value of B, and then begins the loop. Although the validation

algorithm can correctly identify this as a WAR conflict and

prevents txn X from committing at the end, there is no guarantee

that txn X may have a chance to validate, due to the infinite loop

(assuming integers are sufficiently long) caused by reading the

“partial writes” of txn Y. By contrast, in a serialized execution,

no matter which of the two transactions execute first, the value

of B is always smaller than the value of A, meaning that both

can terminate within a finite number of cycles.

To further relax the semantics and reduce aborts, SI-TM [14]

proposes Snapshot Isolation (SI) as the conflict detection

algorithm. SI provides even higher parallelism than OCC, since

it only checks for WAW conflicts and allows committed WAR

conflicts, as shown in Fig. 2b. However, SI does not provide

serializability, and this approach can introduce hard-to-reason-

about anomalies, such as write skew (see Fig. 2d). No serial

schedule can produce the final state in this example, since there

is a dependency cycle between txn X and txn Y.

Several conflict detection algorithms have also been designed

to track dependency information as conflicts are detected and

to abort transactions only when absolutely necessary, i.e. when

a conflict cycle is about to occur. These designs typically

involve changing existing coherence protocols as in DATM [26]

and HMTX [27], adding non-trivial tracking infrastructure as

in OmniOrder [28], WnGTM [29], and EazyHTM [30], or

timestamping the entire address space as in SONTM [31].

Such proposals are complicated, hard to verify, and often only

provide limited speedup due to hardware resource constraints,

lack of global information, and unrealistic assumptions.

396

III. MULTIVERSIONED PAGE OVERLAYS

In this section, we discuss our Multiversioned Page Overlays

(MPO) framework. We first provide a review of the basic Page

Overlays [19] framework. We then discuss how we extend it

to support multiversioning.

A. Overview of Page Overlays

As illustrated in Fig. 3, the Page Overlays paper [19]

describes a fine-grained, general-purpose virtual memory tech-

nique intended for optimizing common memory management

tasks such as copy-on-write [32], sparse data structures,

deduplication, etc.

1) Overlay Address Mapping: In the Page Overlays design,

every virtual memory page may be associated with two

different backing stores: the usual physical memory frame

and an alternative “overlay” frame, which may be sparsely

populated and stored compactly in a reserved portion of main

memory. Additionally, an Overlay Bit Vector (OBitVector),
indicating which cache lines should be fetched from the usual

physical frame and which should be fetched from the overlay,

is associated with each overlay frame and cached in the

Translation Lookaside Buffer (TLB). The MMU checks the

OBitVector in parallel with normal address lookup when an

address translation is requested. If the corresponding bit is set,

indicating an access to the overlay, normal address translation

is aborted, and the MMU directly outputs the virtual address

as the “overlay address”. Otherwise, the MMU produces the

usual physical address.

2) Overlay Cache Lookup: Using untranslated virtual ad-

dresses to access an unmodified cache has undefined result, as

most modern L1 caches are Virtually Indexed and Physically

Tagged (VIPT). To avoid false hits when virtual addresses are

used, cache tags are extended with Version Tags consisting

of two fields: A one bit Overlay flag to indicate whether the

address tag is a virtual address, and a 15-bit Overlay ID (OID)
which originally meant to be a process ID. On receiving a

lookup request, the cache uses the address provided by MMU

to perform a tag check. Given a tag match, a hit is signaled

only in one of the following two cases: (i) Address is virtual,

the Overlay bit is set, and OID from the instruction matches

tag OID; (ii) Address is physical, and Overlay bit is clear.

3) Overlay Memory Controller: When a line is evicted from

the LLC, the cache controller checks the Overlay bit in the

cache tag. If the bit is clear, then a normal write back to the

main memory is scheduled. Otherwise, the controller sends it

to a special device, the Overlay Memory Controller (OMC).
Cache misses are handled similarly; the processor sends the

cache line fill request to either main memory or the OMC

based on whether the MMU outputs a normal physical line

fetch or overlay line fetch.

The OMC is a memory-backed device connected to the

inter-processor communication network. It maintains a separate

virtual-to-physical mapping table, the Overlay Memory Table
(OMT). Compared with a page table, the OMT has two unique

features. First, OMT mappings have cache line guanularity,

thus enabling more compact memory management than paging.

Second, the OMT maps the overlay address (the virtual address

augmented with a corresponding OID) into a physical address,

i.e. (OID, VA) → PA.

On receiving a request from the cache, the OMC queries

the OMT using the virtual address and OID in the request.

The cache line is then written back to (fetched from) the main

memory using the physical address. The OS is responsible for

allocating a chunk of memory for the OMC to use. Memory

management within the chunk, however, is performed solely

on hardware by the OMC for efficiency reasons. The OMC

also maintains the OBitVectors. On a page fault, the MMU

needs to access the OMC to fetch the relevant OBitVector.

Because the overlay system provides a seperate mapping

for each OID-address tuple, we can repurpose this design to

support versions of memory at a cache line granularity. We

describe this multiversion scheme in the section that follows.

B. Extensions to Support Multiversioning

1) Version Instructions: Versions are timestamped, im-

mutable overlays, logically ordered by the OIDs. To enable

version access, we extend the ISA by adding four version

instructions. We first describe the semantics of the four

version instructions, and then present a practical implementation

in Section III-B2. Version instructions take an implicit operand,

the operation timestamp (ots). This operand is supplied by a

special register, current ots, which is part of the model-specific

register file. This register can be loaded either manually, or by

transaction begin instructions as we will see later in Section IV.

The semantics of version instructions are as follows:

vload addr (Versioned Load): Load the most recent version

(numerically greatest timestamp) with timestamp ≤ ots. If such

version does not exist, load from the main memory.

vstore addr, val (Versioned Store): For first write, make

a copy of a previous version by issuing vload with the vstore’s

ots. Later writes are performed on the new (copied) cache line.

Note that dirty versions remain speculative, and are invisible

to other processors until version commit.

vcommit ts (Version Commit): Atomically commit all

speculative versions in the cache, thus making them accessible

to other processors. The OID of these versions are changed to

ts, the instruction’s explicit operand. Note that version commit

does not force versions to be written back to the OMC.

vabort (Version Abort): Atomically discard all speculative

versions whose OID = ots.

For the sake of generality, MPO also provides overlay
load (oload) and overlay store (ostore) to access a specified

version. An exception is raised if the version does not exist.

Implementation of oload and ostore in MPO is trivial. In the

following sections, we focus on versioned operations.

One major difficulty of implementing these instructions is

that committed versions can be scattered in multiple caches. For

example, assume that processor #0, #1, #2 committed version

100, 104 and 102 respectively on the same address. Later on,

version 100 was written back to the OMC due to an eviction.

Now consider what if processor #3 issues versioned load with

ots = 103. If processor #3 sends a versioned load request to

397

the OMC, it can only read version 100, because the OMC

is not aware of larger versions in the caches of processor #1

and #2. On the other hand, the correct result can be obtained,

if processor #3 broadcasts the versioned load request to all

other processors and the OMC. After receiving all responses,

processor #3 performs a local sort, and can finally read the

correct version, 102.

Sending broadcasts solves the correctness issue, but is

expensive on large systems. To solve this problem, we leverage

the observation that the challenge of selecting the right

version to read is essentially a coherence problem. Instead of

maintaining consistent content between different caches and the

main memory as in classical cache coherence problems, which

is unnecesary for OMC as versions are immutable, coherence

needs to be maintained between caches and the OMC on the

number of versions and their OIDs.

2) Version Directory: We propose a version coherence
mechanism that tracks in-cache versions at a lower cost than

broadcasting. We add a directory to the OMC, called a Version
Directory. The version directory operates similarly to a cache

coherence directory: one bit is reserved for each processor

on every cache line sized memory block; If a bit is set, then

the corresponding processor owns a version on the virtual
address. Version instructions can be implemented efficiently

with a version directory as follows:

vload addr: Perform overlay read. If cache misses, the

processor sends a versioned load request to the OMC. On

receiving the request, OMC reads the directory, and sends

a version query request to processors that have a “1” bit.

Processors check their own caches on receiving the version

query from OMC. If one or more committed versions has

OIDs ≤ ots, the OIDs are sent back to the OMC in a single

packet. Otherwise the processor replies NACK. After receiving

all responses, the OMC sorts all versions (including versions

in OMC itself) by their OID. The version is then fetched by

OMC using a version fetch message, and forwarded back to

the requestor. The OID in requestor’s cache tag is set to ots,

to ensure later accesses will hit.

vstore addr, val: Perform overlay write. If cache misses,

issue vload with vstore’s ots first, and then write to the local

copy. The OID in cache tag is set to ots. A Speculative bit in

cache tag is also set. Cache lines with Speculative bit set do

not respond to version coherence messages. The directory bit

is set for the requestor by the OMC on seeing the versioned
load request.

vcommit ts: For cache lines with Speculative bit set and

OID = ots, change the OID to ts, and flash-clear the bit. This

process is local – no message is sent.

vabort: Assemble an abort request which contains the

addresses of all cache lines that have Speculative bit set, and

send the request to OMC. On receiving the abort request, OMC

clears the directory bit for addresses in the request. Note that

if multiple versions on the same address exist in the cache,

the address signature must only be set for the address if all

versions are speculative. Otherwise the directory bits must

Core
#0

Core
#1

Core
#2

Core
#3

Empty Ver. 104 Ver. 102

OMC

Ver. 100

OMTDir

Empty

Fig. 4: Sequence of Messages on Versioned Store by Processor
#3 – In the normal access path using the directory, six messages and
three steps are needed to resolve a vstore miss.

remain unchanged. The processor also flash-invalidates all

cache lines with Speculative bit set.

3) Version Directory Example: To better understand how the

version directory works, we now present an example, illustrated

in Fig. 4. We assume that processor #1 and #2 have committed

version 104 and 102 respectively. Processor #0 has committed

version 100, and then evicts the version to the OMC. All

versions are on address A.

Now processor #3 issues a versioned store operation with ots
= 103 on address A. First, processor #3 needs to search its own

cache for an overlay whose OID = 103. In our case this will

be a cache miss, as processor #3 has never read or committed

version 103. On a cache miss, processor #3 issues a versioned
load request to the OMC, which contains the operation’s ots
(1©). On receiving the versioned load request, the OMC reads

the directory entry for address A, and finds out that the bits

for processor #1 and #2 are set. In the meantime, the OMC

also searches the OMT, and finds out that version 100 is in the

main memory. The OMC then sends a version query request

to processor #1 and #2 (2©). On receiving the version query,

both processors search their private cache for versions whose

OID ≤ the operation’s ots, 103. In our case, processor #2

replies 102, and processor #1 replies NACK (3©) since 104 is

greater than 103. After receiving the reply messages, the OMC

sorts all version OIDs. There are only two versions: Version

100 in the main memory, and version 102 from processor #2.

The OMC then selects the largest version, which is 102. Since

version 102 is from processor #2, the OMC sends a version

fetching request to processor #2 (4©), and the latter replies

with cache line data (5©). Finally, the OMC forwards the cache

line to processor #3 (6©). Processor #3 allocates a cache line

entry for version 102, and changes the OID of the line to 103.

The speculative bit of the line is also set. The next time a

versioned load or store operation with ots = 103 is issued, the

line that the processor just read will be hit. After processing a

versioned store operation, the OMC also sets the directory bit

for the processor that issues the write.

4) Decoupled Metadata and Data Writeback: In the naive

directory-based design, each cache miss triggered by versioned

operation will take six steps on the network to resolve in the

398

(102, A) #1
OMS OMT

(100, A) #1

(100, A) | Data (102, A) | Data

(101, C) | Data

(98, B) | Data

Processor #1’s Cache Processor #2’s Cache

versioned load @ (101, A)version forward

Data xfer

Fig. 5: Fast Access Path with Decoupled Matedata Writeback –
Accessing a frequently accessed address only takes three steps and
four messages

worst case: Two between the requestor and OMC, two for

version query, and another two for version fetch (see Fig. 4).

By contrast, a normal cache miss can be resolved in only three

steps: one for the initial GETS/GETX request, and another two

for invalidation and ACK (on a store miss).
To close the gap, we propose decoupled metadata writeback

for frequently accessed addresses, which leverages point-to-

point query as much as possible to avoid extra rounds of

message exchange. This technique works as follows. When the

OMC receives a versioned load request generated by a vstore
miss from processor P on address VA, it immediately inserts

(ots, VA) → P into the mapping without data (recall that

ots is in the request), and does not set the directory bit. Multiple

entries may be created this way for the same VA but different

ots. The next time OMC receives a versioned load request for

VA, since the direcory bit is clear, no version query message is

sent to any of the processors. Instead, the OMC will perform an

OMT lookup, sorts all entries on the requested address by their

version, and locates the correct version to read using the version

read rule. If the selected version in the mapping is of the form

(VER, VA) → P, OMC will notify processor P to forward

version VER to the requesting processor, by sending P a version
forward message. On receiving this message, processor P will

initiate a cache-to-cache transfer of the specified version to the

requesting processor, taking advantage of the high-bandwidth

inter-processor link.
With decoupled metadata writeback, fulfilling a cache miss

on frequently accessed addresses only takes three steps: One

for the initial versioned load request, one to notify the version

owner with version forward message, and one cache-to-cache

transfer carrying the requested data (in parallel with the reply

message to the requestor). In total, only four messages are sent

over the network, which is also comparable to a normal cache

miss (see Fig. 5).
On eviction of committed versions, both the metadata and

data are written back to the OMC. The cache controller checks

whether the line is the only locally cached version of the

address. If no other version is found, the controller sets a

“clear directory” bit in the eviction message, indicating that

the version directory should clear the bit for the processor. On

receiving the eviction message from processor P, the OMC

will insert an entry (OID, VA) → DATA to the mapping,

in which version data is also stored. We postpone discussion

of uncommitted version eviction to Section IV-E under the

context of OverlayTM.

5) Discussion: In this section we discuss implementation

issues with MPO and version directory. We show that both can

be implemented rather efficiently on modern hardware.

Directory Overhead: Given the locality of computation,

the version directory only needs to quickly access bit vectors

for a small subset of addresses at any given moment. The

directory can therefore be implemented as a sparse hash table

with a cache hierarchy for accelerating accesses to recently

used entries.

Scalability: In larger systems, the version directory can be

partitioned into slices, each responsible for an address range.

A hash function needs to be applied to the address to generate

the target slice address before a version request is sent.

Verification Cost: No MESI state is maintained for versions,

since they are immutable. Moreover, the MPO design only adds

incremental changes; existing cache coherence and eviction

policy are not modified.

OMT Bandwidth: To avoid overloading the OMT by

inserting an entry for every versioned load request generated by

vstore misses, we propose adding a small cache to the OMT,

such that the mapping (ots, VA) → P is only inserted

into the cache. When an entry is evicted from the OMT cache,

the OMC sets the directory bit for processor P on address VA,

and then just discards the entry. Frequently accessed addresses

will remain in the cache and therefore have lower protocol

latency, while the rest use the version directory.

6) Comparison with Existing Multiversioning Designs: We

compare MPO with two previous transactional multiversioning

designs: HICAMP [33] and SI-TM [14]. HICAMP also features

hardware supported immutable versions. Objects in the main

memory are organized into segments, a B+Tree-like structure

that enables fast content-based lookup. HICAMP natively

supports Snapshot Isolation transactions. It involves, however,

radical hardware and software redesign, and changes the

programming paradigm entirely. On the contrary, MPO is just

an extension of existing virtual memory system, and can be

easily disabled by the Operating System. More importantly,

programs do not suffer any performance overhead from not

using MPO.

SI-TM embeds a Multiversion Manager (MVM) in the LLC

controller, which intercepts line misses and evictions from

upper level caches, and rewrites the physical address in the

request with a translated version address. Upper level caches,

as opposed to our design, are unaware of multiversioning, and

only store the address tag. Since versions are not self-contained
as in MPO, on SMT switch and transaction commit, upper

level caches must evict all dirty lines in the private cache.

This operation is on the critical path, because future version

accesses with different timestamps may hit the wrong version,

due to the fact that different versions on the same address

have the same tag. MPO, on the other hand, tags every line in

the private cache with OID, and uses a customized coherence

protocol to enforce the version read rule. Version commit is

therefore instantaneous, as suggested in Table I.

399

IV. OVERLAYTM: MPO + CONFLICT DETECTION

Transactional memory designs must address two challenges:

Version management and conflict detection. Multiversioned

Page Overlays (MPO) provides a solution to HTM version

management using version instructions such as vload and vstore,

as we have seen in Section III. In this section, we fianlize

OverlayTM by introducing its conflict detection hardware: the

commit queue.

A. Commit Queue

The Commit Queue (CommitQ) is a hardware structure in

the OMC that buffers write sets of committed transactions. We

do not discuss the implementation of RW sets in detail. We

assume they are fixed-length bloom filters (our experiments

show that bloom filters of 2KB with a good hash function

achieves almost perfect conflict detection in most cases, which

is consistent with previous work [20], [31]). The cache

controller may compress the RW set before sending them

in order to optimize bandwidth [21]. Set intersections can be

computed efficiently on hardware using bitwise AND, with

the possibility of false positives. Processors maintain per-

transaction read and write sets (RW sets). These local RW

sets are updated accordingly as processors issue vload and

vstore instructions, and cleared when new transaction begins.

Note that partially written lines should be added to both the

read and the write set.

The CommitQ accepts two inputs: an RW set bloom filter

and a validation timestamp. Each entry of the CommitQ also

has an entry timestamp, with a comparator that outputs “1” if

the validation timestamp is less than the entry timestamp. There

is also a RW set comparator on every CommitQ entry which

allows quick intersection tests against the input RW set. The

RW set comparator outputs “1” if two bloom filters have non-

empty intersections. The results of the tests are first AND’ed

with the output of the timestamp comparator respectively, and

then OR’ed together as the final output signal. A logical “1”

indicates validation failure. A block diagram of the CommitQ

is depicted in Fig. 6.

B. Transaction Begin

In order to serialize transactions on a globally agreed order,

the OMC maintains a global timestamp (gts) counter, the width

of which is identical to the OID in cache tags (i.e. 15 bits

in most cases). At transaction begin, the processor acquires

a begin timestamp (bt) by sending a begin request to the

OMC. The OMC fetch-increments gts, and replies with the new

value, which is also an unique identifier of the transaction. The

processor then loads the current ots register (see Section III-B1)

such that vload and vstore use bt as the implicit operand,

essentially accessing a snapshot at logical time bt.
The OMC also maintains a list that tracks the bt of

uncommitted transactions. The newly allocated bt is inserted

into this list when a new transaction begins, removed when it

is committed or aborted. In later sections, we will see that this

list plays an important role in handling overflowed versions

and performing garbage collection.

C. Transaction Commit

At transaction commit, the processor sends a commit request
message to the OMC. This message includes the read set,

write set, and the bt of the transaction. The OMC validates

the transaction by dispatching the read set and the bt to the

CommitQ. If the CommitQ indicates a validation success, the

OMC fetch-increments gts, and then sends a committed message

back to the requestor. The committed message contains the

new value of gts as the transaction’s commit timestamp (ct).
On receiving the committed message, the processor injects a

vcommit into the pipeline. The explicit operand of vcommit is

the ct in the committed message, meaning that all speculative

versions created by the transaction will become visible to

transactions started after logical time ct. In the meantime,

the CommitQ allocates an entry for the newly committed

transaction, and stores both the ct and the write set of the

transaction into the new entry.

If, on ther other hand, the CommitQ indicates a validation

failure, the OMC will send an aborted message to the requestor.

On receiving the message, the processor performs version abort,

which invalidates all speculative versions. Directory bits for

speculative versions are cleared by the OMC in the background.

This does not affect correctness, but only incurs some extra

traffic for a short time.

OverlayTM’s commit protocol only validates one transaction

at a time, serializing concurrent commit requests. Transaction

begin and version requests that are not on committed addresses,

however, are unaffected as long as the network guarantees or-

dered delivery between committed and version query messages.

In Section VII-B we show that the serialization penalty is

minimal for most workloads, and hence does not constitute a

bottleneck in most cases.

D. Garbage Collection

CommitQ entries are garbage collected (GC’ed) if no

uncommitted transaction can be aborted by the entry. The

CommitQ maintains the smallest uncommitted bt as a low-water

mark (recall that the OMC maintains a list of uncommitted

transactions), and removes an entry if its entry timestamp is

smaller than the low-water mark.

Versions are also deleted when they are no longer accessible

by active transactions. A version becomes inaccessible when

there exists a larger version on the same address, and no

uncommitted bt exists in-between. Due to the complexity of

this task, we propose using a software handler for version

cleanup when the OMS runs out of space.

E. Supporting Overflowed Transactions

In OverlayTM, a transaction overflows if one or more

uncommitted versions are evicted from the last-level cache

(LLC). The OMC will insert this speculative version into the

OMT as described in Section III-B4 as if it were a committed

version. To ensure proper isolation, the OMC will check the

list of uncommitted bt when serving a versioned load request,

and exclude this speculative version from the response. Unlike

some other TM designs, there is no time consuming “version

400

TS TS TS TS

BF BF BF BF

TS

BF

< < < <

Head

Tail

Abort?
Input

Fig. 6: Commit Queue – Implements Backward OCC validation algorithm; The committing write set is compared with read sets of transactions
committed after it starts.

walk” on transaction commit, and therefore, transaction commit

is always a fast operation.

Compared with SI-TM [14], VTM [8], etc., OverlayTM’s

overflow handling requires no dedicated logging hardware

for spilling speculative data to a private log. This should be

attributed to the fact that versions in OverlayTM are self-

contained, and that every transaction has its own unique

identifier. Overflowed transactions also do not complicate

the conflict detection protocol, because OverlayTM decouples

conflict detection from version management by using bloom

filters. Compared with TCC [17] and EazyHTM [30], over-

flowed transactions in OverlayTM does not block concurrent

transactions by entering “invincible state”, which scales better.

F. Timestamp Wrap-Around

On platforms with 48 bit physical address [34], Page

Overlays can support at most 15 bits OID [19]. In a saturated

system, we expect OIDs to wrap-around quite often, because

most transactions will use two OIDs, one for begin and another

for commit. In this section we propose a solution for timestamp

wrap-around using phase variable.

To detect global timestamp (gts) wrap-around, OMC main-

tains one additional Phase Variable counter, initialized to

zero at startup time. The phase variable is wide enough (e.g.

64 bits) such that in practice it never overflows. Every time

gts overflows, the OMC increments the phase variable. On

receiving a begin request, the OMC also includes the phase

variable value in the reply message. On receiving the reply,

processors save the phase variable in begin phase model-

specific register, which is part of the context. On every version
request and on commit, the processor piggybacks the value of

begin phase register in the commit request message. The OMC

checks whether the begin phase is identical to the current phase

variable. If not, the OMC instantly replies aborted, because

the transaction was started in a stale phase, and timestamps

have already wrapped around since then.

G. Optimizations

In this section, we present two optimizations that leverage

OverlayTM’s ability to read from a consistent snapshot.

Read-Only Commit: A transaction can always commit

successfully if it does not write to shared states (the detection

of which can be implemented on hardware or compilers).

Serializability is still achievable, with the possibility that the

read-only transaction may not see the most up-to-date data.

Section VII-A1 shows that the performance improvement can

be significant for certain read-dominant workloads.

Early Release: OverlayTM implements early release [35] by

simply not adding certain reads into the read set. MPO’s snap-

shot read semantics guarantee that the read image is consistent,

while not adding them to the read set prevents the transaction

from being aborted by committed WAR conflicts. For some

applications, early release provides better concurrency without

sacrificing correctness. In Section VII-A1, we demonstrate

that this feature can reduce OverlayTM aborts on STAMP

labyrinth by almost 5×.

H. Scaling to Large Systems

The centralized conflict detection protocol introduced in Sec-

tion IV-C may not scale well on future large systems due

to CommitQ contention. In this section we present several

techniques that enable higher parallelism within the protocol

for better scalability.

Parallel Validation: Instead of only serving one commit

request at a time, the CommitQ hardware may implement

k copies of validation logic (i.e. AND gates and integer

comparator in Fig. 6). During validation, k waiting entries

in the receiving buffer are selected and then validated against

CommitQ entries. In addition, the read sets of k validating

transactions are checked with each other’s write sets. The

CommitQ must guarantee that if transaction X is assigned

a smaller ct than Y, the write set of X must have empty

intersection with the read set of Y. Since multiple commit

requests are validated in parallel, the commit latency can be

reduced by at most k times, improving overall throughput.

Eager Abort: As described in Section III-B2, on receiving

version query messages, processors check their own cache for

committed versions whose OID ≤ request ots. We slightly

extend the protocol as follows: If the processor finds a

committed version on the requested address with OID > ots, it

indicates in the reply message that a larger committed version

exists. The OMC will immediately abort the transaction by

sending an aborted message back to the requestor, since a

committed WAR violation has been detected. This alleviates

contention on the OMC if aborts are frequent.

401

Hierarchical Conflict Detection: In large systems where

the address space is partitioned between several nodes (e.g.

NUMA), OverlayTM hardware components can also be par-

titioned, such that every node has an OMC and CommitQ

handling requests only within that node. While intra-node

conflicts are resolved lazily, inter-node conflicts cannot be

detected because they are validated by distinct CommitQ.

We propose resolving these conflicts eagerly using version

coherence. Recall that during a cross-node version access,

the version read request is sent to the OMC on the remote

node, which will then be forwarded to processors on that node.

On receiving such a cross-node version request, processors

owning a conflicting uncommitted version on the requested

address will abort immediately. Note that, in this scheme, one

additional bit per processor is used by the directory to mark

speculative reads, and inter-node version requests generated by

vstores are forwarded to both speculative readers and writers.

The gts counter is maintained cooperatively by multiple OMC

devices using regular coherence (i.e. only one OMC may have

permission to increment gts at a time).

To see why hierarchical conflict detection is correct, let us

assume there is a non-serializable execution where transaction

X commits on transaction Y’s read set. It must be that Y reads

address A before X commits. There are two possibilities: either

X executes vstore A before Y’s vload A or the opposite. In both

cases, the version request protocol can recognize that there is

an uncommitted versioned load or store on another node, and

one of them will abort, a contradiction!

V. HARDWARE COST SUMMARY

Because our design is built on top of page overlays [19],

it includes the same three sources of hardware overhead:

(i) the OMT Cache, (ii) wider TLB entries (to store the

OBitVector), and (iii) wider cache tags (due to the wider

physical address space). (The hardware overhead of this

baseline page overlay design is discussed in detail in [19].)

We have three additional sources of hardware overhead: (i)

our extensions to page overlays to support multiversioning
(discussed in Section III-B), (ii) our hardware commit queue
(discussed in Section IV-A), and (iii) additional registers in

each processor. While the last two are specific to supporting

OverlayTM, hardware for multiversioning support is generally

useful for applications beyond transactional memory.

Our extension adds additional control logic into OMC to

support version coherence. Similar to cache coherence, the

control logic can be implemented as a state machine. Since

versions are immutable, we expect the state machine to be

simpler than the one used for cache coherence. In the commit

queue, the most significant portion of hardware is the array

of bloom filters. As shown by [20], bloom filters of size 2KB

can achieve almost perfect conflict detection. Assume that

the number of entries in the commit queue is equal to the

number of processors. For a 16-core system, the commit queue

will need 32KB (16 * 2KB) storage in total. Each processor

maintains a read set, a write set, and registers to store the bt,

TABLE II: Simulation parameters

CPU cores 16 cores 4-way superscalar @ 3GHz
CPU L1-D/I caches 32KB, 64B lines, 8-way, 4 cycles
CPU L2 cache 256KB, 64B lines, 8-way, 8 cycles
CPU L3 cache 32MB, 64B lines, 16-way, 30 cycles
Memory Controllers 4
DRAM Latency 100 cycles
zSim Phase Length 200 cycles

ct, gts, and RO bit. This adds an extra 4KB plus a few bytes

for each processor.

VI. EXPERIMENTAL FRAMEWORK

A. Simulation Platform

We extended zSim [36] to simulate OverlayTM. We chose

zSim not only for its simulation speed, but also because its

execution-driven approach is important for correctly modeling

execution paths when transactions need to retry. Our simulation

parameters are shown in Table II.

The execution binaries that we simulate are compiled using

the Intel TSX Restricted TM (RTM) interface [34], [37]. We

instrument three RTM instructions:

• XBEGIN: The processor enters speculation mode, after

taking a snapshot of the current context. This instruction

also takes the address of the abort handler. On a transaction

abort, the control flow will transfer to the abort handler,

after the context is restored.

• XEND: Commits the current transaction.

• XABORT: Aborts the current transaction. This instruction

carries a user-defined return code that the abort handler

can access. The abort code is put into EAX, together with

several hardware set status bits.

B. Simulated HTM Designs

We compare OverlayTM against 2PL (requestor-wins) and

SI-TM to illustrate the performance differences between each

of the underlying concurrency control algorithms. Both 2PL

and SI-TM are scalable and use simple hardware extension,

which is similar to OverlayTM. We also simulate an idealized

version of TCC, for which we assume instant commit (no

bus arbitration) and unbounded support (no serialized commit

when transactions overflow). This gives a lower bound of TCC

on realistic hardware. We also make the following assumptions

to ensure fairness of comparison. First, all HTMs detect

conflicts at aligned 8-byte word granularities (to help avoid false

sharing conflicts). Second, we assume that the hardware can

overlap long operations during speculation, e.g. cache tag walk

before commit, because this process is highly implementation-

dependent (in practice this assumption works well, as shown

in [31]).

C. Benchmarks

Our simulation runs STAMP benchmark [16] with recom-

mended parameters. Moreover, to further evaluate the feasibility

of OverlayTM on a broad range of workloads, three data

structures are used:

402

0.00.10.20.30.40.50.60.70.80.9
−0.06−0.04−0.020.000.020.040.060.082PL TCC SI-TM OverlayTM

Linked List
Write Heavy

Linked List
Read Heavy

B+Tree
Read-Update

B+Tree
Insert Only

Array
Update Heavy

Array
Scan Heavy

labyrinth labyrinth
(Early Release)

bayes yada intruder vacation High
Contention

vacation Low
Contention

kmeans genome ssca2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

C
yc

le
s

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
26

0.
21

0.
36

0.
99

0.
90 0.

95

0.
95

0.
21

0.
68

0.
69

0.
70

0.
93 1.

0

0.
92 0.

98

0.
82

0.
18

0.
14

0.
25

0.
97

0.
76

0.
16

0.
16 0.
19

0.
64 0.

71

0.
72

0.
94 1.

0

0.
92 0.
95

0.
79

0.
20

0.
11

0.
26

0.
89

0.
74

0.
94

0.
20 0.
23

0.
59

0.
71

0.
70

0.
93 1.

0

0.
92 0.

96

Fig. 7: Normalized Cycles – All numbers are normalized to 2PL.

Linked List
Write Heavy

Linked List
Read Heavy

B+Tree
Read-Update

B+Tree
Insert Only

Array
Update Heavy

Array
Scan Heavy

labyrinth labyrinth
(Early Release)

bayes yada intruder vacation High
Contention

vacation Low
Contention

kmeans genome ssca2
0

1

2

3

4

5

A
bo

rt
s

/C
om

m
itt

ed
Tx

n

4.
0

4.
8

3.
2

4.
7

1.
9

0.
93

3.
9

3.
9

2.
2

2.
1

2.
0

0.
73

0.
14

0.
06

0.
03

0.
00

3.
2

1.
5

0.
49

1.
4

0.
10

0.
65

3.
0

3.
0

0.
28

1.
3

0.
94

0.
19

0.
02

0.
04

0.
02

0.
00

2.
3

0.
55

0.
22

0.
87

0.
04

0.
00

0.
54

0.
54

0.
24

1.
2

0.
82

0.
21

0.
04

0.
05

0.
02

0.
00

2.
3

0.
58

0.
00

0.
93

0.
04

0.
00

2.
9

0.
60

0.
30

1.
0

0.
90

0.
17

0.
02

0.
05

0.
02

0.
00

Fig. 8: Aborts Per Committed Transaction

Linked List
Write Heavy

Linked List
Read Heavy

B+Tree
Read-Update

B+Tree
Insert Only

Array
Update Heavy

Array
Scan Heavy

labyrinth labyrinth
(Early Release)

bayes yada intruder vacation High
Contention

vacation Low
Contention

kmeans genome ssca2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

A
bo

rt
s

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
81

0.
31

0.
15

0.
30

0.
05

0.
70 0.

77

0.
77

0.
12

0.
65

0.
46

0.
26

0.
17

0.
75

0.
62

0.
84

0.
58

0.
11

0.
07

0.
18

0.
02

0.
00

0.
14

0.
14

0.
10

0.
59

0.
40

0.
28

0.
26

0.
87

0.
57 0.

63

0.
59

0.
12

0.
00

0.
20

0.
02

0.
00

0.
74

0.
15

0.
13

0.
51

0.
43

0.
23

0.
17

0.
93

0.
70 0.

79

Fig. 9: Normalized Aborts – All numbers are normalized to 2PL.

• Linked List: A singly linked list. Each node has an 8

byte key and 8 byte payload field. Threads first generate a

random number k between 0 and the current length minus

one, and then traverse k nodes before they finally insert,

delete or read the node after the current node.

• B+Tree: A standard B+Tree with 4KB nodes. Both key

and payload are 8 bytes. Threads insert, update or read

on certain “hot spots”.

• Array: An array of integers with (m+n) worker threads.

m threads perform linear scan on the array, n threads

write randomly chosen array entries.

All random numbers are drawn from the rand function in

standard C library. We repeat each test case five times using

the same random seed, and then take the median.

All workloads adopt the lock elision algorithm recommended

by [37]. Critical sections are backed by a single state-of-the-

art spin lock. Transactions elide the lock by reading the lock

variable once started. On transaction abort, the abort status

code is checked. The transaction will restart if: (i) the abort is

caused by transient conditions such as conflicts; and (ii) the

retry counter has not reached zero. Otherwise, the fall-back

path will be executed, and the lock is physically acquired.

In this case, speculative transactions are blocked by the lock

before they can start.

VII. EXPERIMENTAL EVALUATION

A. Performance Analysis

We run each of the HTM with STAMP and data structure

workloads and present simulation results in Fig. 7 (normalized

cycles), Fig. 8 (aborts per committed transaction) and Fig. 9

(normalized aborts). We discuss these numbers in the following.

1) Overall: In 11 out of the 16 workloads (all except array

update-heavy, vacation low, genome, kmeans, ssca2),

OverlayTM outperforms 2PL by more than 20%, which

demonstrates a great advantage of lazy conflict detection

over eager 2PL. Furthermore, in 8 out of the 16 workloads,

OverlayTM outperforms TCC with both less cycles and lower

abort rates, which shows the effectiveness of multiversioning.

403

Most interestingly, OverlayTM, with its ability to commit read-

only transactions regardless of concurrent writes, is comparable

in most cases with SI-TM (23% more aborts and 11% more

cycles, except labyrinth). We consider this as the biggest

merit of our design: Achieving similar or better performance

than Snapshot Isolation with strong semantics.

2) Linked List: The initial list has 256 nodes. Worker threads

eiher insert, delete, or read a node as described in Section VI-C.

Write-heavy workload has 20% read, 40% insert, and 40%

delete; Read-heavy workload has 80% read, 10% insert, and

10% delete.

The linked list workload models a broad range of commonly

used data structures including sorted list, chaining hash table,

etc. Our configuration features high contention and high read-

write ratio, since threads read a “prefix” of all nodes in the list

before they finally stop. This behavior makes them vulnerable

to WAR conflicts incurred by any updating transaction on the

prefix.

In Fig. 9, we can see that both eager conflict detection

(2PL) and forward OCC (TCC) suffer from high abort rates

as well as more wasted cycles. As explained by Section II,

2PL and TCC are sensitive to committed WAR conflicts on the

prefix, while multiversioning HTM, i.e. SI-TM and OverlayTM,

commits read-only transactions using the snapshot they take at

transaction begin. In addition, 2PL has more aborts than TCC,

due to the fact that 2PL also aborts on uncommitted conflicts.

Both OverlayTM and SI-TM achieves a 20% speedup with

40% less aborts.

3) B+Tree: In the first insert-only stage, 16 worker threads

insert 16384 keys into the tree. Then in the second stage,

threads either update or query the tree. The first phase models

the B+Tree index of an Online Transactional Processing

(OLTP) table where new entries are concurrently created by

assigning monotonically increasing entry IDs. The second

phase resembles YCSB-A [38] read-update: 50% reads and

50% updates are performed on a “hotspot” that is gradually

drifting in the key space. Compared with linked list, the B+Tree

workload has fewer contention and lower read-write ratio, since

conflict almost only happens on leaf levels due to the fact that

node split is rare.

For insert-only, all other three HTMs outperform 2PL by

60% – 75%, with 70% – 80% less aborts. This is because

2PL transactions expose writes eagerly, which is detrimental:

On average, half of the node data is moved around when

inserting into a B+Tree leaf node, causing uncommitted write-

read and write-write conflicts. In addition, SI-TM has the best

performance, because SI-TM commits transactions even for

committed WAR. For read-update, OverlayTM runs 20% –

90% faster than all other HTMS with negligible aborts, while

SI-TM suffers from concurrent WAW on the same item and

TCC suffers from committed WAR. The reason OverlayTM

does not abort in the case of WAW is that we implicitly adopt

the assumption that conflict detection is on word granularity.

Blind writes (writes to memory addresses without reading first)

can therefore be optimized by not adding them to the read set.

If we take out this assumption, then OverlayTM performance

will be slightly worse than SI-TM, but still much better than

TCC and 2PL (not shown).

4) Array: The array workload models an Online Analytical

Processing (OLAP) table, where worker threads update the table

at the front end, and background threads run real-time auditing

operations that scan the entire table. This workload features

long read-only sequences and short updates. As expected,

OverlayTM and SI-TM handle this case extremely well due

to multiversioning: Performance improves by 10% – 25%

with negligible aborts. Although cycle improvement is not

as significant as abort rates, we argue that, in this scenario,

latency (i.e. number of aborts for auditing transactions) is more

critical than aggregated cycles because the background auditing

threads might be used to support real-time decision making

systems where the timeliness of data is the uttermost.

5) STAMP: OverlayTM, SI-TM and TCC improve per-

formance by approximately 30% on vacation high and

intruder out of the four STAMP workloads, with 57%

– 77% less aborts. For bayes and yada, the performance

is improved by 80% and 60% respectively, with 90% and

49% – 75% less aborts. On genome, kmeans, ssca2 and

vacation low, performance improvement is very limited

(less than 10%) for all three HTMs. This can be explained

by the fact that the absolute abort rate is already low in our

implementation of lock elision: Only 3.3% of total 14749

transactions suffer aborts for 2PL in genome. Optimizing

aborts is meaningless in this case because only a small fraction

of execution cycles are wasted.

labyrinth implements the transactional version of Lee’s

algorithm [39], [40]. The algorithm runs BFS between a point

pair on a maze after copying the maze to the local storage,

and then attempts to establish a connecting path between

the two points using backtracking. Without early release

(Section IV-G), transactions are forced to serialize, because

any writing transaction to the maze will cause committed

WAR conflict with every concurrent transaction. As shown

in the figure, only SI-TM maintains low abort rate and low

cycle wastage, as it commits transactions despite committed

WAR. With early release enabled on OverlayTM, however, only

transactions that truly conflict (i.e. two transactions select the

same grid during backtracking) will abort, ignoring committed

WAR on irrelevent grids since they are not part of the read

set. The overall performance is comparable to that of SI-TM,

a significant improvement.

We also noticed that these numbers seem to deviate from

what has been published [14]. Our explanation is that our

lock elision algorithm upper bounds the number of retries

a transaction may attempt using a retry counter. Once this

upper limit is reached, the transaction will grab the global lock

and execute non-transactionally. This simple technique avoids

one or a few long transactions repeatedly aborting all other

transactions and each other in eager systems (e.g. 2PL), and

hence reduces aborts significantly [41].

404

TABLE III: Commit Queue Overhead – The first column lists the
average number of pending requests in the buffer when a processor
requests to commit. The second column shows the percentage of
total execution cycles spent on waiting for OMC to process commit
requests. We only model a single-issue, centralized commit queue.

Workload Avg. # Pending % Cycles

Linked List Write-Heavy 1.65 2.40

Linked List Read-Heavy 0.79 3.33

B+Tree Write-Heavy 1.42 6.39

B+Tree Insert-Only 5.00 5.73

Array Update-Heavy 0.12 0.012

Array Scan-Heavy 0.39 0.43

genome 3.62 4.54

vacation
4.23 0.63

High Contention

vacation
4.62 1.10

Low Contention

intruder 3.93 3.70

bayes 1.66 0.059

kmeans 2.46 5.75

labyrinth 1.90 0 (negligible)

labyrinth
1.67 0 (negligible)

(Early Release)

ssca2 3.49 26

yada 2.64 0.091

B. Commit Queue Overhead

Recall from Section IV-A that when the OMC receives a

commit request, all gts operations including transaction begin

and commit will be blocked. Processors that have a pending

request must stall to wait for the OMC to complete the commit

sequence. In this section we evaluate the overhead of serialized

commits.

We measure the serialization of transaction commit by

modeling the FIFO buffer in front of the commit queue. Pending

requests are inserted into the buffer in the order they are

received by the OMC. We assume an average overhead of

20 cycles for processing one request. The simulator notes

down the relative positions of requests in the buffer when they

arrive (zero means the request is processed immediately). The

relative position is treated as an approximation of the level

of contention. We analyze the overhead of serialization using

these numbers, and summarize the result in Table III.

Our analysis shows that, for most workloads that we use, the

commit queue does not constitute a bottleneck. 12 out of 16

workloads spend less than 5% of total execution time waiting

for pending requests to complete. For B+Tree write-heavy,

B+Tree insert-only and kmeans, the percentage of wasted

cycles is higher, but are still less than 7%. ssca2 represents

one extreme case where the commit queue overhead constitutes

26% of total execution cycles. After inspecting the statistics, we

found out that the high commit overhead of ssca2 is caused

by unusually short transactions, the average size of which is

around 20 cycles. In this case, the commit queue has become

major bottleneck of the system’s transaction throughput in our

evaluation. We agree that a centralized commit queue is not

capable of handling extremely short transactions very well, and

would like to leave this to future work.

Table III also shows that the average number of pending

requests that a processor will have to wait for is usually

below five. This means that, in average, there are five other

transactions waiting for validation when another validation

request is received by the commit queue. This shows a great

potential for parallel validation described in Section IV-H.

VIII. CONCLUSIONS

In this paper, we have presented a new framework for

supporting multiversioning in modern memory systems (Mul-
tiversioned Program Overlays (MPO)) and a new hardware
transactional memory design (OverlayTM) built on top of that

framework. By cleanly separating the hardware necessary for

general-purpose multiversioning (in MPO) from the additional

hardware necessary for HTM (in OverlayTM), we believe

that MPO is attractive in its own right because it enables

N -way versions of the many use cases described in the

original page overlays paper [19] (i.e. overlay-on-write, sparse

data structures, fine-grained deduplication, checkpointing, fine-

grained metadata management and flexible super-pages), among

other things. MPO enables multiversioning at a cache line gran-

ularity without significantly altering existing virtual memory

frameworks or introducing high overheads.

OverlayTM builds on top of MPO using a hardware commit
queue to implement commit-time ordering with backward opti-

mistic concurrency control to support unbounded transactions

where read-only transactions are guaranteed to successfully

commit. In contrast with SI-TM (another HTM design that

uses multiversioning), OverlayTM achieves similar or better

performance while scaling to multi-socket systems and pro-

viding full serializability By significantly reducing abort rates

compared with other state-of-the-art HTM designs in a number

of cases, OverlayTM successfully leverages multiversioning to

improve both performance and functionality for transactional

memory programmers. Given these results, we believe that

OverlayTM (even on its own) presents a strong argument for

including MPO support in future systems.

405

REFERENCES

[1] M. Herlihy and J. E. B. Moss, Transactional memory: Architectural
support for lock-free data structures. ACM, 1993, vol. 21, no. 2.

[2] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor,
H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar et al., “Haswell:
The fourth-generation intel core processor,” IEEE Micro, vol. 34, no. 2,
pp. 6–20, 2014.

[3] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier et al., “Evaluation of
amd’s advanced synchronization facility within a complete transactional
memory stack,” in Proceedings of the 5th European conference on
Computer systems. ACM, 2010, pp. 27–40.

[4] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early experience
with a commercial hardware transactional memory implementation,”
in Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS XIV. New York, NY, USA: ACM, 2009, pp. 157–168.
[Online]. Available: http://doi.acm.org/10.1145/1508244.1508263

[5] C. Click, “Azul’s experiences with hardware transactional memory,” in
HP Labs-Bay Area Workshop on Transactional Memory, vol. 89, 2009.

[6] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael, “Evaluation of blue gene/q hardware support
for transactional memories,” in Proceedings of the 21st international
conference on Parallel architectures and compilation techniques. ACM,
2012, pp. 127–136.

[7] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, D. A. Wood et al.,
“Logtm: log-based transactional memory.” in HPCA, vol. 6, 2006, pp.
254–265.

[8] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing transactional memory,”
in Proceedings of the 32Nd Annual International Symposium on
Computer Architecture, ser. ISCA ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 494–505. [Online]. Available:
https://doi.org/10.1109/ISCA.2005.54

[9] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson,
M. Van Biesbrouck, G. Pokam, B. Calder, and O. Colavin,
“Unbounded page-based transactional memory,” in Proceedings of
the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XII.
New York, NY, USA: ACM, 2006, pp. 347–358. [Online]. Available:
http://doi.acm.org/10.1145/1168857.1168901

[10] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie,
“Unbounded transactional memory,” in High-Performance Computer
Architecture, 2005. HPCA-11. 11th International Symposium on. IEEE,
2005, pp. 316–327.

[11] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek,
C. Kozyrakis, and K. Olukotun, “A scalable, non-blocking approach to
transactional memory,” in High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on. IEEE,
2007, pp. 97–108.

[12] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk disambiguation of
speculative threads in multiprocessors,” in ACM SIGARCH Computer
Architecture News, vol. 34, no. 2. IEEE Computer Society, 2006, pp.
227–238.

[13] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible decoupled
transactional memory support,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture, ser. ISCA ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 139–150.
[Online]. Available: https://doi.org/10.1109/ISCA.2008.17

[14] H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and J. P. Stevenson, “Si-
tm: reducing transactional memory abort rates through snapshot isolation,”
ACM SIGARCH Computer Architecture News, vol. 42, no. 1, pp. 383–398,
2014.

[15] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996. [Online].
Available: http://dx.doi.org/10.1109/2.546611

[16] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp:
Stanford transactional applications for multi-processing,” in Workload
Characterization, 2008. IISWC 2008. IEEE International Symposium on.
Citeseer, 2008, pp. 35–46.

[17] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun,
“Transactional memory coherence and consistency,” in ACM SIGARCH
Computer Architecture News, vol. 32, no. 2. IEEE Computer Society,
2004, p. 102.

[18] C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is sc + ilp =
rc?” in Proceedings of the 26th Annual International Symposium
on Computer Architecture, ser. ISCA ’99. Washington, DC, USA:
IEEE Computer Society, 1999, pp. 162–171. [Online]. Available:
http://dx.doi.org/10.1145/300979.300993

[19] V. Seshadri, G. Pekhimenko, O. Ruwase, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, T. C. Mowry, and T. Chilimbi, “Page overlays: An enhanced
virtual memory framework to enable fine-grained memory management,”
ACM SIGARCH Computer Architecture News, vol. 43, no. 3, pp. 79–91,
2016.

[20] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M.
Swift, and D. A. Wood, “Logtm-se: Decoupling hardware transactional
memory from caches,” in High Performance Computer Architecture, 2007.
HPCA 2007. IEEE 13th International Symposium on. IEEE, 2007, pp.
261–272.

[21] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “Bulksc: bulk
enforcement of sequential consistency,” in ACM SIGARCH Computer
Architecture News, vol. 35, no. 2. ACM, 2007, pp. 278–289.

[22] H.-T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Transactions on Database Systems (TODS), vol. 6, no. 2,
pp. 213–226, 1981.

[23] T. Härder, “Observations on optimistic concurrency control schemes,”
Information Systems, vol. 9, no. 2, pp. 111–120, 1984.

[24] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
2013, pp. 18–32.

[25] D. Dice, T. L. Harris, A. Kogan, Y. Lev, and M. Moir, “Hardware exten-
sions to make lazy subscription safe,” arXiv preprint arXiv:1407.6968,
2014.

[26] H. E. Ramadan, C. J. Rossbach, and E. Witchel, “Dependence-aware
transactional memory for increased concurrency,” in Proceedings of the
41st annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2008, pp. 246–257.

[27] J. Fix, N. P. Nagendra, S. Apostolakis, H. Zhang, S. Qiu, and D. I.
August, “Hardware multithreaded transactions,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2018, pp.
15–29.

[28] X. Qian, B. Sahelices, and J. Torrellas, “Omniorder: Directory-based
conflict serialization of transactions,” in 2014 ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 2014, pp.
421–432.

[29] S. A. R. Jafri, G. Voskuilen, and T. Vijaykumar, “Wait-n-gotm: improving
htm performance by serializing cyclic dependencies,” in ACM SIGPLAN
Notices, vol. 48, no. 4. ACM, 2013, pp. 521–534.

[30] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal,
T. Harris, and M. Valero, “Eazyhtm: eager-lazy hardware transactional
memory,” in Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2009, pp. 145–155.

[31] U. Aydonat and T. S. Abdelrahman, “Hardware support for relaxed
concurrency control in transactional memory,” in Microarchitecture
(MICRO), 2010 43rd Annual IEEE/ACM International Symposium on.
IEEE, 2010, pp. 15–26.

[32] M. Gorman, Understanding the Linux virtual memory manager. Prentice
Hall Upper Saddle River, 2004.

[33] D. Cheriton, A. Firoozshahian, A. Solomatnikov, J. P. Stevenson, and
O. Azizi, “Hicamp: architectural support for efficient concurrency-safe
shared structured data access,” in ACM SIGPLAN Notices, vol. 47, no. 4.
ACM, 2012, pp. 287–300.

[34] Intel Corporation, Intel® 64 and IA-32 Software Developer’s Manual,
May 2018, no. 325462-067US.

[35] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III, “Software
transactional memory for dynamic-sized data structures,” in Proceedings
of the twenty-second annual symposium on Principles of distributed
computing. ACM, 2003, pp. 92–101.

[36] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitectural
simulation of thousand-core systems,” in ACM SIGARCH Computer
architecture news, vol. 41, no. 3. ACM, 2013, pp. 475–486.

[37] Intel Corporation, Intel® 64 and IA-32 Architectures Optimization
Reference Manual, April 2018, no. 248966-040.

[38] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing. ACM, 2010, pp. 143–154.

406

[39] I. Watson, C. Kirkham, and M. Luján, “A study of a transactional parallel
routing algorithm,” in Proceedings of the 16th International Conference
on Parallel Architecture and Compilation Techniques. IEEE Computer
Society, 2007, pp. 388–398.

[40] C. Y. Lee, “An algorithm for path connections and its applications,” IRE

transactions on electronic computers, no. 3, pp. 346–365, 1961.
[41] R. Rajwar and J. R. Goodman, “Speculative lock elision: Enabling

highly concurrent multithreaded execution,” in Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture. IEEE
Computer Society, 2001, pp. 294–305.

407

