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Abstract—The end of Moore’s law with the advent of
hardware specialization presents a unique challenge for a
much tighter software and hardware co-design environment
to exploit domain-specific optimizations and increase design
efficiency. The productivity of software-hardware codesign
relies not on only in better integration between the software
and hardware design methodologies but more importantly in
the effectiveness of the design tools at reducing the develop-
ment time. In this work, we developed Tango, an Optimizing
compiler for a Just-in-Time RTL simulator. Tango implements
unique hardware-centric compiler transformations to speed
up runtime code generation in a software-hardware codesign
environment where hardware simulation speed is critical.
Tango achieves a 3x average speedup compared to the state-
of-the-art RTL simulators.

Index Terms—hardware description language, Just-in-time
compilation, hardware simulation.

I. INTRODUCTION

Hardware-software codesign methodology is about im-

proving the integration between software and hardware

development processes with the goal of reducing the total

development cost. The traditional approaches [1] have

mainly looked at addressing the high cost of hardware ver-

ification by integrating that process early during software

development with higher hardware modeling abstractions

to balance accuracy versus productivity. RTL simulation

remains one of the most important steps in hardware

verification for guaranteeing the quality of the final design,

but it is very time-consuming, mainly due to the complexity

of emulating hardware behavior at the RTL description

level.

Several solutions have been proposed to improve the

performance of RTL simulation [2] using event-driven

simulation to schedule the execution of various components

in the hardware when a change of properties affecting the

component occurs. This certainly carves out a large portion

of the RTL simulation performance bottlenecks, however,

these solutions do not look at improving actual low-level

code-generation, relying on the effectiveness of existing

compilers to generate the final binary.

We present Tango, an optimizing just-in-time (JIT) com-

piler for RTL simulation. Tango was designed to be used

as a back-end of hardware construction languages (HCL)

[3] enabling direct high-speed simulation and debugging

of described models. Tango implements unique compiler

transformations based on hardware-centric information in

Fig. 1: Tango Compiler Infrastructure

its IR that provides significant speed improvement for RTL

simulation. The main contributions of this paper are the

following: (1) We introduce Tango just-in-time compilation

infrastructure, highlighting the major transformations from

its high-level IR to executable binary, (2) introduce proxy

coalescing dataflow optimization for eliminating hidden

indirections in the RTL netlist, and (3) We introduce new

hardware-centric codegen optimization techniques for low-

ering sequential nodes, shift registers, and switch tables.

II. TANGO BACK-END COMPILATION

Figure 1 illustrates the different phases of Tango com-

pilation system; The first stage parses the program by

recursively traversing the netlist in the source program

to generate a Dataflow IR for the following optimization

stages. Stages two, three, and four perform standard com-

piler optimizations on the Graph IR, which include dead-

code elimination (DCE), constant folding (CFO), and com-

mon sub-expression elimination (CSE). Stage five, proxies

elimination (PCX), implements our custom transformation

to prune out hidden indirection in the graph. After the graph

optimization phase, the resulting IR can be used to export

Verilog or FIRRTL [3] to use with other EDA tools for

synthesis to FPGAs or ASIC. The IR is also converted

to native instructions for runtime simulation, using JIT

(SimJIT), or non-JIT (SimRef) for platforms where JIT is

not supported.

A. Tango IR Description

Tango IR captures the connections between the various

hardware blocks in the source hardware description. Those

hardware blocks include I/O ports, registers, RAM blocks,

arithmetic operations, multiplexers, etc. Nodes performing

bit slicing or concatenation are named ’proxy’ nodes.
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Fig. 2: Proxies Elimination Fig. 3: Runtime Latency Comparison

Fig. 4: Coalescing Register Update Fig. 5: Shift Register Lowering Fig. 6: Switch Table Lowering

B. Proxy-Coalescing Optimization (PCX)

Redundant operations can exist across proxy nodes which

can introduce unnecessary computation during simulation.

Figure 2 shows the three transforms executed during this

stage: (A) eliminates proxies that are direct copies of their

source node, (B) eliminates proxies that are used as source

to other proxies and have a bit range that supersedes those

destination proxies, and (C) coalesces proxies that do not

overlap and when merged together can produce the full bit

range of the destination node.

C. Sequential Node Coalescing (SNC)

This optimization (see Figure 4) traverses the graph IR

sorted in topological order, grouping sequential nodes (reg,

mem) into shared control flow blocks based on their shared

signals (clk, reset, enable) and determines the optimal

scheduling of these nodes’s update logic that reduces the

number of control flow blocks.

D. Shift-Register Optimization (SRO)

SRO attempts to pack for small shift registers into single

integer scalars using shift arithmetic as illustrated in Figure

5. A Push operation add a new entry to the scalar queue and

the Pop operation removes it. Shift registers are prevalent

in streaming accelerators such as encryption, compression,

FFT engines.

E. Switch Table Optimization (SWO)

SWO attempts to pack small switch statement tables into

single integer scalars using shift arithmetic as illustrated in

Figure 6, therefore avoiding unnecessary branches genera-

tion. This compaction technique supports both binary and

one-hot switches. SWO particularly affects hardware blocks

with control logic such as FSMs, encoders, multiplexers,

crossbars.

III. RESULTS

We evaluated our optimizations using a benchmark with

a diverse mix of hardware components including (1) 128-bit

Advanced Encryption Standard Encryption engine (AES),

(2) single-path delay radix 22 FFT, (3) 4-lanes parallel radix

22 FFT, (4) 8-bit pipelined Sobel filter (Sobel), (4) 16-

bit fixed-point Sparse Matrix Multiplier (SpMV), (5) 32-

nodes Network-on-Chip router (NoC), (6) 5-stage RiscV

RV32I processor core (RiscV). We ran our experiment

on Intel Xeon E5-4610 processor with 32KB L1, 256KB

L2, 16384KB L3 caches, and 64 GB of system memory.

We compared Tango simulator performance with prominent

RTL simulators including Icarus Verilog (IVerilog [4]), the

industry-grade Synosys VCS [5], and state-of-the-art open-

source simulator Verilator [6].
Figure 3 shows the average runtime latency on all sim-

ulators. SimJIT is on average 3.8x faster than Verilator,

72.8x faster than VCS and 225x faster than IVerilog across

all models. Also, SimRef is on average 5.8x faster than

VCS and 18.7x faster than IVerilog across all models. We

observed that PCX optimization contributed for about 50%

of the overall speedup, followed by SNC with 20%, SRO

17%, and SWO 13%.
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