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Abstract—This paper proposes a GPU-based Near-data-
processing (NDP) architecture as well as a well-matched pro-
gramming model considering both the characteristics of image
applications and NDP constraints. First, data allocation to the
processing unit is handled to keep the data locality considering
the memory access pattern. Second, this predictable allocation
enables to design a compact but efficient NDP architecture. By
applying a prefetcher that leverages the pattern aware data
allocation, the number of active warps and on-chip SRAM
size of NDP are significantly reduced. This allows to satisfy
the NDP constraints and increases the opportunity to integrate
more processing units on a memory logic die. The evaluation
results for various image processing benchmarks show that the
proposed NDP GPU improves the performance compared to
the baseline GPU.

I. INTRODUCTION

Recent applications with high resolution and frame rates

have very large energy and processing time overhead be-

cause of the data movement between the processor and

the off-chip memory [1]. Near-data-processing (NDP) is

a promising alternative for reducing the overhead caused

by data movement. Programmable GPU-based NDP is at-

tractive, because it is capable of processing more various

algorithms than hardware accelerators. Recent studies have

mainly been conducted to accelerate specific applications

such as deep neural network (DNN) [2] or 3D rendering [3].

Therefore, previous NDP studies may not be extensively

applied to various image processing algorithms. NDP for

image processing has not been sufficiently studied despite

the strong demand for efficient image processing in many

fields.

In this paper, a GPU-based NDP architecture and a

programming model are proposed. The two approaches are

complementary and they are optimized together. In a general

GPU, a large size of register is needed for latency hiding.

However, a GPU dedicated to image processing can be

made more compact than general GPUs while maintain-

ing a high performance level. The proposed programming

model allocates data to the processing unit by considering

the memory access pattern and data locality of the image

processing algorithms. Taking advantage of this predictable

allocation, an access pattern aware prefetcher is added, and

the hardware resources are greatly reduced.

II. PROPOSED NDP GPU

The proposed GPU-based NDP allows not only to reduce

the energy consumption by decreasing the memory access

overhead but also to exploit the wide memory bandwidth.

Also, careful design efforts are made to consider the 3D

stacked memory environment including the limited area and

power constraints of the logic die.

A. Access Pattern Aware Data Allocation

To take advantage of data access pattern in image

processing applications, cooperative thread array(CTA)-to-

streaming multiprocessor(SM) allocation is performed based

on the data area information processed by CTAs. The

allocation schemes are classified into row-major, column-

major, and tile-based. Software-based data allocation uses

the feature that CTA is not deallocated before the job

assigned to that CTA is finished. Only a single CTA is

allocated to each SM, and each CTA processes their data

through loop iteration. Fig. 1 shows an example of software-

based realization of row-major data allocation. The left side

of Fig. 1 represents that the entire image is divided into

four areas, which are allocated to four SMs. The right side

of Fig. 1 magnifies the image area allocated to SM1 where

each of the boxes represents the area processed by one CTA,

with the width and height of blockDim.x and blockDim.y,

respectively. The area surrounded by a gray dotted line is

called a row block. Firstly, the initial coordinate of the area

allocated to each SM is calculated (Step 1). Then, the top-left

coordinate for the first CTA execution denoted by a triangle

is set to be the initial coordinate (Step 2). Following the

Step 1

Step 2 Step 3

Step 4

cta_init_x = init_x 
cta_init_y = init_y

cta_init_x = init_x + blockDim.x 
cta_init_y = init_y

cta_init_x = init_x
cta_init_y = init_y + blockDim.y

Figure 1: Software-based row major pattern aware data allocation example.
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CTA execution, the x-coordinate is moved in the row-major

direction (Step 3). Step 3 is repeated until the execution

is finished in the first row block, and then the process is

moved to the next row block (Step 4). Step 3 and Step 4 are

repeated until the execution is finished for the entire data

area allocated to SM0.

B. NDP GPU Architecture

SM structure: The number of warps and the size of on-

chip SRAM that are appropriate for the SM structure of NDP

GPU are proposed in this section.

(1) Pattern-aware prefetcher: A stride-based prefetcher is

mounted inside the SM of NDP GPU. Because the data

access pattern of the algorithm is preserved through the

proposed data allocation, accurate prefetching is provided

with a simple stride-based prefetcher.

(2) The number of active warps: The access pattern-

aware data allocation and prefetching make the necessary

data readily available. Accordingly, as the stall decreases,

the latency may be hid with a smaller number of warps in

comparison with the baseline GPU.

(3) On-chip SRAM size: The size of on-chip SRAM

including register, L1 Data cache, and shared memory is

reduced by using a small number of warps.

Off-chip L2 cache: The proposed NDP GPU uses no L2

cache. Data allocation and the prefetcher in the proposed

NDP GPU help to increase the hit rate of the L1 cache up

to almost 100%. This reduces the need for L2 cache which is

used to mitigate the miss penalty of L1 cache in the memory

hierarchy.

The number of SMs: Area constraints of the logic die

should be considered along with the performance and energy

consumption to determine the number of SMs for NDP GPU.

III. EVALUATION

A cycle-accurate simulator, GPGPU-Sim [4], is modified

to verify the impact of the proposed NDP architecture. Four

configurations are evaluated as listed below.

• Host: is a conventional GPU. It is similar to the NVIDIA

Maxwell GPU [5] and has 64 SMs.

• B-NDP-L2: denotes a baseline NDP with L2 cache. It

has the same SM architecture with Host, but is located

on the logic die.

• B-NDP-woL2: denotes a baseline NDP where L2 cache

is not used. Other configuration is same with B-NDP-L2.

• IP-NDP: is the proposed NDP specialized for image

processing. It has a prefetcher and a reduced-size SRAM.

Six commonly used image processing algorithms are

tested [6], [7]. For evaluation of IP-NDP, code is modified

according to the proposed method.

Fig. 2 shows the increase in speed for four configu-

rations normalized to Host. Two observations from this

result are explained below. First, image processing benefits

from the increased bandwidth. B-NDP-L2 shows a 2.06×

Figure 2: Speedup for B-NDP-L2, B-NDP-woL2, IP-NDP with varying the
number of SMs in the NDP stack. All results are normalized to Host.

performance improvement on average over Host. Second,

the proposed IP-NDP outperforms other configurations. IP-

NDP is 3.09× (up to 5.85×), 1.44× (up to 1.97×), and

1.31× (up to 2.01×) faster than Host, B-NDP-L2, and B-

NDP-woL2, respectively. Thus, it can be concluded that the

proposed pattern-aware data allocation and NDP GPU works

very well. Although not shown in this paper, the proposed

scheme consumes 52% less energy than Host due to less

static power and fast execution, while requires only 57.3%

of the area compared to Host.
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