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Abstract—Sparse solvers are heavily used in computational
fluid dynamics (CFD), computer-aided design (CAD), and other
important application domains. These solvers remain challenging
to execute on massively parallel architectures, due to the sequen-
tial dependencies between the fine-grained application tasks. In
particular, parallel sparse solvers typically suffer from substantial
scheduling and dependency-management overheads relative to
the compute operations. We propose adaptive task aggregation
(ATA) to efficiently execute such irregular computations on GPU
architectures via hierarchical dependency management and low-
latency task scheduling. On a gamut of representative problems
with different data-dependency structures, ATA significantly
outperforms existing GPU task-execution approaches, achieving
a geometric mean speedup of 2.2× to 3.7× across different sparse
kernels (with speedups of up to two orders of magnitude).

Index Terms—data dependency, fine-grained parallelism,
GPUs, runtime adaptation, scheduling, sparse linear algebra,
task-parallel execution

I. INTRODUCTION

Iterative and direct solvers for sparse linear systems [1],

[2] constitute the core kernels in many application domains,

including computational fluid dynamics (CFD), computer-

aided design (CAD), data analytics, and machine learning [3]–

[9]; thus, sparse benchmarks are used in the procurement and

ranking of high-performance computing (HPC) systems [10].

Sparse solvers are inherently sequential due to data dependen-

cies between the application tasks. Representing such irregular

computations as directed acyclic graphs (DAGs), where nodes

are compute tasks and edges are data dependencies across

tasks, exposes concurrent tasks that can run in parallel without

violating the strict partial order in user applications.

DAG execution requires mechanisms to determine when a

task is ready by tracking the progress of its predecessors (i.e.,

dependency tracking) and by ensuring that all its dependencies

are met (i.e., dependency resolution). Thus, the performance

of a task-parallel DAG is largely limited by its processing

overhead, that is, launching the application tasks and managing

their dependencies. Since sparse solvers consist of fine-grained

tasks with relatively few operations, the task-launch latency

and dependency-management overhead can severely impact

the speedup on massively parallel architectures, such as GPUs.

Therefore, the efficient execution of fine-grained, task-parallel

DAGs on data-parallel architectures remains an open prob-

lem. With the increasing performance and energy efficiency

of GPUs [11], [12], driven by the exponential growth of

data analytics and machine learning applications [13], [14],

addressing this problem has become paramount.

Many software approaches have been proposed to improve

the performance of irregular applications with fine-grained,

data-dependent parallelism on many-core GPUs. Level-set

methods [15]–[19] adopt the bulk synchronous parallel (BSP)

model [20] by aggregating the independent tasks in each

DAG level to execute them concurrently with barrier syn-

chronizations between levels. Hence, these approaches are

constrained by the available parallelism in the level-set DAG,

which limits their applicability to problems with a short critical

path. Furthermore, since level-set execution manages all data

dependencies using global barriers, it suffers from significant

workload imbalance and resource underutilization.

Self-scheduling techniques [21]–[25] minimize the latency

of task launching by dispatching all the application tasks at

once and having them actively wait (spin-loop) until their

predecessors complete and the required data is available.

However, active waiting not only wastes compute cycles, but it

also severely reduces the effective memory bandwidth due to

resource/memory contention. Specifically, the application tasks

at lower DAG levels incur substantial active-waiting overhead

and interfere with their predecessor tasks, including those on

the critical path. Moreover, the application data, along with its

task-parallel DAG, must fit in the limited GPU memory, which

is typically much smaller than the host memory. To avoid

deadlocks, these self-scheduling schemes rely on application-

specific characteristics or memory locks [26], which restrict

their portability and performance.

Hence, there exists a compelling need for a scalable ap-

proach to manage data dependencies across millions of fine-

grained tasks on many-core architectures. To this end, we pro-

pose adaptive task aggregation (ATA), a software approach for

the efficient execution of fine-grained, irregular applications

such as sparse solvers on GPUs. ATA represents these irregular

applications as hierarchical DAGs, where nodes are multi-

grained application tasks and edges are their aggregated data

dependencies, to match the capabilities of massively parallel

GPUs by minimizing the DAG processing overheads while

exposing the maximum fine-grained parallelism.

Specifically, ATA ensures deadlock-free execution and per-

forms multi-level dependency tracking and resolution to amor-

tize the task launch and dependency management overheads.The 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT19); Seattle, WA, USA; September 23–26, 2019
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First, it leverages GPU streams/queues to manage data depen-

dencies across the aggregated tasks [27]. Second, it uses low-

latency scheduling and in-device dependency management to

enforce the execution order between the fine-grained tasks in

each aggregated task. Unlike previous work, ATA is aware of

the structure and processing overhead of application DAGs.

Thus, ATA provides generalized support for efficient fine-

grained, task-parallel execution on GPUs without needing

additional hardware logic. In all, our contributions are as

follows:

• Unlike previous studies, we show that the performance of

a fine-grained, task-parallel DAG depends not only on the

problem size and the length of critical path (i.e., number of

levels) but also on the DAG shape and structure. We point

out that self-scheduling approaches [21]–[25] are even worse

than traditional data-parallel execution for problems with a

wide DAG (§IV).

• We propose the adaptive task aggregation (ATA) frame-

work to efficiently execute irregular applications with fine-

grained, data-dependent parallelism as a hierarchical DAG

on GPU architectures, regardless of the data-dependency

characteristics or the shape of their fine-grained DAGs (§III).

• The experimental results for a set of important sparse

solver kernels, namely sparse triangular solve (SpTS) and

sparse incomplete LU factorization (SpILU0) across a wide

range of representative problems, show that ATA achieves

a geometric mean speedup of 2.2× to 3.7× (with speedups

of up to two orders of magnitude) over state-of-the-art DAG

execution approaches on AMD GPUs (§IV).

II. BACKGROUND AND MOTIVATION

A. GPU Architecture and Execution Models

Figure 1 depicts the recent VEGA GPU architecture from

AMD [28], which consists of multiple compute units (CUs)

organized into shader engines (SEs). Each CU contains single-

instruction, multiple-data (SIMD) processing elements. SEs

share global memory and level-2 (L2) cache, while CUs have

their own dedicated local memory and level-1 (L1) cache.

At runtime, the control/command processor (CP) dispatches

the workload (kernels) to the available SEs and their CUs.

Like GPU hardware, GPU kernels have a hierarchical thread

organization consisting of workgroups of multiple 64-thread

wavefronts. The SIMD elements execute each wavefront in

lockstep; thus, wavefronts are the basic scheduling units.

Fig. 1: VEGA GPU architecture.

Massively parallel GPUs provide fundamental support for

the bulk synchronous parallel (BSP) execution model [20],

where the computations proceed in data-parallel supersteps.

Figure 2 depicts a BSP superstep that consists of three phases:

local computations on each CU, global communication (data

exchange) via main memory, and barrier synchronization. In

BSP execution, the computations in each superstep must be

independent and can be executed in any order. To improve

workload balance, each CU should perform a similar amount

of operations. Moreover, GPUs require massive computations

in each superstep to utilize the available compute resources

and to hide the long memory-access latency. Due to these lim-

itations, the efficient BSP execution of irregular applications

with variable and data-dependent parallelism is challenging.

Fig. 2: The execution of a BSP superstep.

Alternatively, kernel-level DAG execution models [27],

[29]–[31] support irregular applications by launching each

user task as a GPU kernel and by using host/device-side

streams/queues to manage data dependencies across kernels.

In such runtime systems, the task launch overhead is on

the order of microseconds, and the dependency management

using streams/queues only supports a finite number of pending

dependencies. Thus, these execution models are limited to

coarse-grained DAGs, where user tasks execute thousands of

instructions, which is atypical of sparse solvers.
Meanwhile, approaches with persistent threads (PT) [32]–

[37] use distributed task queues to manage data dependencies

and balance workload across persistent workers on the GPU,

which introduces significant processing overhead. Moreover,

PT execution reduces resource utilization and limits the ability

of hardware schedulers to hide data access latencies. While

GPUs require massive multithreading to hide memory la-

tency [28], [38], [39], PT execution runs one worker per

compute unit. Therefore, these frameworks typically achieve

limited performance improvement compared to the traditional

data-parallel execution (e.g., 1.05 to 1.30-fold speedup [37])

with portability issues across different GPU devices.

B. Sparse Solvers
The iterative [2] and direct methods [1] for solving sparse

linear systems generally consist of two phases: (1) a pre-

processing phase that is performed only once to analyze

and exploit the underlying sparse structure and (2) a system

solution phase that is repeated several times. The system

solution phase is typically dominated by irregular computa-

tions with data-dependent parallelism, namely, preconditioners

and triangular solve in iterative methods and matrix factor-

ization/decomposition and triangular solve in direct methods.
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Fig. 3: A triangular matrix and the corresponding DAG for SpTS.

Such data-dependent kernels can be executed in parallel as a

computational DAG, where each node represents the compute

task associated with a sparse row/column and edges are the

dependencies across tasks.

Algorithm 1 Sparse Triangular Solve (SpTS)

Input: L, RHS � Triangular matrix and right-hand side vector
Output: u � Solution vector for unknowns

1: for i = 1 to n do
2: u(i) = RHS(i)
3: for j = 1 to i− 1 where L(i, j) �= 0 do � Predecessors
4: u(i) = u(i)− L(i, j)× u(j)
5: end for
6: u(i) = u(i)/L(i, i)
7: end for

Algorithm 1 and Figure 3 show an example of the irregular

computations in sparse solvers. In SpTS, each nonzero entry

(i, j) in the triangular matrix indicates that the solution of

unknown i (task ui) depends on the solution of unknown j
(task uj); hence, the DAG representation of SpTS associates

an edge from node uj to node ui. The resulting DAG can

be executed using a push or pull traversal [40]. In push

traversal, the active tasks push their results and active state

to the successor tasks; while in pull traversal, the active tasks

pull the results from their predecessor tasks. In addition to the

representative SpTS and SpILU0 kernels that are extensively

discussed in this work, several sparse solver kernels (e.g.,

LU/Cholesky factorization, Gauss-Seidel, and successive over-

relaxation [1], [2], [41]) exhibit similar irregular computations.
To execute a task-parallel DAG on GPUs using the data-

parallel BSP model, the independent tasks in each DAG level

are aggregated and executed concurrently with global barrier

synchronization between the different levels. (This paralleliza-

tion approach is often called level-set execution or wavefront

parallelism [2], [23].) For example, the BSP execution of the

DAG in Figure 3 runs tasks U1, U8, and U14 first, while the

rest of tasks will wait for their completion at the global barrier.

Since the local dependencies between tasks are replaced with

global barriers, the BSP execution of a DAG suffers from

barrier synchronization overhead, workload imbalance, and

idle/waiting time. Furthermore, the GPU performance becomes

even worse for sparse systems with limited parallelism and few

nonzero elements per row/column [5], [42]. At this fine gran-

ularity, the dispatch, scheduling, and dependency management

overheads can become the dominant bottlenecks.

III. ADAPTIVE TASK AGGREGATION (ATA)

To address the limitations of the traditional data-parallel ex-

ecution and previous approaches for fine-grained, task-parallel

applications, we propose the adaptive task aggregation (ATA)
framework. The main goal of ATA is to efficiently execute

irregular computations, where the parallelism is limited by data

dependencies, on throughput-oriented, many-core architectures

with thousands of threads. On the one hand, there is a tradeoff

between the task granularity and concurrency; that is, the max-

imum parallelism and workload balance are only attainable at

the finest task granularity (e.g., a sparse row/column in sparse

solvers). On the other hand, the overhead of managing data

dependencies and launching ready tasks at this fine-grained

level can adversely impact the overall performance.

Thus, ATA strives to dispatch fine-grained tasks, as soon

as their dependencies are met, to the available compute units

(CUs) with minimal overhead and regardless of the DAG

structure of the underlying problem. First, ATA represents

the irregular computations as a hierarchical DAG by means

of dependency-aware task aggregation for high-performance

execution on GPUs (§III-A). Second, it ensures efficient,

deadlock-free execution of the hierarchical DAG using multi-

level dependency management and sorted eager-task (SET)

scheduling (§III-B). Furthermore, ATA supports both the push

and pull execution models of task-parallel DAGs and works

on current GPU architectures without the need for special

hardware support. While any input/architecture-aware task

aggregation can be used to benefit from ATA’s hierarchical ex-

ecution and efficient scheduling and dependency management,

we propose concurrency-aware and locality-aware aggregation

policies to provide additional performance trade-offs (§III-C).
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Fig. 4: ATA transformation of the application DAG in Figure 3 for hierarchical execution and dependency management.

The adaptive tasks A1, A2, and A4 require fine-grained dependency tracking and resolution, while A3 can be executed as a

data-parallel kernel.

A. Hierarchical DAG Transformation

The first stage of our ATA framework analyzes the given

fine-grained DAG and then generates a hierarchy of tasks to

better balance the processing overheads, that is, task launch

and dependency management overheads, while exposing the

maximum parallelism to many-core GPUs. This transforma-

tion can be incorporated in the preprocessing phase of irregular

applications, such as sparse solvers, with negligible additional

overhead (see §IV).

Consider an application DAG, G(U,E), where U is a set

of nodes that represents user (or application) tasks and E
is a set of edges that represents data dependencies. Further,

let n be the number of user tasks and m be the number of

dependency edges across user tasks. ATA aggregates user tasks

into adaptive tasks such that each adaptive task has a positive

integer number S of the fine-grained user tasks, where S is

an architecture-dependent parameter that can be estimated and

tuned using profiling (as detailed in §III-C). The resulting set

A of adaptive tasks partitions the application DAG such that

A1 ∪A2 · · · ∪Ap = U and Ai ∩Aj = φ ∀i and j, where p is

the number of adaptive tasks, p ≤ n, and i �= j.

This task aggregation delivers several benefits on many-

core GPUs. First, the resulting adaptive tasks incur a fraction

(1/S) of the launch overhead of user tasks. Second, adaptive

tasks reduce the execution latency of their user tasks by

dispatching the irregular computations to CUs as soon as their

pending coarse-grained dependencies are resolved. Third, task

aggregation eliminates dependency edges across user tasks that

exist in different adaptive tasks, such that an adaptive task

with independent user tasks does not require any dependency

management. Hence, ATA generates a transformed DAG with

c coarse-grained dependencies across adaptive tasks and f
fine-grain dependencies across user tasks that exist in the same

adaptive task, where c+ f < m.

Figure 4 shows an example of the DAG transformation

with an arbitrary task aggregation policy (see §III-C for our

proposed policies). The original DAG consists of 16 user

tasks with 20 dependency edges; after the DAG transforma-

tion such that each adaptive task has four user tasks, ATA

generates a hierarchical DAG that consists of four adap-

tive tasks with only three coarse-grained dependency edges

and eight fine-grained dependency edges. Since the DAG

processing overhead depends on the number of tasks and

dependency edges, the transformed DAG is more efficient

for execution on GPU architectures. Specifically, unlike level-

set execution, which is constrained by managing all data

dependencies using global barriers, ATA can launch more tasks

per GPU kernel to amortize the cost of kernel launch and

to reduce the idle/waiting time. Most importantly, compared

to self-scheduling approaches, ATA adjusts to the underlying

dependency structure of target problems by executing adaptive

tasks without dependency management when it is possible and

by dispatching the waiting user tasks when there is limited

concurrency to efficiently utilize the GPU resources. That way,

ATA dispatches the ready adaptive tasks rather than the whole

DAG, and as a result, the waiting adaptive tasks along with

their user tasks do not incur any active-waiting overhead.

Previous work showed the benefits of aggregating fine-

grained application tasks on CPU architectures [43]; however,

each aggregated task (or super-task) was assigned to one

thread/core to execute sequentially without the need for man-

aging data dependencies across its fine-grained computations.

In contrast, GPU architectures (with their massive number of

compute resources) demand parallel execution both within and

across aggregated tasks, which introduces several challenges

and requires an efficient approach for managing the data

dependencies and executing the irregular computations at each

hierarchy level of the transformed DAG.

B. Hierarchical DAG Execution on GPUs

The ATA framework orchestrates the processing of millions

of fine-grained user tasks, which are organized into a hierar-

chical DAG of adaptive tasks. Such adaptive tasks execute as

GPU kernels on multiple CUs, while their user tasks run on the

finest scheduling unit defined by the GPU architecture, such

as wavefronts, to improve workload balance and to expose

maximum parallelism.
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Fig. 5: SET scheduling of the hierarchical DAG in Figure 4. Each adaptive (A) task executes as a GPU kernel (K) with

fine-grained dependency management using active waiting when deemed necessary. SET scheduling ensures forward progress

by mapping the user (U ) tasks to the worker wavefronts (W ).

ATA performs hierarchical dependency management by

tracking and resolving data dependencies at two levels: (1)

a coarse-grained level across adaptive tasks and (2) a fine-

grained level across user tasks in the same adaptive task.

The coarse-grained dependency management relies on host-

or device-side streams/queues to monitor the progress of

GPU kernels that represent adaptive tasks and to dispatch the

waiting adaptive tasks to the GPU device once their coarse-

grained dependencies are met. Currently, ATA leverages the

open-source ATMI runtime [27] to dispatch adaptive tasks and

to manage the coarse-grained (kernel-level) dependencies.
The fine-grained dependency management requires a low-

latency approach with minimal overhead, relative to the

execution time of the fine-grained user tasks. Thus, ATA

manages the fine-grained dependencies using lock-free data

structures, where each user task tracks and resolves its pending

dependencies using active waiting (i.e., polling on the shared

data structures) to enforce the DAG execution order. Most

importantly, ATA ensures forward progress and minimizes the

active waiting overhead by assigning the waiting user tasks that

are more likely to meet their dependencies sooner to the active

scheduling units (wavefronts) on a GPU using SET scheduling.
1) SET Scheduling: To efficiently execute adaptive tasks on

many-core GPUs, we propose sorted eager task (SET) schedul-

ing, which aims to minimize the processing overhead by

eliminating the launch and dependency resolution overheads

using eager task launching and by minimizing the dependency-

tracking overhead using an implicit priority scheme.
Figure 5 shows the SET scheduling of a hierarchical DAG

with 16 user tasks and four (4) adaptive (aggregated) tasks.

First, SET dispatches all the user tasks in an adaptive task as

a GPU kernel to eliminate the task launch overhead. That way,

the entire adaptive task can be processed by the GPU command

processor (CP) to assign its user tasks to CUs before their

predecessors even complete. However, user tasks with pending

dependencies check that their predecessors finish execution us-

ing active waiting to prevent data races. Once the predecessors

of a waiting user task complete, it becomes immediately ready

and proceeds for execution, which eliminates the dependency-

resolution overhead. To ensure forward progress, the waiting

user tasks cannot be scheduled on a compute unit before their

predecessors are active. While hardware memory locks [26]

can be used to avoid deadlocks, they are not suitable for

scheduling large-scale DAGs with fine-grained tasks because

of their limited number and significant scheduling latency.

In contrast, SET proposes a priority scheme that achieves

deadlock-free execution with minimal overhead and without

needing specialized hardware.

SET prioritizes the execution of the waiting user tasks that

are more likely to be ready soon to minimize the dependency-

tracking (active waiting) overhead and to prevent deadlocks.

However, current many-core architectures do not provide a

priority scheme with enough explicit priorities to handle

a large number (potentially millions) of tasks. Thus, SET

uses a more implicit technique and exploits the knowledge

that hardware schedulers execute wavefronts and workgroups

with lower global ID first. According to GPU programming

and execution specifications, such as the HSA programming

manual [39], only the oldest workgroup (and its wavefronts) is

guaranteed to make forward progress; hence, the workgroup

scheduler dispatches the oldest workgroup first when there

are enough resources on target CUs. Moreover, the wavefront

scheduler runs a single wavefront until it stalls and then picks

the oldest ready wavefront [44]. In turn, the oldest hardware

scheduling units (wavefronts) with the smallest global IDs are

implicitly prioritized.

Therefore, SET assigns user tasks with fewer number of
dependency levels to older wavefronts. Since GPU hardware

schedules concurrent wavefronts to maximize resource uti-

lization as noted in §III-C, the dependency level of a user

task approximates its waiting time for dependency resolution.

If there are multiple user tasks with the same number of

dependency levels, SET assigns neighboring user tasks to

adjacent wavefronts to improve data locality. For example, in

Figure 5, U1 is a root task (no predecessors), while U3, U5, and

U2 have one level of data dependency; hence, SET assigns U1,

U3, U5, and U2 to the worker wavefronts W0, W2, W3, and W1

in kernel K0. Since all U tasks in A3 are independent, SET

executes A3 without any dependency tracking and resolution

and assigns the neighboring U4, U6, U7, and U9 tasks to the

adjacent W0, W1, W2, and W3 wavefronts in K2.
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Algorithm 2 Push or pull execution of adaptive tasks on

GPU architectures.
Require: app data � For example, a sparse matrix.

Require: SET sched � Schedule of U tasks on worker wavefronts.

Require: u deps � No. of pending dependencies for each U task.

Require: u done � The state of each U task.

1: for ∀ U tasks in parallel do
2: i = GET UTASK(SET sched)

3: while ATOMIC(u deps(i) �= 0) do � Active waiting

4: NOOP
5: end while
6: Compute task i on the worker SIMD units
7: for each j successor of task i do
8: ATOMIC(u deps(j) = u deps(j)− 1)
9: end for

10: for each j predecessor of task i do
11: while ATOMIC(u done(j) �= 1) do � Active waiting

12: NOOP
13: end while
14: Perform ready ops. of task i on worker SIMD units
15: end for
16: ATOMIC(u done(i) = 1)

17: end for

2) Push vs. Pull Execution within Adaptive Tasks: ATA

supports both the push and pull execution models of a com-

putational DAG. Algorithm 2 shows the high-level (abstract)

execution of adaptive tasks with fine-grained data dependen-

cies using push or pull models (as indicated by the different

gray backgrounds). In push execution, ATA uses an auxiliary

data structure (u deps) to manage the fine-grained data depen-

dencies by tracking the number of pending dependencies for

each user task. Once all dependencies are met, user tasks can

proceed to execute on the SIMD units of their worker wave-

front. (The assignment of user tasks to worker wavefronts is

determined by the SET schedule.) When a user task completes

its operations, it pushes the active state to its successors by

decreasing their pending dependencies. Hence, push execution

often needs many atomic write operations. Conversely, pull

execution tracks the active state of user tasks using the u done
data structure. As such, each user task pulls the state of its

predecessors and cannot perform the dependent computations

until the predecessor tasks finish execution. Once a user task

completes, it updates the corresponding state in u done. Thus,

pull execution performs more read operations compared to the

push model. However, it can pipeline the computations (lines

10 and 14 in Algorithm 2) to hide the memory access latency.

C. Task Aggregation Policies
Finding the optimal granularity of a given application’s

DAG on a many-core GPU is a complicated process. First,

the active waiting (dependency tracking) overhead increases

with the size of aggregated tasks. In addition, a user task

on the critical path can delay the execution of its aggre-

gated task, including the other co-located user tasks. On the

other hand, as the size of aggregated tasks becomes larger,

the cost of managing their coarse-grained dependencies and

launching user tasks decreases; moreover, increasing the size

of aggregated tasks reduces the idle/waiting time, including

dependency resolution time, which improves the resource uti-

lization. Therefore, optimal task aggregation requires detailed

application and architecture modeling as well as sophisticated

tuning and profiling. However, by leveraging the knowledge

of the target hardware architecture and application domain,

simple heuristics can achieve near-optimal performance.

Unlike CPU architectures, GPUs are throughput-oriented

and rely on massive multithreading (i.e., dispatching more

threads/wavefronts than the available compute resources) to

maximize resource utilization and to hide the execution and

memory-access latencies [38]. This massive multithreading is

possible due to the negligible scheduling overhead between

stalled wavefronts and other active wavefronts. Thus, the

GPU hardware can be efficiently used, if and only if, enough

concurrent wavefronts are active (or in-flight). Hence, if each

user task executes on a wavefront, the minimum size of an

adaptive task, Smin, is limited by the number of CUs and the

occupancy (active wavefronts per CU) of the GPU device:

Smin = num CU × occupancy (1)

As detailed before, increasing the size of an adaptive task

has several side effects. However, any aggregation heuristic

should ensure that the size of an adaptive task is large enough

to amortize the cost of launching the aggregated tasks and

tracking their progress. On GPUs, such cost is typically

dominated by launching the aggregated tasks as GPU kernels

(Tl). If the average execution time of a user task is Tu, the

size of an adaptive task can be tuned as follows:

S = R× (Tl/Tu), S > 1 and R > 0 (2)

The above equation indicates that the execution time of an

aggregated task should be much larger than its launch cost.

Typically, R is selected such that Tl is less than 1% of the

average time of an adaptive task, while the execution time

of user tasks can be estimated by profiling them in parallel

to determine Tu. Since the dependency management overhead

can be several orders of magnitude higher than the execution

time of user tasks (as shown in §IV), and the profiling is

performed only once in the preprocessing phase, the additional

profiling overhead is negligible.

In summary, the proposed heuristic for tuning the granulari-

ty/size (S) of adaptive tasks, using Eq. (1) and (2), ensures that

the performance is limited by the inherent application depen-

dencies rather than resource underutilization, idle/waiting time,

or kernel launch cost. Once the granularity is selected, different

task aggregation mechanisms can be used with additional

performance trade-offs. In particular, we propose the following

concurrency-aware and locality-aware aggregation techniques,

which are formally detailed in Algorithms 3 and 4.

Concurrency-aware (CA) Aggregation. ATA aggregates

user tasks starting from the root DAG level before moving to

the next levels. If the current DAG level has more than S user

tasks, ATA launches this level as an adaptive task. Otherwise, it

merges the next level in the current adaptive task and continues

aggregating. That way, adaptive tasks end up having at least a

size of S user tasks. Such an aggregation mechanism increases
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Fig. 6: Concurrency- and locality-aware aggregations of the application DAG in Figure 3. The adaptive task granularity is four.

Algorithm 3 Concurrency-aware (CA) Aggregation

Require: u levels � User tasks in each DAG level.
Require: S � Granularity/size of adaptive tasks.
Ensure: a tasks � Adaptive tasks.

1: a task = GET CURRENT ATASK(a tasks)
2: for ∀ U levels do
3: i = GET LEVEL(u levels)
4: ADD UTASKS(a task, u levels(i)) � Aggregate U tasks.
5: if SIZE(a task) ≥ S then
6: a task = CREAT ATASK(a tasks)
7: end if
8: end for

Algorithm 4 Locality-aware (LA) Aggregation

Require: u tasks, u loc � User tasks and their locality info.
Require: S � Granularity/size of adaptive tasks.
Ensure: a tasks � Adaptive tasks.

1: a task = GET CURRENT ATASK(a tasks)
2: for ∀ U tasks do
3: i = GET U ID(u loc)
4: ADD UTASK(a task, u tasks(i)) � Aggregate U tasks.
5: if SIZE(a task) ≥ S then
6: a task = CREAT ATASK(a tasks)
7: end if
8: end for

concurrency among user tasks in the same adaptive task and

minimizes the overall critical path of the hierarchical DAG;

however, it ignores data locality.
Locality-aware (LA) Aggregation. This policy improves

data locality across the memory hierarchy by merging neigh-

boring user tasks into the same adaptive task, which can

benefit applications with high spatial locality. The task locality

information is based on knowledge of standard sparse formats,

and it can also be incorporated as a programmer hint. Unlike

the CA approach, LA aggregation may increase the overall

critical path of hierarchical DAGs, as a user task on the critical

path can delay the execution of neighboring user tasks.
Figure 6 shows an example of the different aggregation

policies, where the adaptive task granularity is four (4) user

tasks. Due to the limited concurrency at the root DAG level,

CA aggregation combines this level and the next one into the

adaptive task A1. Next, it encapsulates the third DAG level

in A2 which does not require any fine-grained dependency

management. Finally, CA aggregation merges the fourth and

fifth DAG levels in A3 to reach the required granularity. In

contrast, LA aggregation merges the neighboring user tasks

into four adaptive tasks. While CA aggregation achieves the

same critical path as the original application DAG, that is,

five user tasks (U1 → U2 → U6 → U10 → U16), the resulting

hierarchical DAG from LA aggregation has a longer critical

path of nine user tasks (U1 → U3 → U4 → U5 → U9 →
U11 → U14 → U15 → U16).

We also considered greedy aggregation, which combines the

maximum number of user tasks that can fit on the GPU1 in a

single adaptive task. Compared to other aggregation policies,

greedy aggregation does not adapt to the DAG structure,

leading to excessive active waiting for application DAGs with

high concurrency, as adaptive tasks are unlikely to execute

without needing a fine-grained dependency management.

IV. PERFORMANCE EVALUATION

We evaluate the proposed ATA framework using a set of rep-

resentative kernels for sparse solvers. These kernels implement

the sparse triangular solve (SpTS) and sparse incomplete LU

factorization with zero level of fill in (SpILU0) algorithms,

which are detailed in Algorithms 1 and 5. Specifically, we

consider the push and pull execution variants of SpTS using

the compressed sparse column (CSC) and compressed sparse

row (CSR) formats, respectively, and the left-looking pull

execution of SpILU0 using the CSC format [1], [2]. In

addition, we evaluate the end-to-end solver performance using

the preconditioned conjugate gradient (PCG) method [2].

We compare ATA to level-set execution [15]–[19] and self-

scheduling approaches [21]–[24]. The target GPU kernels are

implemented in OpenCL, while the host code is written in C++

and leverages the open-source ATMI runtime [27] to dispatch

GPU kernels. Using double-precision arithmetic, we report the

performance and overhead numbers for the system solution

phase as an average over 100 runs2. It is important to note

that the different DAG execution approaches, namely, ATA,

level-set, and self-scheduling, generate identical results using

1This number is limited by the available memory and maximum number
of active wavefronts on the GPU.

2The reported performance for SpTS (push traversal) with self-scheduling
approach is based on executing the OpenCL code from Liu et al. [23], [24].
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Algorithm 5 Sparse Incomplete LU Factorization with zero

level of fill in (SpILU0)

Require: A � Input matrix that will be decomposed into L and U
1: for j = 1 to n do � Current column
2: for k = 1 to j − 1 where A(k, j) �= 0 do � Predecessors
3: for i = k + 1 to n where A(i, k) & A(i, j) �= 0 do
4: A(i, j) = A(i, j)−A(i, k)×A(k, j) � Elimination
5: end for
6: end for
7: for i = j + 1 to n where A(i, j) �= 0 do
8: A(i, j) = A(i, j)/A(j, j) � Normalization
9: end for

10: end for

the same computations and only differ in the data-dependency

management, as detailed in the previous sections.

A. Experimental Setup
1) Input Data: The experiments consider representative

problems with different sizes and dependency structures that

cover a wide range of application domains, such as fluid

dynamics, electromagnetics, mechanics, atmospheric models,

structural analysis, thermal analysis, power networks, and

circuit simulation [45]. Table I presents the characteristics

of the test problems, where the problem ID is assigned in

an ascending order of the number of unknowns. Further,

to clarify the experimental results, we classify the resulting

application DAG of the input problems into wide DAG, L-

shape DAG, and parallel DAG. Figure 7 shows an example

of these different DAG types. The parallel DAG has a short

critical path (typically less than 100 user tasks) such that the

performance is bounded by the execution time rather than the

data dependencies. In L-shape DAGs, most of the user tasks

are in the higher DAG levels and the number of concurrent

user tasks significantly decreases as we move down the critical

path. Conversely, in wide DAGs, the majority of DAG levels

are wide with enough user tasks to utilize at least the available

SIMD elements in each compute unit (i.e., four wavefronts per

CU in target GPUs).

Wide DAG L-shape DAG Parallel DAG

Fig. 7: An example of the different DAG classes. The x-axis

shows the number of user tasks, while the y-axis represents

the DAG levels (critical path).

2) Test Platform: The test platform is a Linux server with

an Intel Xeon E5-2637 CPU host running at 3.50 GHz and

multiple GPU devices. The server runs the Debian 8 distribu-

tion and ROCm 1.8.1 software stack, and the applications are

built using GCC 7.3 and CLOC (CL Offline Compiler) 1.3.2.

In the experiments, we consider two different generations

of AMD GPU devices: Radeon Vega Frontier Edition [28]

(VEGA-FE) and Radeon R9 Nano [46] (R9-NANO). Table II

details the specifications of the target GPUs. For brevity, we

only show the detailed results for the VEGA-FE GPU. In

addition, we use micro-benchmarks to profile the overhead

of atomic operations and kernel launch.

TABLE I: Characteristics of the sparse problems

Prob. ID Name #unknowns #nonzeros
P1 onetone2 36,057 222,596
P2 onetone1 36,057 335,552
P3 TSOPF RS b300 c3 42,138 4,413,449
P4 bcircuit 68,902 375,558
P5 circuit 4 80,209 307,604
p6 ASIC 100ks 99,190 578,890
P7 hcircuit 105,676 513,072
P8 twotone 120,750 1,206,265
P9 FEM 3D thermal2 147,900 3,489,300
P10 G2 circuit 150,102 726,674
P11 scircuit 170,998 958,936
P12 hvdc2 189,860 1,339,638
P13 thermomech dK 204,316 2,846,228
P14 offshore 259,789 4,242,673
P15 ASIC 320ks 321,671 1,316,085
P16 rajat21 411,676 1,876,011
P17 cage13 445,315 7,479,343
P18 af shell3 504,855 17,562,051
P19 parabolic fem 525,825 3,674,625
P20 ASIC 680ks 682,712 1,693,767
P21 apache2 715,176 4,817,870
P22 ecology2 999,999 4,995,991
P23 thermal2 1,228,045 8,580,313
P24 atmosmodd 1,270,432 8,814,880
P25 G3 circuit 1,585,478 7,660,826
P26 memchip 2,707,524 13,343,948
P27 Freescale2 2,999,349 14,313,235
P28 Freescale1 3,428,755 17,052,626
P29 circuit5M dc 3,523,317 14,865,409
P30 rajat31 4,690,002 20,316,253

TABLE II: Target GPU architectures

GPU Max. freq. Memory Mem. BW #cores
R9-NANO 1000 MHz 4 GB 512 GB/s 4,096
VEGA-FE 1600 MHz 16 GB 483 GB/s 4,096

B. Experimental Results

The results reported here demonstrate the capabilities of

the ATA framework with its different aggregation policies,

where the adaptive task granularity (S) is selected using

the profiling-based heuristic from Eq. (1) and (2). In the

experiments, we set R to 100 in Eq. (2) to ensure that the

overhead of coarse-grained dependency management across

adaptive tasks is less than 1% of their average execution time.

To measure the overhead of managing the data dependencies

of the application DAGs, we execute these DAGs without

any dependency management and with the different DAG

execution approaches. Such overhead represents the kernel

launch and workload imbalance (global synchronization) for

level-set execution and the active waiting for self-scheduling

methods, while it shows the processing cost of hierarchical

DAGs for ATA execution as illustrated in §III-B.

Figure 8 shows the performance and overhead of the SpTS

kernel using push traversal and CSC format. The results

demonstrate that the ATA framework significantly outper-

forms the other approaches, achieving a geometric mean

speedup of 3.3× and 3.7× on VEGA-FE and R9-NANO
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Fig. 8: The performance and overhead of SpTS (push traversal) kernels using the different execution approaches on VEGA-FE.

GPUs, respectively. Due to the higher cost of active waiting

on the R9-NANO GPU, ATA achieves better performance

compared to self-scheduling. Furthermore, the results indi-

cate that concurrency-aware (CA) aggregation outperforms

locality-aware (LA) aggregation, as sparse applications tend

to have limited spatial locality and LA aggregation can also

increase the critical execution path (see §III-C). In addition,

the pull variant of SpTS shows a similar trend to the push

execution (omitted for brevity). However, ATA has a slightly

lower geometric mean speedup of 3.0× and 3.3× on VEGA-

FE and R9-NANO GPUs, respectively, compared to the push

execution as the pull execution requires lower dependency

management overhead (see §III-B).
Most importantly, ATA has better performance across the

different types of application DAGs due to its hierarchical

dependency management and efficient mapping of user tasks

to the active wavefronts using SET scheduling. In particu-

lar, the self-scheduling approach is even worse than level-

set execution for wide DAGs because the large number of

user tasks at the lower DAG levels incur significant active-

waiting overhead; such overhead can be higher than the

computation time by more than two orders of magnitude for

large-scale problems with long critical paths, as explained

in Figure 8. For L-shaped DAGs, the average performance

of level-set execution is significantly worse than the other

methods because of the limited number of concurrent user

tasks in the majority of DAG levels; hence, the overhead of

global barrier synchronization becomes prohibitive, especially

for problems with deeper critical paths. On the other hand,

the results for L-shaped and parallel DAGs show that level-

set execution achieves comparable (or better) performance to

self-scheduling as the length of the critical path (i.e., number

of DAG levels) decreases, due to the higher concurrency and

the lower overhead of global barrier synchronization.

Figure 9 shows the performance and overhead of the pull

execution of SpILU0 using the different DAG execution

methods. Since SpILU0 performs more operations than SpTS,

the dependency-management overhead is relatively smaller

compared to the computation time. Specifically, in SpILU0,

the number of operations is relative to the number of non-zero

elements of each user task and also the non-zero elements of its

predecessors, which results in roughly an order of magnitude

smaller adaptive grain size (S) compared to SpTS. Hence, ATA

achieves a geometric mean speedup of 2.2× for the SpILU0

kernel in comparison with a geometric mean speedup of 3.0×–

3.7× for the different variants of SpTS.

Finally, Figure 10 presents the preprocessing cost required

to generate ATA’s hierarchical DAG from the fine-grained

application DAG for each sparse problem. Since such a cost

depends on the number of user tasks and data dependencies, it

increases with the problem size; however, the maximum cost

is approximately 0.1 second in the target benchmarks, which

include sparse problems with millions of tasks (i.e., unknowns)

and tens of millions of data dependencies (i.e., nonzeros). LA

aggregation has a higher cost than CA aggregation because

it typically uses a larger number of data dependencies, as

explained in §III-C. Specifically, the geometric mean cost of

generating the hierarchical DAG is 18 ms and 22 ms for the

CA and LA aggregation policies, respectively.

It is important to note that once the hierarchical DAG is

generated, it can be used many times during the application

run. Target user applications, such as CFD and CAD applica-

tions, typically solve a nonlinear system of equations at many

time points; each nonlinear system solution requires several

iterations of a linear system solver, which in turn needs tens to

hundreds of iterations to converge [2]. Thus, in practice, such a

preprocessing cost is negligible. In addition, the preprocessing

phase can be overlapped with other operations, including the
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Fig. 9: The performance and overhead of SpILU0 (pull traversal) using the different execution approaches on VEGA-FE.
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Fig. 10: The cost of hierarchical DAG transformation using

the different task aggregation policies.

system solution phase. Optimizing the preprocessing cost is

outside the scope of this paper and a further reduction of this

cost is feasible.

C. End-to-End Solver Performance
To evaluate the end-to-end solver performance, we use the

preconditioned conjugate gradient (PCG) method for solving

linear systems with a symmetric and positive-definite (SPD)

matrix [2]. We implemented a PCG solver, based on Algo-

rithm 9.1 from Saad [2], using the data-dependent kernels

discussed in the paper (namely, SpTS and SpILU0) and open-

source SpMV and BLAS kernels from clSPARSE library [47].

Specifically, the data-dependent kernels of PCG solver perform

pull traversal of application DAGs to execute the compute

tasks. In the experiment, the right-hand side is a unit vector

and the maximum number of iterations allowed to find a

solution is 2000. The PCG solver converges when the relative

residual (tolerance) is below one millionth (10−6), starting

from an initial guess of zero. We evaluate three versions of

the PCG solver; each version uses different SpTS and SpILU0

kernels, based on ATA and prior level-set and self-scheduling

approaches, and the same SpMV and BLAS kernels.
Figure 11 presents the execution time and number of

iterations of the PCG solver for the set of SPD problems in

Table I. The detailed profiling indicates that data-dependent

kernels constitute the majority of execution time, ranging from

76% to 99% of total runtime across PCG solver versions

and input problems. As a result, the performance of the

PCG solver shows a similar trend to data-dependent ker-

nels, where ATA significantly outperforms previous methods

across the different sparse problems. The performance gain

depends on the characteristics of input problems, as discussed

in §IV-B. Overall, this experiment demonstrates the efficacy

of the proposed framework to greatly improve end-to-end

solver performance. Specifically, ATA’s PCG solver achieves a

geometric mean speedup of 4.4× and 8.9× compared to PCG

solvers implemented using prior level-set and self-scheduling

methods, respectively.
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Fig. 11: The performance of PCG solver on VEGA-FE.

V. RELATED WORK

A. GPU Sparse Solvers

In addition to the widely adopted level-set [15]–[19] and

self-scheduling [21]–[25] techniques, which we discussed in

previous sections, several approaches have been proposed to

improve the performance of sparse solvers on GPUs. Graph-

coloring methods [48], [49] can increase the parallelism of

sparse solvers by permuting the rows and columns of input

matrices; however, such a permutation breaks the original data

dependencies and the corresponding DAG execution order,

which affects the accuracy of the system solution and typically
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increases the number of iterations needed for convergence

in iterative solvers [2]. In addition, finding the color sets of

a DAG is an NP-complete problem that requires significant

preprocessing overhead. Prior work [50], [51] used approx-

imate algorithms to solve the target sparse system without

dependency management. Similar to graph-coloring methods,

these approximation algorithms affect the solution accuracy

and convergence rate of sparse solvers.

Various approaches [52]–[55] exploit dense patterns in

the underlying sparse problems and use dense BLAS [56]

routines/kernels to improve data locality and to reduce the

indirect addressing overhead; however, such techniques are

limited to problems with structured sparsity patterns. Recently,

Wang et al. [42] proposed sparse level tile (SLT) format,

which is tailored for locality-aware execution of SpTS on

Sunway architecture. Nevertheless, end users need to either

refactore existing applications to use such a specialized format

or convert their sparse data before and after each call to SLT-

based solvers.

B. Dependency Management Frameworks

Researchers have designed many software and hardware

frameworks to address the limitations of the data-parallel
execution of irregular applications with a data-dependent
parallelism on GPU architectures.

Juggler [37] is a DAG-based execution scheme for Nvidia

GPUs that maintains task queues on the different compute

units and employs persistent workers (workgroups) to execute

ready tasks and to resolve the data dependencies of waiting

tasks. Other frameworks [33], [34], [36] adopt a similar

execution model with persistent threads (PT) on GPUs. PT

execution significantly reduces GPU throughput by running

one worker per compute unit, which limits the latency hiding

ability of GPU hardware schedulers. Conversely, ATA executes

multiple workers per compute unit to maximize the utilization

of GPU resources and to expose the inherent parallelism of

user applications. Moreover, achieving workload balance using

distributed task queues is difficult and requires significant

processing overhead. As a result, PT approaches typically

execute user tasks at the granularity of workgroups. In contrast,

ATA leverages the existing hardware schedulers for GPUs,

which perform dynamic resource management across active

wavefronts, to reduce the idle/waiting time by concurrently

executing the available tasks in user applications and mapping

them to active wavefronts. Further, ATA can support a wide

range of granularity from wavefronts to workgroups.

Pagoda [35] and GeMTC [57] adopt a centralized schedul-

ing approach to execute independent tasks on GPUs using a

resident kernel, which distributes ready tasks to compute units

at the warp/wavefront granularity. However, these frameworks

assume that all dispatched tasks are ready for execution and do

not support dependency tracking and resolution. Specifically,

they rely on the host to send ready tasks to GPU after their

dependencies are resolved. Therefore, Pagoda and GeMTC

suffer from host-device communication which is the limited

by the PCI-E bandwidth.

Runtime systems for task management such as StarPU [29]

and Legion [30] schedule the data-dependent computations on

a heterogeneous architecture consisting of multiple CPUs and

GPUs. These systems consider a single device as a worker

which limits their applicability to irregular applications with

coarse-grained tasks, where the dependency management over-

head is a fraction of the overall execution time. In addition,

managing data dependencies on the host introduces significant

host-device communication and synchronization overhead.
Prior software systems [58]–[61] improve the performance

of dynamic parallelism, where a GPU kernel can launch child

kernels, by aggregating the independent work-items across

child kernels to amortize the kernel launch overhead; however,

these techniques are not suitable to execute application DAGs

with many-to-many relationship between predecessor and suc-

cessor tasks. Conversely, in this paper, work aggregation is

used to execute irregular applications with data-dependent
tasks within and across GPU kernels, which requires efficient

dependency tracking and resolution. Hence, ATA aggregates

data-dependent work across user tasks with a DAG execution

order and then enforces this order using a hierarchical depen-

dency management and task scheduling scheme.
Alternatively, hardware approaches [41], [62]–[64] aggre-

gate and execute data-dependent computations on many-core

GPUs using dedicated hardware units or specialized work-

group (thread-block) schedulers. Unlike these approaches,

ATA works on current

VI. CONCLUSION

In this paper, we proposed adaptive task aggregation (ATA)

to greatly reduce the dispatch, scheduling, and dependency

management overhead of irregular computations with fine-

grained tasks and strong data dependencies on GPU architec-

tures. Unlike previous work, ATA adapts to the dependency

structure of underlying problems using (1) hierarchical depen-

dency management at multiple levels of granularity and (2)

efficient sorted eager task (SET) scheduling of the application

tasks based on their expected dependency-resolution time.
As such, the ATA framework achieves significant perfor-

mance gains across the different types of application problems.

Specifically, the experiments with various sparse solver kernels

demonstrated a geometric mean speedup of 2.2× to 3.7× over

the existing DAG execution approaches and up to two orders-

of-magnitude speedups for large-scale problems with a wide

DAG and long critical path.

ACKNOWLEDGMENTS

We thank Joe Greathouse for the technical discussions related to
SpTS. This work was supported in part by the DOE PathForward
program and the Synergistic Environments for Experimental Com-
puting (SEEC) Center via a seed grant from the Institute for Critical
Technology and Applied Science (ICTAS), an institute dedicated to
transformative, interdisciplinary research for a sustainable future.

©2019 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD

Arrow logo, Radeon Vega Frontier Edition, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product names used in

this publication are for identification purposes only and may be trademarks

of their respective companies.

333



REFERENCES

[1] T. Davis, Direct Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, 2006.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Society
for Industrial and Applied Mathematics, 2003.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson et al., “The Landscape of Parallel Computing
Research: A View from Berkeley,” University of California, Berkeley,
Tech. Rep., 2006.

[4] B. Catanzaro, K. Keutzer, and B.-Y. Su, “Parallelizing CAD: A Timely
Research Agenda for EDA,” in Proceedings of the 45th annual Design
Automation Conference (DAC). ACM, 2008, pp. 12–17.

[5] Y. S. Deng, B. D. Wang, and S. Mu, “Taming Irregular EDA Applica-
tions on GPUs,” in Proceedings of the 2009 International Conference
on Computer-Aided Design (ICCAD). ACM, 2009, pp. 539–546.

[6] A. E. Helal, A. M. Bayoumi, and Y. Y. Hanafy, “Parallel Circuit
Simulation Using the Direct Method on a Heterogeneous Cloud,” in
Proceedings of the 52nd Annual Design Automation Conference (DAC).
ACM, 2015, pp. 186:1–186:6.

[7] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra, J. Kepner and J. Gilbert, Eds. Society for Industrial and
Applied Mathematics, 2011.

[8] Y. Koren, R. Bell, and C. Volinsky, “Matrix Factorization Techniques
for Recommender Systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug.
2009.

[9] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and
J. Hellerstein, “Graphlab: A New Framework for Parallel Machine
Learning,” arXiv preprint arXiv:1408.2041, 2014.

[10] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-Performance
Conjugate-Gradient Benchmark: A New Metric for Ranking High-
Performance Computing Systems,” The International Journal of High
Performance Computing Applications, vol. 30, no. 1, pp. 3–10, 2016.

[11] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the Future of Parallel Computing,” IEEE Micro, vol. 31,
no. 5, pp. 7–17, 2011.

[12] J. Shuja, K. Bilal, S. A. Madani, M. Othman, R. Ranjan, P. Balaji, and
S. U. Khan, “Survey of Techniques and Architectures for Designing
Energy-Efficient Data Centers,” IEEE Systems Journal, vol. 10, no. 2,
pp. 507–519, 2016.

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A System for
Large-Scale Machine Learning,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2016, pp. 265–283.

[14] Y. Wang, Y. Pan, A. Davidson et al., “Gunrock: GPU Graph Analytics,”
ACM Transactions on Parallel Computing (TOPC), vol. 4, no. 1, pp.
3:1–3:49, Aug. 2017.

[15] E. Anderson and Y. Saad, “Solving Sparse Triangular Linear Systems on
Parallel Computers,” International Journal of High Speed Computing,
vol. 1, no. 01, pp. 73–95, 1989.

[16] J. H. Saltz, “Aggregation Methods for Solving Sparse Triangular Sys-
tems on Multiprocessors,” SIAM journal on scientific and statistical
computing, vol. 11, no. 1, pp. 123–144, 1990.

[17] M. Naumov, “Parallel Solution of Sparse Triangular Linear Systems in
the Preconditioned Iterative Methods on the GPU,” NVIDIA, Tech. Rep.
NVR-2011-001, 2011.

[18] ——, “Parallel Incomplete-LU and Cholesky Factorization in the Pre-
conditioned Iterative Methods on the GPU,” NVIDIA, Tech. Rep. NVR-
2012-003, 2012.

[19] R. Li and Y. Saad, “GPU-Accelerated Preconditioned Iterative Linear
Solvers,” The Journal of Supercomputing, vol. 63, no. 2, pp. 443–466,
2013.

[20] L. G. Valiant, “A Bridging Model for Parallel Computation,” Commu-
nications of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[21] J. H. Saltz, R. Mirchandaney, and K. Crowley, “Run-Time Parallelization
and Scheduling of Loops,” IEEE Transactions on computers, vol. 40,
no. 5, pp. 603–612, 1991.

[22] L.-S. Chien, “How to Avoid Global Synchronization by Domino
Scheme,” in GPU Technology Conference (GTC), 2014.

[23] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter, “A Synchronization-
Free Algorithm for Parallel Sparse Triangular Solves,” in Proceedings
of the 22nd European Conference on Parallel Processing (Euro-Par).
Springer, 2016, pp. 617–630.

[24] W. Liu, A. Li, J. D. Hogg, I. S. Duff, and B. Vinter, “Fast
Synchronization-Free Algorithms for Parallel Sparse Triangular Solves
with Multiple Right-Hand Sides,” Concurrency and Computation: Prac-
tice and Experience, vol. 29, no. 21, p. e4244, 2017.

[25] J. I. Aliaga, E. Dufrechou, P. Ezzatti, and E. S. Quintana-Ortı́, “Accel-
erating the Task/Data-Parallel Version of ILUPACK’s BiCG in Multi-
CPU/GPU Configurations,” Parallel Computing, vol. 85, pp. 79–87,
2019.

[26] A. Li, G.-J. van den Braak, H. Corporaal, and A. Kumar, “Fine-Grained
Synchronizations and Dataflow Programming on GPUs,” in Proceedings
of the 29th ACM on International Conference on Supercomputing (ICS).
ACM, 2015, pp. 109–118.

[27] S. Puthoor, A. M. Aji, S. Che, M. Daga, W. Wu, B. M. Beckmann,
and G. Rodgers, “Implementing Directed Acyclic Graphs with the
Heterogeneous System Architecture,” in Proceedings of the 9th Annual
Workshop on General Purpose Processing using Graphics Processing
Unit (GPGPU). ACM, 2016, pp. 53–62.

[28] AMD, “Radeon’s Next-Generation Vega Architecture,”
https://radeon.com/ downloads/vega-whitepaper-11.6.17.pdf, 2017.

[29] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A
Unified Platform for Task Scheduling on Heterogeneous Multicore Ar-
chitectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[30] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
Locality and Independence with Logical Regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis (SC). IEEE, 2012, pp. 1–11.

[31] T. Gautier, J. V. Lima, N. Maillard, and B. Raffin, “Xkaapi: A Runtime
System for Dataflow Task Programming on Heterogeneous Architec-
tures,” in Proceedings of IEEE 27th International Symposium on Parallel
and Distributed Processing (IPDPS ). IEEE, 2013, pp. 1299–1308.

[32] K. Gupta, J. A. Stuart, and J. D. Owens, “A Study of Persistent
Threads Style GPU Programming for GPGPU Workloads,” in Innovative
Parallel Computing-Foundations & Applications of GPU, Manycore, and
Heterogeneous Systems (INPAR 2012). IEEE, 2012, pp. 1–14.

[33] M. Steinberger, B. Kainz, B. Kerbl, S. Hauswiesner, M. Kenzel, and
D. Schmalstieg, “Softshell: Dynamic Scheduling on GPUs,” ACM Trans-
actions on Graphics (TOG), vol. 31, no. 6, p. 161, 2012.

[34] M. Steinberger, M. Kenzel, P. Boechat, B. Kerbl, M. Dokter, and
D. Schmalstieg, “Whippletree: Task-Based Scheduling of Dynamic
Workloads on the GPU,” ACM Transactions on Graphics (TOG), vol. 33,
no. 6, p. 228, 2014.

[35] T. T. Yeh, A. Sabne, P. Sakdhnagool, R. Eigenmann, and T. G. Rogers,
“Pagoda: Fine-Grained GPU Resource Virtualization for Narrow Tasks,”
in Proceedings of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP). ACM, 2017, pp. 221–
234.

[36] Z. Zheng, C. Oh, J. Zhai, X. Shen, Y. Yi, and W. Chen, “Versapipe: A
Versatile Programming Framework for Pipelined Computing on GPU,”
in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). ACM, 2017, pp. 587–599.

[37] M. E. Belviranli, S. Lee, J. S. Vetter, and L. N. Bhuyan, “Juggler:
A Dependence-aware Task-based Execution Framework for GPUs,” in
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). ACM, 2018, pp. 54–67.

[38] M. Garland and D. B. Kirk, “Understanding Throughput-Oriented Ar-
chitectures,” Communications of the ACM, vol. 53, no. 11, pp. 58–66,
Nov. 2010.

[39] P. Rogers and A. Fellow, “Heterogeneous System Architecture
Overview,” in IEEE Hot Chips 25 Symposium (HCS). IEEE, 2013,
pp. 1–41.

[40] D. Nguyen, A. Lenharth, and K. Pingali, “A Lightweight Infrastructure
for Graph Analytics,” in Proceedings of the 24th ACM Symposium on
Operating Systems Principles (SOSP). ACM, 2013, pp. 456–471.

[41] A. A. Abdolrashidi, D. Tripathy, M. E. Belviranli, L. N. Bhuyan,
and D. Wong, “Wireframe: Supporting Data-Dependent Parallelism
through Dependency Graph Execution in GPUs,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). ACM, 2017, pp. 600–611.

[42] X. Wang, W. Xue, W. Liu, and L. Wu, “swSpTRSV: A Fast Sparse Tri-
angular Solve with Sparse Level Tile Layout on Sunway Architectures,”
in Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). ACM, 2018, pp. 338–353.

334



[43] J. Park, M. Smelyanskiy, N. Sundaram, and P. Dubey, “Sparsifying
Synchronization for High-Performance Shared-Memory Sparse Trian-
gular Solver,” in Proceedings of the 29th International Supercomputing
Conference (ISC). Springer, 2014, p. 124.

[44] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious
Wavefront Scheduling,” in Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2012,
pp. 72–83.

[45] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Transactions on Mathematical Software (TOMS),
vol. 38, no. 1, p. 1, 2011.

[46] J. Macri, “AMD’s Next-Generation GPU and High-Bandwidth Memory
Architecture: FURY,” in IEEE Hot Chips 27 Symposium (HCS). IEEE,
2015, pp. 1–26.

[47] J. L. Greathouse, K. Knox, J. Poła, K. Varaganti, and M. Daga,
“clSPARSE: A Vendor-Optimized Open-Source Sparse BLAS Library,”
in Proceedings of the 4th International Workshop on OpenCL (IWOCL).
ACM, 2016, p. 7.

[48] B. Suchoski, C. Severn, M. Shantharam, and P. Raghavan, “Adapting
Sparse Triangular Solution to GPUs,” in 2012 41st International Con-
ference on Parallel Processing (ICPP) Workshops. IEEE, 2012, pp.
140–148.

[49] M. Naumov, P. Castonguay, and J. Cohen, “Parallel Graph Coloring with
Applications to the Incomplete-LU Factorization on the GPU,” Nvidia
White Paper, 2015.

[50] E. Chow and A. Patel, “Fine-Grained Parallel Incomplete LU Factoriza-
tion,” SIAM journal on Scientific Computing, vol. 37, no. 2, pp. C169–
C193, 2015.

[51] H. Anzt, E. Chow, and J. Dongarra, “Iterative Sparse Triangular Solves
for Preconditioning,” in Proceedings of the 21st European Conference
on Parallel Processing (Euro-Par). Springer, 2015, pp. 650–661.

[52] T. George, V. Saxena, A. Gupta, A. Singh, and A. R. Choudhury,
“Multifrontal Factorization of Sparse SPD Matrices on GPUs,” in Pro-
ceedings of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2011, pp. 372–383.

[53] S. C. Rennich, D. Stosic, and T. A. Davis, “Accelerating Sparse Cholesky
Factorization on GPUs,” in Proceedings of the 4th Workshop on Irregular
Applications: Architectures and Algorithms. IEEE, 2014, pp. 9–16.

[54] X. Lacoste, M. Faverge, G. Bosilca, P. Ramet, and S. Thibault, “Taking
Advantage of Hybrid Systems for Sparse Direct Solvers via Task-
Based Runtimes,” in Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS) Workshops. IEEE, 2014,
pp. 29–38.

[55] S. N. Yeralan, T. A. Davis, W. M. Sid-Lakhdar, and S. Ranka, “Algo-
rithm 980: Sparse QR Factorization on the GPU,” ACM Transactions on
Mathematical Software (TOMS), vol. 44, no. 2, p. 17, 2017.

[56] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An
Extended Set of FORTRAN Basic Linear Algebra Subprograms,” ACM
Transactions on Mathematical Software (TOMS), vol. 14, no. 1, pp. 1–
17, 1988.

[57] S. J. Krieder, J. M. Wozniak, T. Armstrong, M. Wilde, D. S. Katz,
B. Grimmer, I. T. Foster, and I. Raicu, “Design and Evaluation of
the GeMTC Framework for GPU-Enabled Many-Task Computing,” in
Proceedings of the 23rd International Symposium on High-Performance
Parallel and Distributed Computing (HPDC). ACM, 2014, pp. 153–
164.
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