
HeTM: Transactional Memory for

Heterogeneous Systems

Daniel Castro1, Paolo Romano2, Aleksandar Ilic3, and Amin M. Khan4

1,2,3 INESC-ID & Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
4 Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway.

1daniel.castro@tecnico.ulisboa.pt, 2romanop@gsd.inesc-id.pt, 3aleksandar.ilic@inesc-id.pt, 4amin.khan@uit.no

Abstract—Modern heterogeneous computing architectures,
which couple multi-core CPUs with discrete many-core GPUs
(or other specialized hardware accelerators), enable unprece-
dented peak performance and energy efficiency levels. However,
developing applications that can take full advantage of the
potential of heterogeneous systems is a notoriously hard task.
This work takes a step towards reducing the complexity of
programming heterogeneous systems by introducing the abstrac-
tion of Heterogeneous Transactional Memory (HeTM). HeTM
provides programmers with the illusion of a single memory
region, shared among the CPUs and the (discrete) GPU(s) of
a heterogeneous system, with support for atomic transactions.
Besides introducing the abstract semantics and programming
model of HeTM, we present the design and evaluation of a con-
crete implementation of the proposed abstraction, referred herein
as Speculative HeTM (SHeTM). SHeTM makes use of a novel
design that leverages speculative techniques, which aims at hiding
the inherently large communication latency between CPUs and
discrete GPUs and at minimizing inter-device synchronization
overhead. We demonstrate the efficiency of the SHeTM via an
extensive quantitative study based both on synthetic benchmarks
and on a popular object caching system.

Index Terms—transaction, memory, CPU, GPU, heterogeneous,
computing, system

I. INTRODUCTION

Single-core performance of central processing units (CPUs)

have reached a plateau in the last decade. In order to enable

further increases of the processing capacity, while attaining

high energy efficiency, modern computing architectures have

henceforth adopted two key paradigms, namely parallelism

and heterogeneity. As a result, nowadays, heterogeneous

architectures that combine multi-core CPUs with many-core

GPUs (or similar co-processors, e.g., TPUs [32]) have become

the de facto standard in a broad range of domains that include

HPC, servers and mobile devices.

Unfortunately, though, developing applications that take

full advantage of the raw performance potential of modern

This work is funded by Fundação para a Ciência e a Tecnologia (FCT)
OE component with references PTDC/EEIS-CR/1743/2014 and PTDC/EEI-
COM/29271/2017 and by Programa Operacional de financiamento POR
Lisboa supported by FEDER with references Lisboa-01-0145-FEDER-
031901 (PTDC/CCI-COM/31901/2017) and Lisboa-01-0145-FEDER-029271
(UID/CEC/50021/2019). Amin’s work is funded by the Research Council of
Norway under PREAPP project (grant n◦ 231746/F20) and eX3 project (grant
n◦ 270053). The authors would also like to thank the anonymous reviewers
for their valuable comments and helpful suggestions.

massively parallel, heterogeneous architectures is a notoriously

hard task. This has fostered, over the last year, intense research

efforts aimed at developing new abstractions and programming

paradigms for reducing the complexity of software development

for modern heterogeneous platforms.

This work focuses on one key problem that arises when

developing concurrent applications, whose complexity is ex-

acerbated when considering massively parallel heterogeneous

architectures, namely how to regulate access to shared data

in a scalable way. We tackle this problem by proposing the

abstraction of Heterogeneous Transactional Memory (HeTM).

The HeTM abstraction combines two paradigms for concurrent

programming, i.e., Transactional Memory (TM) [24], [48] and

Shared Memory (SM) [34], [33], by providing the illusion

of shared memory regions that are seamlessly accessed by

CPUs and GPUs of a heterogeneous system, whose concurrent

accesses can be synchronized via atomic transactions.

A large body of research has been devoted over the last

years to investigate efficient implementations of both the

TM and SM abstractions. Major industrial players in the

heterogeneous computing landscape put a considerable amount

of effort on implementing the SM abstraction, e.g., NVIDIA’s

Unified Memory [22], which represent a strong evidence that

the industrial world perceives the benefits, in terms of ease

of programming. However, existing SM implementations for

heterogeneous systems provide programmers with low-level

synchronization primitives, such as atomic operations and

locks, exposing programmers to another well-known source

of complexity: the need of designing efficient, yet provably

correct, techniques to regulate concurrent access to shared data.

This is a notoriously hard problem, as designing efficient

fine-grained locking protocols is a complex and error prone

task [40] that can compromise one of the key principles of

modern software development, i.e., software composability [23].

TM addresses exactly this problem: thanks to the abstraction of

atomic transactions, programmers only need to specify which

set of operations/code blocks have to be executed atomically,

delegating to the TM implementation the problem of how

atomicity should be achieved. The literature on TM has been

very prolific over the last decade, leading to the development

of a plethora of solutions in software [48], [15], hardware [24],

[56], [38] and combinations thereof [6]. Existing TM solutions,

however, consider homogeneous systems, in which threads

231

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00026

execute either on CPUs [56], [45] or on (discrete) GPUs [18],

[53]. As such, existing TM systems fall short in harnessing

the full potential of heterogeneous systems, failing to support

execution scenarios in which CPUs and GPUs cooperate by

concurrently accessing and manipulating the same state [25],

[59], [37] — which is precisely the goal pursued by HeTM.

Being an extension of the TM abstraction, HeTM is particularly

attractive for irregular applications, such as graphs and complex

data structures that make extensive use of pointers, for which

designing scalable locking schemes can be complex. HeTM

enables the possibility of accelerating this class of applications

by offloading part of the computations, which would be

executed concurrently by some CPU threads, to the GPU.

Building an efficient TM for heterogeneous systems, though,

is far from being a trivial task. In fact, in homogeneous

platforms, where the TM abstraction is confined within the

boundaries of a single processing device, e.g., a multi-core

system or a discrete GPU, conflict detection can be imple-

mented via fast communication channels, e.g., the caches of a

multi-core system. This is what allows existing TM designs

to incur limited overhead, even though they trigger conflict

detection multiple times during transaction execution, possibly

as frequently as upon each memory access of a transaction.

The HeTM abstraction, though, spans physically separated

computational devices, which communicate via channels, such

as PCIe [42], that are orders of magnitude slower than the

ones assumed by conventional TM systems for homogeneous

platforms. In these settings, thus, conventional TM approaches

that impose multiple system-wide synchronizations along the

critical path of execution of each transaction would incur

prohibitive overheads that would cripple performance.

In this work, we tackle this challenge by presenting SHeTM

(Speculative HeTM), the first implementation of the proposed

HeTM abstraction. SHeTM leverages a set of novel techniques

that operate in synergy to effectively mask the latency of the

inter-device communication bus.

Hierarchical conflict detection. SHeTM’s novel hierarchical

approach aims at removing inter-device conflict detection from

the critical path of transaction’s execution, in order to amortize

its cost across batches of transactions. More precisely, SHeTM

detects intra-device conflicts, i.e., conflicts generated between

transactions that execute on the same device (CPU or GPU), by

relying on conventional TM implementations for homogeneous

systems — an approach that we term synchronous, as conflicts

are detected during transaction execution. Inter-device con-

flicts, conversely, are checked asynchronously, i.e., conflicts are

detected periodically between batches of transactions that are

concurrently executed and committed, in a speculative fashion,

at different devices. In absence of conflicts, the updates of

each device are merged, yielding a consistent state at both

devices. If inter-device conflicts are revealed, the speculatively

committed transactions are rolled back and the state of the

devices whose transactions were discarded is re-aligned to that

of the “winning” device.

The use of speculation and asynchronous inter-device conflict

detection not only amortizes the performance toll imposed by

the synchronization over a high-latency inter-connection bus

across a large number of transactions, it also enables the use

of embarrassingly-parallel conflict detection schemes that, by

operating on large transaction batches, can be very efficiently

executed by modern GPUs.

Non-blocking inter-device synchronization: Although the cost of

inter-device conflict detection can be amortized over a batch of

transactions, the larger the batch of transactions processed in a

synchronization round, the higher the likelihood of experiencing

conflicts across devices. Thus, in conflict prone workloads,

where using smaller transaction batches is desirable, it is crucial

for reducing the overhead of the inter-device synchronization

by minimizing the period of time during which transaction

processing is blocked. To this end, SHeTM introduces an

innovative scheme that ensures that, even while inter-device

synchronization is being performed, either the CPU or the

GPU are able to process transactions. This goal is achieved

by combining two mechanisms: i) overlapping the GPU-

based validation of the transactions’ batch with the processing

of transactions on the CPU-side; ii) letting the GPU start

processing the transactions of the next synchronization round,

while the updates produced by the transactions it executed in

the current round are being copied back to the CPU.

Conflict-aware dispatching & early validation: SHeTM exposes

a programmatic interface that allows to control the assignment

of transactions to either CPU or GPU. SHeTM exploits

this information to implement a conflict-aware transaction

dispatching scheme that aims at reducing the likelihood of inter-

device contention. This is achieved by dispatching transactions

that are likely to contend to the same device, where conflicts

can be detected and resolved efficiently using the local TM

implementation. Further, in case inter-device contention does

arise, SHeTM employs an early validation scheme that aims at

reducing overheads (i.e., wasted work) by detecting conflicts

before the synchronization for the current round is activated.

Modular and extensible design. SHeTM is designed to ease

integration with generic CPU-based and GPU-based TM

implementations. To this end, SHeTM exposes a simple generic

interface, which a TM needs to invoke in order to expose

to SHeTM the read-sets and write-sets of the transactions it

speculatively commits. The ability of SHeTM to incorporate

different TM implementations is quite relevant in practice, given

that the design space of TM is very wide and a number of

studies have shown that no-one-size-fits-all TM implementation

exists that can ensure optimal performance across all possible

workloads [54], [11]. This flexibility allows therefore to easily

incorporate in SHeTM additional TM implementations, and to

further increase the robustness of its performance in a wide

spectrum of workloads.

We evaluate SHeTM via an extensive experimental study,

based on synthetic benchmarks — which we use to shape

workloads aimed at quantifying the overheads and gains derived

from the various mechanisms SHeTM employs — and a real

232

world application, MemcachedGPU [25] — which allows us

to assess SHeTM’s performance with a realistic workload as

well as to showcase the benefits, in terms of load balancing

and ease of programming, stemming from the possibility of

concurrently accessing common data from physically separated

computational units.

II. RELATED WORK

Existing programming models for heterogeneous systems

aim to provide different abstraction levels to unify the execution

among devices with different architectures, programming

paradigms and memory spaces. These models span from low-

level and user-managed frameworks (such as OpenCL [19])

up to the fully automated run-time systems (e.g., StarPU [1],

OmpSS [14] and Cashmere [26]). Other recent efforts aimed

at simplifying the accelerator programming with high-level

OpenMP-like directives, as highlighted in OpenACC [20] and

OpenMP 4.0 [4]. There are a number of ongoing efforts in the

academia and industry aimed to automate data management and

to unify memory in hybrid accelerated systems, for example,

at the compiler level (CGCM [30], Spark-GPU [57] and

RSVM [31]), NVIDIA CUDA Unified Memory [9] or even

support at the Linux kernel level [51]. These solutions share

our common high-level goal of simplifying the development

of applications for heterogeneous systems. Yet, none of them

tackle the challenges involved in ensuring the consistency

guarantees provide by TM [21], exposing programmers to the

notorious complexity of lock-based synchronization [23].

As mentioned, the literature in the area of TM has elaborated

a plethora of design, exploring both hardware and software

implementations. Although the majority of the existing liter-

ature focus on TM implementations for CPUs, TM is also

gaining space in the GPU world [18], [27], [55], [49]. In

this area, a relevant related work is the recent APUTM [52],

which addressed the problem of implementing a STM for

integrated GPUs. However, integrated GPUs reside in the same

coherent domain as the CPU, unlike the case of discrete GPUs

— which we target in our work. As such, developing a TM for

integrated GPUs is a much less challenging endeavor, as, in

fact, this problem can be solved by re-using existing designs

for CPU TMs. To the best of our knowledge, our work is the

first to present a TM system for heterogeneous systems that

encompass both CPUs and discrete GPUs. It is also the first

work to revisit the definition of conventional TM consistency

semantics, e.g., [21], [28], to keep into account the specific

architectural characteristics of heterogeneous systems.

In a broad sense, HeTM is related to the work on speculative

processing in distributed systems. In particular, optimistic

simulation systems [17], [43], where the state of local simu-

lation objects is allowed to advance in a speculative fashion,

i.e., skipping synchronization with remote objects and rolling

back to a consistent state if a posteriori it is detected to have

missed any relevant event from a remote object. Another related

area has been investigated for speculative transaction process-

ing techniques in distributed and replicated databases [44],

[47]. Similarly, in this case the principle is similar, letting

transactions commit speculatively and automatically roll-back

the state of individual database replicas in case of any errors in

speculation. HeTM builds on the same principles, but introduces

new ad hoc designed techniques to meet the characteristics of

heterogeneous systems composed of GPU and CPU.

III. DEFINING THE HETM ABSTRACTION

As mentioned, HeTM provides the illusion of a single

transactional shared memory that is concurrently accessed

by a set of physically separated devices, where devices are

equipped with their own local memory and communicate over

an interconnection bus like PCIe.

In the definition of the HeTM abstraction we do not consider,

for the sake of generality, how transactions are generated

and dispatched to the various execution devices. We leave

the definition of these aspects to concrete implementation

of the HeTM abstraction (see Section IV). We will simply

assume that threads, in execution at any computational device

attached to the HeTM platform, can access and manipulate its

state exclusively by means of transactions. To this end, HeTM

exposes a conventional API, through which threads can start a

new transaction, submit read and write operations and request

the commit or abort of the transaction. Extending the proposed

HeTM abstraction to support intra-transaction parallelism [2],

[58] and non-transactional accesses [35] would be possible,

but it is outside of the scope of this work.

The rest of this section focuses on defining the correctness

semantics that should be expected from a HeTM platform,

such as the one that we will present in Section IV, that

exploits speculative techniques to mask the costs of inter-

device synchronization. More in detail, we intend to reason

on the correctness of TM implementations that can commit

transactions in a speculative fashion, i.e., without first checking

for conflicts with transactions executing on remote devices,

and that may therefore have to be later aborted in case an

inter-device contention is eventually detected.

This speculative transaction execution model — in which

transactions are first speculatively committed based only on

local information, and only subsequently are committed — is

desirable, in a HeTM platform, as it allows to remove intra-

device conflict detection from the critical path of transactions’

execution. In fact, in such a model, upon a transaction T

is speculatively committed, i) the thread that requested T ’s

commit can be unblocked and process new transactions, and

ii) T ’s updates can be immediately made visible locally. On

the other hand, this speculative execution model also enables

a broader spectrum of concurrency anomalies with respect

to conventional transaction execution models that do not

contemplate the notion of speculatively committed transactions.

We start by observing that existing consistency criteria for

classical TM systems, such as Opacity and Virtual World

Consistency [21], [28] (see Section II), are unfit to capture

the dynamics of the speculative transaction execution model

that we advocate to enable efficient implementations of the

HeTM abstraction. Roughly speaking, existing TM consistency

criteria ensure, with various nuances, two key properties:

233

• P1. The behavior of every committed transaction has to

be justifiable by the same sequential execution containing

only committed transactions, without contradicting real-

time order.

• P2. The behavior of any active transaction, even if it

eventually aborts, has to be justifiable by some sequential

execution (possibly different) containing only committed

transactions.

We argue that property P1 remains adequate for a HeTM system.

In fact, to preserve the ease of use of the TM abstraction,

speculation should serve solely to enhance efficiency, while

being totally hidden to applications. As such, the consistency

semantics of committed transactions should remain unaltered,

even if speculation is used for efficiency reasons.

Property P2, on the other hand, appears unfit to define the

consistency semantics of HeTM platforms. In fact, the specifica-

tion of P2 prohibits observing the updates of any uncommitted

transaction, thus including the updates of speculatively com-

mitted transactions. Hence, if a transaction T attempted to read

a data item updated by a speculatively committed transaction

T ′, P2 would oblige any HeTM implementation to block T

until the final outcome (commit/abort) of T ′ is determined —

limiting the effectiveness of speculation to mask the costs of

inter-device synchronization.

Note also that allowing active transactions to observe the

effects of any speculatively committed transaction would not be

a viable solution either. In fact, it would allow a transaction to

observe the effects of two conflicting speculatively committed

transactions. This would defeat the motivation at the basis of

P2: avoiding that applications may fail in complex/unpredicted

ways due to observing a state that no sequential execution

could have ever produced.

Overall, we argue that consistency semantics offered by a

HeTM platform should depart from classical consistency TM

criteria by allowing different devices to use different sequential

transaction histories to justify the execution of their local

transactions. Intuitively, these transaction histories should be

composed by: i) a prefix (possibly of different size) of the

sequential execution history containing committed transactions

(which, by P1, must be the same at each device), followed

by ii) a device-dependent sequential history composed by

transactions that speculatively-committed at that device.

We capture these semantics via the variant of property P2:

• P2†. The behavior of any active or speculatively committed

transaction T has to be justifiable by some sequential

execution containing i) committed transactions and ii)
speculatively committed transactions that executed on the

same device as T .

Properties P2† and P2 pursue the same high-level goal:

guaranteeing that the state observed by any transaction T

could have been produced in some sequential execution. Unlike

P2, though, P2† allows to include in the sequential execution

used to justify T ’s execution not only committed transactions,

but also speculatively committed transactions that executed

on the same device as T . This means that transactions that

execute at different devices must observe a common history

of committed transactions, but may witness the effects of

different speculatively committed transactions, which are still

being checked for inter-device conflicts.

Note that P2† also requires that the behavior of speculatively

committed transactions (and not just that of active transactions)

can be justified by a sequential execution. As active transactions

can only read from committed or speculatively committed

transactions, this implies that the only updates that can ever be

observed are the ones produced by transactions that reflect some

sequential history. Further, a transaction T can observe the

effects of a (speculatively committed or committed) transaction

T ′, only provided that T ′ does not conflict with any other

transaction T ′′, whose effects T has already observed so far.

In fact, if T were to observe the effects of two transactions

that conflict either directly or indirectly, it would be impossible

to include them both in the same sequential execution history

that should be used to justify the execution of T .

IV. THE SHETM PLATFORM

This section presents SHeTM (Speculative HeTM), an imple-

mentation of the HeTM abstraction that relies on speculation

to minimize the overheads of inter-device synchronization.

A. Architecture and programming model

SHeTM implements the proposed HeTM abstraction for

heterogeneous platforms composed by one or more cache-

coherent multi-core CPUs and a discrete GPU. SHeTM is

implemented in C and relies on the CUDA API to orchestrate

the execution of the GPU.

SHeTM maintains a full replica of the shared TM region,

which we call STMR (Speculative Transactional Memory

Region), on both the CPU and GPU. At each device, the

execution of transactions is regulated by a local TM library,

referred to as guest libraries. SHeTM adopts a modular

software architecture that seeks to attain inter-operability with

generic TM implementations for CPU and GPU. This feature

is important, since supporting the integration of arbitrary

guest TM libraries allows to adapt the choice of the TM

implementation used on each device to the characteristics of

the application workload and the device. In Section IV-B we

discuss which mechanisms SHeTM employs to integrate third-

party guest TM libraries, as well as the assumptions that these

libraries need to satisfy to correctly inter-operate with SHeTM.

Programming model. SHeTM offers a conventional TM

interface for demarcating (i.e., beginning, committing, aborting)

transactions and declaring read/write accesses to the STMR.

There are, however, relevant aspects related to the heteroge-

neous nature of the HeTM abstraction that programmers should

take into account when developing transactional applications

for SHeTM and that have influenced the design of SHeTM

programming interfaces.

A first observation is that the STMR’s replicas maintained

by the CPU and GPU may be mapped in different positions

in their address spaces. Thus, the management of pointers in

SHeTM raises issues analogous to the ones that affect other

234

implementations of the shared memory abstraction (e.g., in

POSIX mmap or SystemV shmem [50]), such as: if pointers to

a position within the STMR are stored in the STMR, they must

be expressed as relative offsets and not as absolute addresses.

A second relevant observation is that architectural differences

of CPUs and (discrete) GPUs have a great impact on their

programming models and, as such, HeTM systems should

keep these aspects into account to attain high efficiency. One

key issue is that, differently from CPUs, where transactions

are typically executed individually, in GPUs it is desirable to

execute transactions in relatively large batches [49], [9], as this

allows for: i) amortizing the latency of transactions’ activation;

ii) enhancing throughput when transferring to/from the GPU

the inputs/output required/produced by transactions’ execution;

iii) improving resource utilization on modern GPUs.

To reconcile these differences, SHeTM abstracts over the

computational model of CPU and GPU via a thread pool model

in which each device exposes a number of worker threads.

Worker threads are the only entities that can directly access

the STMR, i.e., application threads that need to manipulate

(or access) STMR should do so by submitting transactional

requests to the worker threads (via SHeTM’s API).

SHeTM views each instance of a transaction as an abstract

operation that consumes an input and produces an output.

SHeTM is opaque to the structure of transactions’ inputs

and outputs, requiring only information on their size in

order to correctly transfer transactional requests/responses

to/from the worker threads. In order to support the efficient

execution of transactions on both CPU and GPU, SHeTM

allows programmers to associate each transaction via: i) a

“transactional function”, which is meant to execute on the

CPU and processes exactly one transaction; ii) a “transactional

kernel”, which is meant to execute on the GPU and processes

a batch of transactions of a given size.

Developers of transactional kernels have the responsibility

to control which and how many threads to activate, how

many transactions each thread should execute, as well as how

transactional inputs should be consumed. SHeTM, in turn, is

responsible for activating transactional kernels, shipping to the

GPU the corresponding transactions’ inputs and retrieving the

transactions’ result to the host once the kernel ends.

Programmers are not obliged to provide two implementations

for a given transaction. If they do so, though, this provides

SHeTM with the flexibility to select the implementation/device

to use for executing a given transaction instance in a dynamic

fashion, using a work-stealing policy that aims to balance load

on both CPU and GPU.

Transaction scheduling and dispatching. For each registered

transaction, SHeTM allocates a number of request queues. The

number of queues that SHeTM allocates for a given transaction

depends on the number of implementations that were registered

for it. If a single implementation was defined (either for CPU

or for GPU), only a single queue is created, which is used to

store all the requests for that transaction. If implementations for

both the CPU and GPU are provided, instead, SHeTM allocates

three request queues, noted CPUQ, GPUQ and SHAREDQ. As

their names suggest, the first two queues are meant to buffer

requests which were submitted for execution on the CPU and

GPU, respectively. This indication is passed to SHeTM via

the programming interface used to support the submission of

transactional requests, through which an optional device-affinity

parameter can be specified.

This mechanism allows SHeTM to exploit external knowl-

edge, e.g., provided by programmers or automatic tools (e.g.,

static code analysis [46] or on-line scheduling techniques [12],

[13]), on the conflict patterns between different transaction

instances and mitigate inter-device contention by dispatching

conflict-prone transactions to the same device.

If, upon submission of a request, no device-affinity is

indicated (and both CPU and GPU implementations exist for

the corresponding transaction), then the request is routed to

SHAREDQ, which is accessible by both devices on the basis

of a work-stealing policy. Note that the enqueued requests are

consumed at different granularity by the CPU and GPU. CPU

worker threads process requests individually, extracting them

from the CPUQ queues in a round-robin fashion, or, if CPUQ

is found empty, from SHAREDQ. The processing of requests

from the GPUQ queues, and the activation of the corresponding

transactional kernel is coordinated by a management thread,

which we call GPU-controller, running on the CPU. This thread

monitors GPUQ and activates the corresponding transactional

kernel when any GPUQ queue contains a sufficient number of

requests to feed the kernel.

In many applications and standard benchmarks, transactions

are naturally distributed to threads via some form of queue. This

is the case of, e.g., MemcachedGPU [25], where transactions

are triggered by the reception of network messages that are first

stored into queues. Other examples are Intruder and Labyrinth

of the STAMP benchmark suite [36]. This type of applications

naturally fits the programming model of HeTM and incur no

additional overheads due to the SHeTM’s queuing system.

In applications that do not rely intrinsically on queues,

the overhead of SHeTM varies depending on the workload

characteristics: the larger the transaction execution time, the

lower the overhead of the queuing system — as the lower will

be the frequency of access to the queue by the worker threads

and, consequently, the likelihood of contention on the queue(s).

Note, though, that, on the CPU side, programmers can bypass

the SHeTM queuing system and let application level threads

manipulate the STMR, provided that: i) the STMR is only

accessed transactionally via the same API used by the worker

threads; and, ii) the conflict resolution policy never aborts

speculatively committed transactions on the CPU. In these

conditions, correctness is preserved at the cost of exposing

additional complexity to programmers — as they become

responsible for implementing the transaction scheduling and

dispatching mechanisms provided by the SHeTM framework.

B. Integration with guest TM libraries.

To guarantee the HeTM’s consistency semantics described in

Section III, SHeTM assumes that the underlying TMs ensure

235

opacity (or, in general, any TM consistency criterion that

guarantees the properties P1 and P2 defined in Section III).

SHeTM abstracts over the internal logic of the guest TM

libraries and interfaces with them by exposing a simple

callback function that the guest TM should invoke, whenever

a transaction commits, detecting conflicts in a hierarchical

fashion, i.e., first locally in each device and then globally.

CPU instrumentation. On the CPU side, upon the commit

of a transaction, a guest TM library must provide as in-

put to SHeTM’s callback function an array containing the

〈address, value, timestamp〉 of each memory position updated

by that transaction. The specified timestamp must be usable

by HeTM to totally order the updates to that memory position

and is easily provided both by software and hardware TM

implementations. For instance, most software TM implemen-

tations, e.g., TinySTM [15] or NoREC [10], use a logical

timestamp to totally order the commits of all transactions. The

same can be done in hardware TM implementations, such as

Intel TSX, by reading the processor cycles, i.e., using the

RDTSCP instruction [7]. Gathering transactions’ write-sets

imposes no additional overhead to a guest STM, as STMs need

anyway to track the write-sets in software. For HTM, SHeTM

requires the software instrumentation of write operations to

gather the transaction’s write-set. It is worth noting that, in

many realistic workloads, writes are largely outnumbered by

reads and, as such, the resulting instrumentation overhead is

small. The HeTM’s callback function appends the write-sets

into thread-local data-structures, referred herein as the CPU

write-set logs, and periodically offloads them to the GPU to

perform inter-device conflict detection.

GPU instrumentation. On the GPU side, a guest TM library

must communicate to the HeTM’s callback the set of addresses

read and written by the committing transaction. Conversely,

on the GPU side the read-set and write-set of a committing

transactions are used to update two bitmaps, noted RSGPU
bmp

and WSGPU
bmp , that track the regions of the STMR that GPU

transactions read or wrote, respectively. After those bitmaps

are updated, the transaction’s read-set and write-set can be

immediately discarded. The necessity for this asymmetric

instrumentation logic at the CPU and GPU is further detailed

in Section IV-C.

Additional assumptions. SHeTM needs to manipulate the state

of the STMR to merge the updates produced at both devices and

to cancel the effects of speculatively committed transactions

in case inter-device conflicts are detected. These updates are

performed in a non-transactional way, i.e., bypassing the APIs

of the guest TM library — ensuring that no transaction is

executing concurrently, to preserve consistency. This design

is safe under the assumption that any meta-data managed by

the guest TM libraries are maintained externally to the STMR,

e.g., in a disjoint memory region on the local device. This

assumption is met in practice by most TM implementations,

and is valid for all existing HTM implementations (which

maintain their metadata in the processor’s caches), and for all

word-based STMs (where TM metadata must necessarily be

stored in a disjoint memory region to avoid interference with

the application’s memory layout).

Supported libraries. Currently, SHeTM supports three TM

implementations: two on the CPU side – TinySTM [15] and

Intel’s TSX [29], implemented respectively in software and

hardware – and one on the GPU side, namely PR-STM [49].

C. Basic Algorithm

We start by describing a basic variant of the SHeTM’s

algorithm that serves a twofold purpose: i) it allows us to

simplify presentation, by explaining the design of SHeTM in

an incremental fashion; and, ii) it exposes several sources

of inefficiency that we address in the following text. At

this stage, we will assume a fixed policy to deal with inter-

device contention that deterministically discards the transactions

speculatively committed by the GPU. A discussion on how

to relax this assumption and support policies that discard

transactions speculatively committed by the CPU can be found

in the extended technical report [8].

SHeTM orchestrates the execution of GPU and CPU in

synchronization rounds, where each round is composed by

three phases: execution, validation, and merge (see Figure 1a).

In a nutshell, SHeTM adopts a hierarchical conflict detection

mechanism that operates as follows: during the execution phase,

conflicts are detected only among transactions that execute on

the same device, using a local TM implementation; inter-device

conflicts are then verified during the validation phase via a

novel scheme that leverages the massive parallelism of modern

GPUs to maximize performance.

1) Execution Phase: In the execution phase, transactions

are extracted from the input queues and fed to the devices

during a user-tunable period. Transaction processing is executed

in an independent way at both devices, starting from a

consistent snapshot, i.e., an identical replica of the STMR

at both devices, and executing transactions in a speculative

fashion: the execution of transactions is regulated exclusively

by the local TM library, which only detects conflicts between

local transactions, avoiding any inter-device synchronization.

When a transaction requests to commit, the unmodified

commit logic of the local TM library is used to atomically

propagate the transaction’s update to the local STMR replica.

This local commit event coincides with the speculative commit,

in the execution model assumed by the HeTM abstraction.

At this point the TM library invokes the call-back functions

exposed by SHeTM, as referred in Section IV-B. On the CPU,

the write-set of the transaction is appended to a per-thread log.

On the GPU side, the transaction’s read-set and write-set are

used to update RSGPU
bmp and WSGPU

bmp bitmaps. The bitmaps encode

the set of addresses read and written by every transaction that

speculatively committed during the execution phase, and they

are updated concurrently by the GPU threads that are in charge

of executing transactions.

As mentioned, the duration of execution phase is a user-

tunable parameter that allows to explore an interesting per-

formance trade-off, which will be studied in Section V-D.

Longer periods imply less frequent synchronizations, which

236

Case of commit. Case of abort.

(a) A basic variant of SHeTM.

Case of commit. Case of abort.

(b) Illustrating the behavior of SHeTM.

Figure 1: Figure 1a illustrates a simple variant of SHeTM, while Figure 1b presents how to avoid unnecessary copies.

means lower overhead in case the synchronization is successful.

However, longer period of executions mean also that a larger

number of transactions are speculatively executed at both

devices, increasing the probability of inter-device contention —

thus leading to wasting more work (aborted transactions).

2) Validation Phase: The goal of this stage is to determine

whether there was any conflict between the transactions

processed by the CPU and the GPU during the execution

phase. We designed the logic of this phase on the basis of the

following key observations:

• As the local TM libraries are assumed to ensure opacity, the

behavior of the speculatively committed transactions at each

device is already guaranteed to be equivalent to a sequential

execution (although defined over different sets of transactions).

The set S of transactions speculatively committed during the

processing phase at a device D ∈ {CPU,GPU} can thus be

logically subsumed by a single, equivalent transaction, noted

TD, whose read-set and write-set is the union of the read-

sets and write-sets of the transactions in S. This observation

allows us to reduce the problem of conflict detection among a

number of speculatively committed transactions to the problem

of detecting conflicts between a pair of logical equivalent

transactions, which we denote as TCPU and TGPU.

• Detecting conflicts between a pair of transactions can be

reduced to verifying intersections between their read-sets

and write-sets [41], [3]. This computation can be efficiently

parallelized using GPUs, especially if the sets are large, as it

is the case for TCPU and TGPU, which subsume a (typically

very large) number of transactions.

The design of the SHeTM’s validation scheme, as well

as its instrumentation logic, were engineered, based on this

observation, so as to take full advantage of modern GPUs.

• In many realistic workloads, transactions read a much larger

number of memory positions than they write to [16]. As such,

the read-sets of TCPU and TGPU are likely to be much larger

than their corresponding write-sets. Motivated by this obser-

vation, we designed the validation scheme in a way to avoid

transmitting the read-sets over the inter-connection bus. Note

that there are two possible orders in which TCPU and TGPU may

be serialized, namely TGPU → TCPU or TCPU → TGPU. For the

former order to be valid, none of the writes generated by TGPU

should be “missed” by TCPU, i.e., WSGPU ∩RSCPU = ∅ (where

WSGPU and RSCPU denote the write-set and read-set of TGPU

and TCPU, respectively). The latter order, conversely, requires

verifying whether WSCPU ∩ RSGPU = ∅. Keeping into account

that we intend to leverage the GPU to perform validation,

SHeTM opts for testing whether the CPU transactions can be

serialized before the GPU transactions, i.e., TCPU → TGPU.

In fact, the computation of WSCPU ∩ RSGPU = ∅ can be

performed on the GPU side by shipping only the write-sets

of the CPU transactions — whereas, the opposite serialization

order (TGPU → TCPU) would require shipping to the GPU the

read-sets of the CPU transactions.

• In order to guarantee that the updates of the TCPU and

TGPU can be mutually exchanged and applied at each device,

yielding a state equivalent to the one produced by the schedule

TCPU → TGPU, it is necessary to exclude also the presence of

write-write conflicts, i.e., whether WSCPU ∩ WSGPU = ∅. The

approach taken in SHeTM to guarantee this property is to track

the writes performed by GPU transactions not only in WSGPU
bmp ,

but also in RSGPU
bmp . By guaranteeing that WSGPU ⊆ RSGPU,

the verification of WSCPU ∩ RSGPU = ∅ also ensures that

WSCPU∩WSGPU = ∅. Furthermore, it is worth noting that writes

are typically outnumbered by reads, the overhead incurred by

tracking the writes in two bitmaps is expected to be low.

Let us put all these pieces together and discuss how the

validation phase operates in a systematic fashion.

The validation phase starts by transferring the write-set logs

gathered by each CPU thread to the GPU. The logs are streamed

in chunks to achieve high throughput and activate validation

kernels that operate at sufficient granularity to achieve high

utilization of GPU resources. A validation kernel on the GPU

takes as input a chunk of a log and operates as follows: For

each tuple 〈address, value, timestamp〉 in the input log it is

checked whether the corresponding entry in the GPU’s read-set

bitmap is set — which indicates that some of the transactions

speculatively committed by the GPU during the execution

phase read that address.

If the CPU write is found to have invalidated the read-set

of TGPU the validation phase returns a negative outcome, but

it continues applying the full set of write-set logs sent by the

CPU. This ensures that, at the end of the validation phase, the

GPU’s STMR incorporates all the effects of TCPU. Thus, if

in the merge phase, the state of the GPU’s STMR needs to

be re-aligned to the current state of the CPU’s STMR, it is

sufficient to simply undo the effects of the TGPU.

If the CPU write does not invalidate the read-set of TGPU, the

corresponding value stored in the CPU write-set log is applied

237

to the GPU’s STMR. This is performed non-transactionally,

since the GPU is not processing transactions during the

validation phase. However, since the CPU logs are validated in

arbitrary order on the GPU side, before applying it is necessary

to verify if the version currently present in the GPU’s STMR

is not more recent than one that is being applied. To this end,

on the GPU, SHeTM maintains a timestamp array, denoted

as TS, which has an entry per word of the STMR reserved

to store the timestamps of the CPU writes applied during the

validation phase. During validation, GPU threads consult the

TS to determine whether the write being validated reflects a

more recent state than the one already present in the STMR,

applying that log tuple only if this is the case. Note that since

concurrent GPU threads may be validating writes targeting the

same address, the atomicity of the test for freshness and the

value application is ensured via a lock implemented using the

first bit of the corresponding TS entry.

3) Merge Phase: The merge phase ensures that the replicas

of the STMR at the CPU and at the GPU are consistent, before

starting the execution phase of the next synchronization round.

The way in which the states of the CPU and GPU are realigned

depends on the outcome of the validation phase.

If the validation phase is successful, i.e., no inter-device

conflicts are detected, the GPU’s replica of the STMR already

incorporates the updates of the transactions that speculatively

committed at both devices, since recall that, during the

validation phase, the GPU also applies the CPU write-sets

into its local STMR replica. To this end, the GPU-controller

thread fetches the GPU’s write-set bitmap, which identifies

the memory regions updated by the transactions speculatively

committed by the GPU and activates the memory transfers to

update in-place the STMR’s replica on the CPU.

If the validation phase fails, the state of the CPU’s STMR

overrides the GPU’s STMR. To this end, the GPU controller

thread obtains the GPU’s write-set bitmap and transfers the

CPU’s state over the memory regions marked as updated on

the GPU’s write-set bitmap, thus undoing any side-effect of

the execution of transactions on the GPU side.

D. Optimizations

SHeTM integrates a number of additional mechanisms that

aim at tackling two main sources of inefficiency: the blocking

time (i.e., the period during which transaction processing is

blocked) due to inter-device synchronization, and the overhead

imposed in case of inter-device contention. We present these

techniques in the following text and illustrate them in Figure 1b.

Inter-device synchronization. As illustrated in Figure 1a, in

the basic algorithm presented in Section IV-C, transaction

processing is blocked throughout the validation and merge

phases both at the CPU and at the GPU. This is clearly

undesirable for efficiency reasons, especially if one considers

that, to reduce the likelihood of inter-device contention, it is

desirable to use relatively short execution phases.

SHeTM tackles this issue by integrating mechanisms aimed

at reducing the blocking time both at the CPU and at the GPU.

On the CPU side, during the validation phase, SHeTM

allows the worker threads to continue processing transactions

concurrently with the streaming of the logs accumulated during

the execution phase. The CPU blocking time on the execution

phase only occurs when a very few log chunks are left to be

offloaded to the GPU. In practical settings, the speed at which

logs can be transferred is higher than that at which new logs

can be produced by the worker threads. Thus, this mechanism

effectively overlaps transaction processing at the CPU side

with the log transfers to the GPU, while generating a relatively

little amount of additional logs to validate for the GPU.

On the GPU side, at the end of the merge phase, the basic

algorithm blocks transaction processing while transferring to

the CPU the memory regions updated by the GPU. This is done

to ensure that the state of the GPU’s STMR is not corrupted

due to the execution of transactions while the device to host

transfer is ongoing. SHeTM tackles this problem by employing

a double buffering approach. At the start of the execution phase,

a shadow copy (STMRS in Figure 1b) of the GPU’s STMR

(STMRW in Figure 1b) is created, via a device to device copy.

As soon as STMRS is created, GPU transaction processing can

immediately resume, since STMRS is isolated from the updates

of transactions (which operate exclusively on the STMRW)

and can be used to feed the device to host transfer.

Inter-device contention. As discussed in Section IV-A,

SHeTM’s API allows exploiting external knowledge on trans-

actions’ conflict patterns (via the device affinity specified at

transactions’ submission time) to control the dispatching of

transactions and reduce inter-device contention. Besides striving

to reduce the likelihood of inter-device contention, SHeTM

incorporates two additional mechanisms that aim at reducing

two sources of overhead when inter-device conflicts do occur:

• Wasted work. In the basic algorithm, conflicts are detected

only at the end of the execution phase. This leads to wasting

a large amount of work at the GPU, if a conflict is detected in

the validation phase. We tackle this problem by introducing an

early validation scheme that periodically transfers the CPU’s

logs to the GPU, where they are validated (but not applied)

while transactions are concurrently processed on both devices.

As early validations are concurrent with transaction processing,

it is still necessary to validate all the write-set logs produced

during the execution phase in the validation phase. Yet, by

anticipating the detection of inter-device conflict, as we will

see in Section V, early-validation can provide significant gains

in contention prone workloads by reducing the time the GPU

spends performing computations that are eventually discarded.

• Rollback latency. Realigning the GPU’s state to that of the

CPU, in case of inter-device contention, imposes significant

overhead in the basic algorithm. Every memory region updated

by the GPU has to be copied from the CPU and, during

this transfer, transaction processing is blocked at both devices.

Fortunately, the availability of the shadow copy is of great

help in this case. Recall that the shadow copy reflects a

consistent state of the STMR, as at the beginning of the current

synchronization round. Thus, in order to align the shadow copy

238

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

SHeTMPR-STM (large bmp, W1)
SHeTMPR-STM (small bmp, W1)
SHeTMPR-STM (large bmp, W2)
SHeTMPR-STM (small bmp, W2)

 10 20 30 40 50 60 70 80 90
Write Transactions (%)

SHeTMTSX (W1)
SHeTMTSX (W2)
SHeTMTinySTM (W1)
SHeTMTinySTM (W2)

Figure 2: Cost of instrumentation of guest TM libraries.

to the current state of the CPU, it suffices to apply to it the

CPU’s write-set logs.

• Enhancing memory transfer’s throughput. In order to

exploit PCIe bandwidth while transferring information, transfers

are performed in chunks of relatively coarse granularity. To

this end, the CPU write-set logs are shipped to the GPU using

a granularity of 48 KB; also, the write-set bitmap on the GPU

tracks updates with a granularity of 16KB.

As a further optimization, the GPU-controller coalesces

transfers of contiguous chunks from the GPU to the CPU during

the merge phase (in the case of no inter-device contention),

as well as when performing the device to device copy from

the shadow to the working copy of the STMR (in the case of

inter-device contention).

V. EVALUATION

This Section presents an experimental study that aims at

answering the following key questions: the costs imposed by the

instrumentation of the guest TM libraries (Sec. V-A); overhead

introduced to workloads whose scalability is not limited by

inter-device contention (Sec. V-B); performance degradation

due to inter-device contention (Sec. V-C); optimization gains

over simpler designs (Sec. V-B and Sec. V-C); and finally, how

effective SHeTM is with realistic applications (Sec. V-D).

Our evaluation is conducted using a machine equipped with

an Intel Xeon E5-2648L v4 CPU (14 cores with support

for HTM, 32GB DRAM), an Nvidia GTX 1080 GPU (8GB

XDDR5, driver 387.34, CUDA 9.1), and running Ubuntu

16.04.3 LTS (kernel 4.4.0-57). Applications are manually

instrumented to use the SHeTM API.

We based our evaluation on a set of synthetic benchmarks

conceived to assess different aspects of SHeTM’s design, and

on MemcahedGPU [25].

In all the tests, we use 8 worker threads on the CPU side.

As for the transactional kernels, we tuned their configuration

(number of transactions per kernel activation, active threads

and thread blocks) on the basis of preliminary evaluations to

maximize the GPU throughput. The synthetic workloads use

the same transactional logic on both the CPU and GPU and

operate on a STMR of size 600MB, unless otherwise specified;

the STMR size in MemcachedGPU is around 480MB.

A. Instrumentation Costs

Let us start by assessing the overhead induced by the software

instrumentation that SHeTM requires for its guest TM libraries.

To this end we consider two workloads, noted W1 and W2,

(a) 100% update transactions

0
2
4
6
8

10
12
14
16

 0 100

 200

 300

 400

 500

 600

T
hr

ou
gh

pu
t (

M
T

X
/s

)

Execution Phase (msec)

CPU-only
GPU-only
SHeTMbasic

SHeTM

(b) 10% update transactions

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

 0 50

 100
 150
 200
 250
 300
 350
 400

T
hr

ou
gh

pu
t (

M
T

X
/s

)

Execution Phase (msec)

Figure 3: Efficiency in absence on contention.

that access the STMR uniformly at random. In W1, read-only

transactions issue 4 reads, whereas update transactions read and

update 4 memory positions. W2 is identical to W1, except that

both transaction types issue 40, and not 4 reads. W1 is designed

to stress the instrumentation of read and write operations. W2

is selected as representative of many realistic workloads, in

which reads outnumber the writes.

In the plot in Figure 2 we vary on the x-axis the percentage

of the update transactions from 10% to 90% and report on the

y-axis the throughput normalized w.r.t. un-instrumented version

of PR-STM [49] for the GPU (left plot), and of TinySTM [15]

and TSX for the CPU (right plot).

In the left plot (GPU), we consider using two different

levels of tracking granularity for the read-set bitmap (RSGPU
bmp),

namely 4B (small bmp) and 1KB (large bmp). We can see that,

independently of the considered workload, the use of the small

granularity bitmaps induce, larger overheads, approx. 20%,

as its larger size leads to a lower locality of reference. In

contrast, the coarser granularity bitmap reduces significantly the

instrumentation overhead, to approx. 5%, at the cost, though, of

spurious aborts due to the risk of false positives in the conflict

detection scheme. As a matter of fact, the trade-off between

instrumentation overhead and access tracking granularity is

well known in the literature, e.g., TM [15].

In the right plot (CPU), we observe that the instrumentation

cost is on average around 5% for W2 for both TinySTM and

TSX. In all scenarios, the overhead is below 10% except for the

most write intensive variants of W1, where it remains anyway

below 20% even in presence of 90% of update transactions.

B. Efficiency in absence of inter-device contention

Next, we intend to assess which overheads SHeTM incurs

in workloads whose scalability is not limited by inter-device

contention. Here, we consider two variants of the W1 workload,

generating 100% (W1-100%) and 10% (W1-10%) update

transactions, respectively.

We avoid inter-device contention by partitioning the STMR

in two halves and restricting CPU and GPU to access a different

half. The results of this study are reported in Figure 3, in which

we vary on the x-axis the duration of the execution phase from

1 msec to 600 msec and report on the y-axis the throughput

of SHeTM and of the following baselines: the basic variant

of SHeTM presented in Section IV-C, noted SHeTM basic;

TSX running solo, noted CPU-only; PR-STM running solo and

copying its STMR to the host, after executing a kernel, using

double buffer (i.e., without blocking), noted GPU-only.

239

0

20

40

60

80

100
SHeTMbasic CPU SHeTM

%
 T

im
e

Idle
Non-blocking
Processing

0

20

40

60

80

100

20 40 80 120
200
300
400
500
600

20 40 80 120
200
300
400
500
600

SHeTMbasic GPU SHeTM

%
 T

im
e

Execution Phase (msec)

Validation
DtH
Processing

Figure 4: Break-down of exec. times (100% update transactions)

The throughput plot on the left, which refers to W1-100%,

shows that as the execution period grows the performance

of SHeTM also increases, which is as expected, since the

relative amount of time spent performing the validation and

merge phases reduces, amortizing their cost over larger period

of useful processing (see Figure 4). The peak throughput of

approx. 17M tx/sec, is reached at 200 msecs and plateaus

beyond that value. SHeTM’s peak throughput is about 55%

higher than the peak throughput of CPU-only and GPU-only

(approx. 11 M tx/sec) and only 23% lower than the throughput

of an idealized system that could total the combined throughput

of both uninstrumented devices.

By contrasting the performance of SHeTM with that of basic

we can clearly appreciate the performance gains enabled by the

optimizations described in Section IV-D, which are particularly

significant with small execution periods (up to +56% higher

throughput when the execution period lasts 1 msec). The bar

plots in Figure 4, which report the breakdown of times spent

by the CPU and GPU in various phases, allow us to derive

additional insights on the sources of these gains. The use of

double buffering on the GPU side to overlap kernel processing

with the device to host transfer in the merge phase is the

largest source of gains (DtH in SHeTMbasic, which is replaced

by processing time in the optimized SHeTM). On the CPU

side, the ability to overlap transaction processing (noted non-

blocking in the figure) with the shipping of logs to the GPU

has also a meaningful impact on reducing the blocking time,

although not as strong as on the GPU side.

Finally, let us analyze the results reported in the right plot

of Figure 3, which refers to the workload with 10% of update

transactions. In this scenario, which considers a less extreme

(and arguably more realistic) application workload, the peak

throughput of SHeTM converges to 4M tx/sec, which is very

close to the peak throughput achieved by an idealized solution

that achieves a performance equal to that of the two device —

an additional evidence of the efficiency of the proposed design.

C. Sensitivity to contention

We now consider the same workload as in the previous study,

but inject with a given probability a conflicting access at random

in the stream of writes generated by the CPU transactions.

We vary on the x-axis the inter-device conflict probability, fix

the duration of the execution phase at 80 msecs and compare, in

0.0
0.2

0.4
0.6

0.8
1.0
1.2

1.4
1.6

 0 20

 40

 60

 80

 100

T
hr

ou
gh

pu
t (

w
rt

 C
P

U
)

Probability of Conflict (%)

GPU-only
SHeTM
SHeTMno early val

Figure 5: Sensitivity to inter-device contention.

Figure 5, the performance of SHeTM with and without the early

validation mechanism. On the y-axis we report the throughput

normalized with respect to TSX (unistrumented) running solo

and report, as reference, also the throughput achieved using

PR-STM, running solo with double buffering.

The analysis of this plots reveals several insights. The first

observation is that SHeTM consistently outperforms both TSX

and PRSTM for abort rates as high as 80%. In medium con-

tention, e.g., 50% probability of contention, SHeTM continues

to deliver a 30% gain over the fastest individual device (CPU).

Even when operating at the extreme 100% abort rate it incurs

only a modest overhead (approx. 20% if the early validation

is disabled). Overall, these results confirm the robustness of

SHeTM performance even in adverse scenarios.

Early validation appears to be a powerful mechanism

to mitigate overhead, especially in medium-high contention

scenario (50% and 80% abort rate). Only beyond 80% inter-

device contention SHeTM presents overheads w.r.t. CPU and

GPU. Such scenarios are arguably non-representative of the

desired operational region of any TM system. In 100% inter-

device contention, early validation fails constantly, triggering

the completion of the current execution phase and device

transfer of the CPU logs. This is logically equivalent to operate

with a much shorter execution phase, which, as seen in Figure 3,

tends to induce longer blocking periods of the CPU.

D. MemcachedGPU

MemcachedGPU [25] extends Memcached, a popular in-

memory object caching system, in order to use GPUs to serve

lookup (GET) and update (PUT) requests for cached objects.

Its original implementation presents an ad-hoc synchroniza-

tion mechanism to manipulate the contents of the cache held

in GPU’s memory. Besides being non-trivial, PUT operations

are executed single threaded and block other concurrent GETs.

Furthermore, CPU and GPU work in a pipeline fashion, i.e.,

they do not access concurrently the same data at the same

time. SHeTM ameliorates all these issues while maintaining

the cache’s state synchronized both on the CPU and GPU.

A fixed number of sets compose a cache. 〈key, value〉 pairs

are hashed into the target set, which has 8 slots and may contain

up to that many pairs (8-way associative). We use keys/values

of 16B/32B, respectively. The LRU replacement policy evicts

old pairs based on per-slot timestamp.

The CPU implementation is straightforward: a worker thread

computes the target set and then issues a transaction to

perform the GET/PUT logic. On the GPU, the target set

240

0.0

0.5

0.8
1.0
1.2

1.5

1.8

 0 5 10
 15

 20
 25

T
hr

ou
gh

pu
t (

w
rt

 C
P

U
)

Concurrent Execution (ms)

GPU-only
SHeTM no-conflicts
SHeTM steal 20%
SHeTM steal 80%
SHeTM steal 100%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0 5 10
 15

 20
 25

P
ro

ba
bi

lit
y

of
 C

om
m

it

Concurrent Execution (ms)

Figure 6: Throughput of HeTM for Memcached with possible

conflicts.

is searched in parallel (as in the original MemcachedGPU

implementation [25]) non-transactionally and a transaction is

used to retrieve/set the value (for GETs/PUTs, respectively)

and to update the LRU metadata of the corresponding slot.

The resulting implementation scheme introduces intra-device

conflicts between any concurrent operation with the same input

key, as each GET changes the per slot timestamp. To reduce the

likelihood of inter-device contention CPU and GPU use distinct

timestamps, which implies that the LRU policy is local to CPU

or GPU, i.e., the pair freshness is only affected by device-local

transactions. The key advantage of this approach is that CPU

GETs do not conflict with GPU GETs (and vice-versa).

Concurrent inter-device PUT operations conflict if they

access the same set, which guarantees that it is safe to use

local LRU policies — as concurrent updates to the same set

by different devices will trigger an abort and be rejected by

SHeTM. To this end, a per set timestamp (common to both

the CPU and CPU) is updated whenever a PUT operation is

executed at either device.

Concurrent inter-device GETs and PUTs that access the same

key conflict only if it is the CPU to issue the PUT. In fact,

since SHeTM attempts to serialize the transactions executed

by the CPU before the ones of the GPU, if the GPU issues a

PUT it is perfectly fine for the CPU to “miss” this update.

In this experiment, we use a cache with 1,000,000 sets,

the workload is composed of 99.9% of GETs and the object

popularity follows a Zipfian distribution with parameter α =
0.5 — which is a reasonable value for evaluating caches [5].

We consider 4 different workloads. In the first workload (no-

conflicts), we balance the load (i.e., cache operations) input to

the GPU and CPU by using the last bit of the key accessed by

an operation. This guarantees that the input queues of the CPU

and GPU can never contain operations that access a common

set, thus, excluding the possibility of inter-device contention.

We then evaluate load unbalanced scenarios, which emulate

application-level shifts of the popularity of accessed objects,

namely a drop of the arrival rate of requests for GPUQ and

a corresponding increase for CPUQ. This causes the GPU to

start stealing from the CPU queues, i.e., processing requests

for objects that can be concurrently accessed by the CPU. We

consider three scenarios in which the GPU steals requests from

the CPU queues with increasing probability, i.e., steal 20%,

steal 80% and steal 100%. The last one emulates the extreme

scenario where no device affinity is set to mitigate contention,

so that both devices access the same keys.

Figure 6 shows that SHeTM achieves almost indistinguish-

able performance in the no-conflicts and the steal 20%, being

in both cases less than 20% away from the ideal solution and

80% better than both GPU-only and CPU-only. We consider

as an ideal solution the case that incurs no overhead and totals

the equivalent normalized throughput of both CPU-only and

GPU-only, which in this case is approx. 1.9.

The abort rate converges to that of the steal rate (resp.

0%, 20% 80% and 100%), since the number of potentially

conflicting transactions executed at both devices increases when

the duration of the execution round is increased. In fact, if

its duration grows large enough, during a batch where one of

the devices steals transactions from the other, the probability

of inter-device contention unavoidably converges to 1 for this

workload. With the duration of approx. 25 msecs, execution

rounds where GPU steals from the CPU are very likely to fail.

The gains remain significant even in case the GPU steals

operations from the CPU queue with 80% of probability (20%

to 40% speed-up over CPU-only). Finally, it is worth high-

lighting that even when the contention-avoidance dispatching

mechanisms of SHeTM are not used and contention is high

(steal 100%), SHeTM achieves robust performance with speed-

ups of up to approx. 30% (10 msecs rounds), and throughput

on par with CPU-only even when the inter-device conflict

probability (right plot) converges to 1.

VI. CONCLUSIONS AND FUTURE WORK

This work introduced the abstraction of Heterogeneous

Transactional Memory (HeTM). HeTM aims to facilitate

programming of heterogeneous platforms, by abstracting the

difficulties of data sharing across multiple physically separated

units via the illusion of a single transactional memory shared

among CPUs and (discrete) GPU(s).

Besides introducing the abstract semantics and programming

model of HeTM, we presented an efficient, yet modular,

implementation of the proposed abstraction, named Speculative

HeTM (SHeTM). We demonstrated the efficiency of SHeTM

via an extensive quantitative study based both on synthetic

benchmarks and on a popular object caching system.

This work opens a number of research questions related

to defining alternative semantics and designs for the HeTM

abstraction. A specific question that we intend to investigate in

the future is how to extend SHeTM to orchestrate the execution

of multiple GPUs.

An other interesting question is how to leverage, e.g., static

code analysis [46] or on-line scheduling techniques [12], [13]

to automatically dispatch transactions to either CPU or GPU.

Finally, it would be interesting to evaluate SHeTM using

a broader range of irregular applications, e.g., extending the

recent work by Nelson et al. [39] that investigated the use of

locking schemes to parallelize k-means on GPUs.

241

REFERENCES

[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[2] W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun, “Implementing
and Evaluating Nested Parallel Transactions in Software Transactional
Memory,” in Proceedings of the Twenty-second Annual ACM Symposium

on Parallelism in Algorithms and Architectures, ser. SPAA ’10. New
York, NY, USA: ACM, 2010, pp. 253–262.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control

and Recovery in Database Systems. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1986.

[4] O. A. R. Board et al., “OpenMP Application Program Interface,” version

4.0, 2013.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implications,” in INFOCOM,
vol. 1. New York, NY, USA: IEEE, March 1999, pp. 126–134.

[6] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and M. Herlihy,
“Invyswell: A Hybrid Transactional Memory for Haswell’s Restricted
Transactional Memory Categories and Subject Descriptors,” in PACT.
IEEE, 2014, pp. 187–200.

[7] D. Castro, P. Romano, and J. Barreto, “Hardware Transactional Memory
meets Memory Persistency,” in IPDPS. New York, NY, USA: IEEE,
2018, pp. 368–377.

[8] D. Castro, P. Romano, A. Illic, and A. M. Khan, “HeTM: Transactional
Memory for Heterogeneous Systems,” CoRR, vol. abs/1905.00661, 2019.

[9] N. Corporation, “CUDA C Programming Guide,” https://docs.nvidia.com/
cuda/cuda-c-programming-guide/, 2015.

[10] L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec: Streamlining
STM by abolishing ownership records,” in PPoPP, ACM. Bangalore,
India: ACM, 2010, pp. 67–78.

[11] D. Didona, N. Diegues, A.-M. Kermarrec, R. Guerraoui, R. Neves, and
P. Romano, “ProteusTM: Abstraction Meets Performance in Transactional
Memory,” SIGOPS Oper. Syst. Rev., vol. 50, no. 2, pp. 757–771, Mar.
2016.

[12] N. Diegues, P. Romano, and S. Garbatov, “Seer: Probabilistic Scheduling
for Hardware Transactional Memory,” in SPAA, ser. SPAA ’15. New
York, NY, USA: ACM, 2015, pp. 224–233.

[13] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh, “Preventing
Versus Curing: Avoiding Conflicts in Transactional Memories,” in
Proceedings of the 28th ACM Symposium on Principles of Distributed

Computing, ser. PODC ’09. New York, NY, USA: ACM, 2009, pp.
7–16.

[14] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas, “Ompss: a proposal for programming heterogeneous multi-
core architectures,” Parallel processing letters, vol. 21, no. 02, pp. 173–
193, 2011.

[15] P. Felber, C. Fetzer, P. Marlier, and T. Riegel, “Time-Based Software
Transactional Memory,” IEEE Transactions on Parallel and Distributed

Systems, vol. 21, pp. 1793–1807, 2010.

[16] P. Felber, S. Issa, A. Matveev, and P. Romano, “Hardware Read-write
Lock Elision,” in Proceedings of the Eleventh European Conference on

Computer Systems, ser. EuroSys ’16. New York, NY, USA: ACM, 2016,
pp. 34:1–34:15.

[17] R. M. Fujimoto, “Parallel Discrete Event Simulation,” Commun. ACM,
vol. 33, no. 10, pp. 30–53, Oct. 1990.

[18] W. W. L. Fung, I. Singh, A. Brownsword, and T. Aamodt, “Kilo TM:
Hardware transactional memory for GPU architectures,” IEEE Micro,
vol. 32, no. 3, pp. 7–16, 2012.

[19] K. O. W. Group et al., “The OpenCL Specification,” version, vol. 1,
no. 29, p. 8, 2008.

[20] O. W. Group et al., “OpenACC specification,” version 2.7, 2018.

[21] R. Guerraoui and M. Kapalka, “On the Correctness of Transactional
Memory,” in Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, ser. PPoPP ’08. New
York, NY, USA: ACM, 2008, pp. 175–184.

[22] M. Harris, “Unified Memory in CUDA 6,” Nov. 2013. [Online].
Available: https://devblogs.nvidia.com/unified-memory-in-cuda-6/

[23] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable
Memory Transactions,” in Proceedings of the Tenth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’05. New York, NY, USA: ACM, 2005, pp. 48–60.

[24] M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
Support for Lock-free Data Structures,” SIGARCH Comput. Archit. News,
vol. 21, no. 2, pp. 289–300, May 1993.

[25] T. H. Hetherington, M. O’Connor, and T. M. Aamodt, “MemcachedGPU:
Scaling-up Scale-out Key-value Stores,” in Proceedings of the Sixth ACM

Symposium on Cloud Computing, ser. SoCC ’15. New York, NY, USA:
ACM, 2015, pp. 43–57.

[26] P. Hijma, C. J. Jacobs, R. V. van Nieuwpoort, and H. E. Bal, “Cashmere:
Heterogeneous many-core computing,” in 2015 IEEE International

Parallel and Distributed Processing Symposium. IEEE, 2015, pp. 135–
145.

[27] A. Holey and A. Zhai, “Lightweight Software Transactions on GPUs,”
in ICPP. New York, NY, USA: IEEE, 2014, pp. 461–470.

[28] D. Imbs and M. Raynal, “Virtual World Consistency: A Condition for
STM Systems (with a Versatile Protocol with Invisible Read Operations),”
Theor. Comput. Sci., vol. 444, pp. 113–127, Jul. 2012.

[29] Intel Corporation, “Desktop 4th Generation Intel Core Processor Family
(Revision 028),” Intel Corporation, Tech. Rep., 2015.

[30] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and
D. I. August, “Automatic CPU-GPU communication management and
optimization,” in ACM SIGPLAN Notices, vol. 46, no. 6. ACM, 2011,
pp. 142–151.

[31] F. Ji, H. Lin, and X. Ma, “RSVM: A Region-based Software Virtual
Memory for GPU,” in Proceedings of the 22nd International Conference

on Parallel Architectures and Compilation Techniques (PACT ’13). IEEE,
2013, pp. 269–278.

[32] N. Jouppi, “Google supercharges machine learning
tasks with TPU custom chip,” May 2016. [On-
line]. Available: https://cloudplatform.googleblog.com/2016/05/Google-
supercharges-machine-learning-tasks-with-custom-chip.html

[33] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel, “TreadMarks:
Distributed Shared Memory on Standard Workstations and Operating
Systems,” in Proceedings of the USENIX Winter 1994 Technical

Conference on USENIX Winter 1994 Technical Conference, ser. WTEC’94.
Berkeley, CA, USA: USENIX Association, 1994, pp. 10–10.

[34] K. Li and P. Hudak, “Memory Coherence in Shared Virtual Memory
Systems,” ACM Trans. Comput. Syst., vol. 7, no. 4, pp. 321–359, Nov.
1989.

[35] M. Martin, C. Blundell, and E. Lewis, “Subtleties of Transactional
Memory Atomicity Semantics,” IEEE Comput. Archit. Lett., vol. 5, no. 2,
pp. 17–17, Jul. 2006.

[36] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford Transactional Applications for Multi-processing,” in Workload

Characterization, 2008. IISWC 2008. IEEE International Symposium on.
IEEE, 2008, pp. 35–46.

[37] S. Mittal and J. S. Vetter, “A Survey of CPU-GPU Heterogeneous
Computing Techniques,” ACM Comput. Surv., vol. 47, no. 4, pp. 69:1–
69:35, Jul. 2015.

[38] T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, and H. Tomari,
“Quantitative Comparison of Hardware Transactional Memory for Blue
Gene/Q, zEnterprise EC12, Intel Core, and POWER8,” in Proceedings

of the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 144–157.

[39] J. Nelson and R. Palmieri, “Don’t Forget About Synchronization! A Case
Study of K-Means on GPU,” in Proceedings of the 10th International

Workshop on Programming Models and Applications for Multicores and

Manycores, ser. PPoPP ’10. ACM, 2019, pp. 11–20.

[40] V. Pankratius and A.-R. Adl-Tabatabai, “A Study of Transactional
Memory vs. Locks in Practice,” in Proceedings of the Twenty-third

Annual ACM Symposium on Parallelism in Algorithms and Architectures,
ser. SPAA ’11. New York, NY, USA: ACM, 2011, pp. 43–52.

[41] C. H. Papadimitriou, “The Serializability of Concurrent Database
Updates,” J. ACM, vol. 26, no. 4, pp. 631–653, Oct. 1979.

[42] PCI-SIG, “PCI Express (Peripheral Component Interconnect Express),
PCIe Specification,” 2019. [Online]. Available: http://pcisig.com/

[43] A. Pellegrini, R. Vitali, and F. Quaglia, “The ROme OpTimistic Simulator:
Core Internals and Programming Model,” in Proceedings of the 4th

International ICST Conference on Simulation Tools and Techniques, ser.
SIMUTools ’11. ICST, Brussels, Belgium, Belgium: ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2011, pp. 96–98.

[44] S. Peluso, J. Fernandes, P. Romano, F. Quaglia, and L. Rodrigues,
“SPECULA: Speculative Replication of Software Transactional Memory,”
in Proceedings of the 2012 IEEE 31st Symposium on Reliable Distributed

242

Systems, ser. SRDS ’12. Washington, DC, USA: IEEE Computer Society,
2012, pp. 91–100.

[45] T. Riegel, C. Fetzer, and P. Felber, “Time-based Transactional Memory
with Scalable Time Bases,” in Proceedings of the Nineteenth Annual

ACM Symposium on Parallel Algorithms and Architectures, ser. SPAA
’07. New York, NY, USA: ACM, 2007, pp. 221–228.

[46] ——, “Automatic data partitioning in software transactional memories,”
in Proceedings of the Twentieth Annual Symposium on Parallelism in

Algorithms and Architectures. New York, NY, USA: ACM, 2008, pp.
152–159.

[47] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho, and L. Rodrigues, “On
Speculative Replication of Transactional Systems,” J. Comput. Syst. Sci.,
vol. 80, no. 1, pp. 257–276, Feb. 2014.

[48] N. Shavit and D. Touitou, “Software Transactional Memory,” in Pro-

ceedings of the Fourteenth Annual ACM Symposium on Principles of

Distributed Computing, ser. PODC ’95. New York, NY, USA: ACM,
1995, pp. 204–213.

[49] Q. Shen, C. Sharp, W. Blewitt, G. Ushaw, and G. Morgan, “PR-STM:
Priority Rule Based Software Transactions for the GPU,” in Euro-Par

2015: Parallel Processing. Springer, 2015, pp. 361–372.
[50] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts,

9th ed. Wiley Publishing, 2012.
[51] The Linux kernel development community, “Heterogeneous Memory

Management (HMM),” 2019. [Online]. Available: https://www.kernel.org/
doc/html/latest/vm/hmm.html

[52] A. Villegas, A. Navarro, R. Asenjo, and O. Plata, “Lightweight Software
Transactions on GPUs,” Supercomputing, 2018.

[53] A. Villegas and R. Ubal, “Stretching transactional memory,” in TRANS-

ACT 2016 - 11th ACM SIGPLAN Workshop on Transactional Computing.
ACM, 2015.

[54] Q. Wang, S. Kulkarni, J. Cavazos, and M. Spear, “A Transactional
Memory with Automatic Performance Tuning,” ACM Trans. Archit. Code

Optim., vol. 8, no. 4, pp. 54:1–54:23, Jan. 2012.
[55] Y. Xu, R. Wang, N. Goswami, T. Li, L. Gao, and D. Qian, “Software

transactional memory for gpu architectures,” in Proceedings of Annual

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion. New York, NY, USA: ACM, 2014, p. 1.
[56] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance

Evaluation of Intel® Transactional Synchronization Extensions for High-
Performance Computing,” in Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis, ser.
SC ’13. New York, NY, USA: ACM, 2013, pp. 19:1–19:11.

[57] Y. Yuan, M. F. Salmi, Y. Huai, K. Wang, R. Lee, and X. Zhang, “Spark-
GPU: An accelerated in-memory data processing engine on clusters,” in
2016 IEEE International Conference on Big Data (Big Data). IEEE,
2016, pp. 273–283.

[58] J. Zeng, J. Barreto, S. Haridi, L. Rodrigues, and P. Romano, “The Fu-
ture(s) of Transactional Memory,” in 2016 45th International Conference

on Parallel Processing (ICPP), Aug 2016, pp. 442–451.
[59] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on

multicore and multi-GPU platforms using functional performance models,”
IEEE Transactions on Computers, vol. 64, no. 9, pp. 2506–2518, 2015.

243

