
Optimizing Persistent Memory Transactions

1st Pantea Zardoshti*

Lehigh University
zardoshti@lehigh.edu

2nd Tingzhe Zhou*

Facebook
tzzhou@fb.com

3rd Yujie Liu
Google

yujie.liu@gmail.com

3rd Michael Spear
Lehigh University
spear@lehigh.edu

Abstract—Byte-addressable, non-volatile, random access mem-
ory (NVM) has the potential to dramatically accelerate the
performance of storage-intensive workloads. For applications
with irregular data access patterns, and applications that rely on
ad-hoc data structures, the most promising model for interacting
with NVM is a transactional model. However, the specifics of the
model matter significantly.

We introduce two models for programming persistent transac-
tions. We show how to build concurrent persistent transactional
memory from traditional software transactional memories. We
then introduce general and model-specific optimizations that can
substantially improve the performance of persistent transactions.
Our evaluation shows a substantial improvement in the both the
latency and scalability of persistent transactions.

Index Terms—Non-volatile Memory, Transactional Memory,
Concurrency, Persistence, Synchronization, Performance

I. INTRODUCTION

Non-volatile byte-addressable memories present an exciting

new opportunity for creators of high-performance systems.

With non-volatile main memory (NVM), a program can avoid

sources of latency associated with writing to traditional storage

medium, and instead achieve persistence through memory

writes to an NVM whose latency is within a constant factor

of the speed of RAM.

Transforming a program to use NVM can be non-trivial.

Consider an application that persists program data via the file

system interface. If the program crashes between file writes, or

fails in a way that corrupts RAM, the integrity of the persisted

data is not compromised. Similarly, if a fault occurs during a

file write, the operating system or hardware (e.g., RAID) is

responsible for ensuring write integrity. In contrast, if program

memory is also the storage medium, then it is the program’s

responsibility to ensure the integrity of the data in the face of

program crashes at arbitrary points in the program’s execution.

Three programming models have emerged to address this

challenge [1]. The simplest is to implement a file system

on the NVM. No changes to the program are needed, but

many of the performance and programmability benefits of

NVM are lost. The second is ad-hoc techniques, through

which the programmer uses custom assembly instructions to

flush data from caches to the NVM, and fences to ensure

ordering between these flushes and other accesses to program

data. The third model exposes a transactional interface to

programmers. With persistent transactional memory (PTM),

programmers mark the regions of code that access NVM, and a

run-time system tracks accesses to NVM within those regions.

* The first two authors contributed equally to this work.

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

Lock
STM

(a) TPCC-HashTable

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

p-lock-eager
p-lock-lazy

PTM

(b) TPCC-B+Tree

Fig. 1: TPCC benchmark performance. When the program data

is in DRAM, synchronization is achieved using a single coarse

lock or general-purpose STM. When the program data is in

NVM, synchronization is achieved using a coarse lock + undo

(eager), a coarse lock + redo (lazy), or PTM.

The run-time system ensures the atomicity of transactions by

performing the necessary flushing and fencing, along with roll-

forward or roll-back logging.

In many ways, PTM resembles software transactional mem-

ory (STM), an approach to creating high-performance concur-

rent programs [2], [3]. STM simplifies the creation of scalable

programs by raising the level of abstraction for programmers:

instead of thinking about explicit fine-grained locks, program-

mers mark regions of code that require atomicity, and then a

run-time system tracks the memory accesses of those regions

to maximize the number of transactions that can complete

simultaneously without causing data races.

It is possible for special-purpose STM to achieve high

scalability and modest run-time latency [4]. However, general-

purpose STM must support challenging programming idioms

that lead to run-time overheads and scalability bottlenecks [5].

219

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00025

Consider Figure 1, which shows the scalability of the TPCC

“new order” benchmark when the underlying data store is

represented as a hash table or a B+ tree. Every access to shared

memory occurs within a language-level transaction. When we

use a global mutex (“lock”) to implement transactions, single-

thread throughput is 2× to 3× that of a general-purpose

STM. General-purpose STM requires 4–8 threads to match

the throughput of the lock-based code, and at its peak it has

only 2× the throughput.
The overheads that are most harmful to general-purpose

STM arise because data is not statically or spatially partitioned

according to whether it is accessed transactionally or not:

The same datum can transition between transactional and non-

transactional modes of access during execution, and adjacent

bytes may be accessed via different modes. In contrast, it is

reasonable to assume that data is statically partitioned at a

coarse granularity for PTM: any variable stored in a page

of NVM memory will always be accessed using a persistent

transaction. As a result, there are optimizations available to

PTM that are not available to general-purpose STM.
In this paper we propose and evaluate PTM optimizations,

and contrast the added costs of PTM (cache flushes and

fences) against the savings these optimizations provide relative

to general-purpose STM. Figure 1 illustrates the cost of

persistence. The p-lock-eager curve extends lock-based critical

sections with undo log-based persistence, and p-lock-lazy uses

redo logs. Undo logging has simpler instrumentation than redo

logging, but more fences, leading to sequential slowdowns

of 10× and 2×, respectively, versus non-persistent critical

sections. The implementations perform the same number of

flushes. The figure also shows the impact of PTM-specific

optimizations: Our most optimized PTM achieves 90% of

the performance of p-lock-lazy, scales to 5× its single-

thread throughput, and outperforms the peak performance of a

general-purpose STM. Note that while our PTM optimizations

could be applied to certain STM workloads, the differences

between STM and PTM programming models mean they can

always be applied to PTM.
In this paper, we study the relationship between PTM and

STM. We introduce a PTM transformation for lock-based,

single version STM, characterize fundamental overheads as-

sociated with different programming models for PTM, and

present optimizations for PTM within these programming

models. In particular:

• We argue that PTM cannot use STM techniques to ensure

progress, and we present a new progress mechanism.

• We demonstrate the importance of the persistence model

on the performance of PTM algorithms.

• We introduce run-time optimizations for PTM, which

raise performance by as much as 60%.

The remainder of this paper is organized as follows. In Sec-

tion II, we introduce two system models for persistent trans-

actions. Both take into account modern hardware trends, but

one is more restrictive, constraining transactions to exclusively

access NVM or DRAM, but not both. Then, in Section III,

we present a general transformation for turning lock-based,

single-version STM algorithms into PTM algorithms. We also

present baseline performance numbers for PTM versus STM.

Section IV presents a set of optimizations, some of which are

only applicable to the more restrictive model, others of which

apply to both models. We also measure the impact of each

optimization, in isolation. Section V measures the impact of

combining optimizations. Finally, Section VI summarizes our

conclusions and discusses future work.

II. PROGRAMMING MODELS FOR PERSISTENCE

The fundamental challenge for PTM is to ensure that

program data is in a recoverable state at all times. That is, if

the system should encounter a failure, then after the failure

is addressed and the system restarted, the program’s data

should be valid. A transactional model ensures this property

by executing atomic transactions that appear to happen all at

once or not at all. However, the implementation of persistent

transactions depends on hardware characteristics, the recovery

model, and how a workload’s transactions interact with the

NVM and DRAM.

A. Hardware Persistence Domains

Marathe et al. [6] describe three hardware persistence do-

mains. The simplest (persistence domain 0, or PDOM-0) only

contains the NVM DIMM modules themselves. PDOM-1 adds

the memory controller. PDOM-2 adds the entire CPU state,

including caches and registers. As the persistence domain

expands, it becomes easier to ensure a recoverable state. For

example, if a power failure occurs in a PDOM-2 system, then

when the machine is powered back, it can resume immediately,

with no loss of state. In PDOM-1, memory buffers are flushed

to DIMMs on power failure. As a result, programmers must

ensure that data reaches the buffers in a correct order, through

the use of clwb instructions that cause a cache line to write

back, and sfence instructions to order the clwb with respect

to subsequent stores. Finally, in PDOM-0, only the DIMMs are

persistent, leading to additional instructions (e.g., pcommit)

that run after all clwbs, to move data from the memory

controller to the DIMMs.

Current and upcoming Intel systems provide PDOM-1. In

PDOM-1, a failure that occurs in the middle of a transaction

requires care to recover correctly: When the system recovers,

the program counters at the time of the failure are unknown, so

persistent transactions must either (a) use undo logs to record

all overwritten values, so that they can roll back a transaction

that is interrupted, or (b) use redo logs to record all to-be-

updated values, so that they can roll forward a transaction after

it is guaranteed to complete. The contents of either log must

be stored in persistent memory, and updates require specific

ordering with respect to accesses to program data.

B. Cost of Recovery

Typically, a persistent region is achieved by mapping a

named, contiguous range of physical addresses from NVM

into a program’s virtual address space via mmap [7]. When a

program restarts and reloads the region, its virtual-to-physical

220

benchmark TPCC-B+Tree TATP TATP (1Kops/tx)
overhead 5.15% 2.67% 5.1%

TABLE I: Overhead of self-referential pointers

mappings may change. To minimize the time needed to recover

a data structure, a program may use position-independent

pointers (PIPs). These can either consist of two machine words

(to represent a file ID and offset) [8] or a single machine word

that represents an offset relative to the location of the pointer

(e.g., for a pointer at 0xAA00 to refer to a word at 0xAAF0,

it would store the value 0xF0). With PIPs, the pointers in

a file are valid as soon as the file is mapped into the virtual

address space. Otherwise, the pointers are invalid until they are

adjusted by application-specific recovery code that traverses

the entire persistent region.

Table I shows the increase in latency that PIPs introduce

in a non-persistent program. The experiment was conducted

by using our transactional instrumentation (discussed in Sec-

tion III) to dynamically treat each pointer in the benchmark

as a self-referential pointer. Considering these costs, we focus

on non-position-independent pointers in this paper.

C. Accesses to Volatile Memory

A persistent memory region RP is mapped into the virtual

address space as a contiguous range, via mmap, and deallo-

cated all at once via munmap. After being mapped, a persistent

allocator manages RP by creating and reclaiming contiguous

ranges of memory within RP . The persistent allocator cannot

return reclaimed sub-ranges of RP to the operating system. In

contrast, allocators for traditional (volatile) memory can return

individual pages of virtual memory to the operating system

when they are no longer allocated.

In most TM systems, it must be assumed that while one

thread T1 is transactionally accessing some location L, another

thread T2 could commit a conflicting transaction that renders

L unreachable, after which T2 frees L. For general-purpose

STM, L is in DRAM and could be returned to the operating

system. Thus until T1’s transaction aborts, it could segfault if

it accessed L. This is one manifestation of the “privatization”

problem in STM: L has become logically private to T2, but

uses of L by T2 can race with speculative accesses by T1’s

doomed transaction [9]. The most common solution is to

require transactions to block during their commit operation,

until every concurrent transaction reaches a safe point. The

blocking operation is commonly known as “quiescence” [10],

and impedes scalability.

Yoo et al. observed that quiescence is necessary in the

general case, but can be avoided on a workload-by-workload

basis [5]. Zhou et al. later showed that quiescence overheads

can be disabled at even finer granularity [11]. In the case of

PTM, a stronger outcome is possible: if a PTM transaction

only accesses NVM, it does not require quiescence [12].

D. Access Granularity

When transactions are used for concurrency, there is no need

to instrument every access to DRAM; only accesses that could

be concurrent with a transactional access to the same location

need to be instrumented. As a result, general-purpose STM

must assume a worst case, where on a single cache line, one

byte may be private to a thread, while an adjacent byte is

shared among many threads and accessed via transactions [5].

In contrast, persistence is not a dynamic property. Our focus

on PDOM-1 means that every store to the NVM must be

instrumented, so that clwb and sfence instructions can be

performed correctly. Thus it is natural to require that every

store be part of a transaction. We can also require that every

load from a persistent region is part of a transaction (micro-

transactions make the overhead of such a design minimal [4]).

When the allocator uses padding and alignment to keep its

metadata (e.g., boundary tags) on separate cache lines from

program data, PTM algorithms for PDOM-1 can track memory

at arbitrarily coarse granularities, saving overhead relative to

the fine-grained tracking needed for general-purpose STM.

E. Multiple Persistent Regions

Applications should be able to work with multiple persistent

regions at the same time. However, past work has established

that some constraints may be enforced, such as forbidding

pointers from NVM-backed regions to DRAM, or between

NVM regions [7]. For the purposes of this paper, the distinc-

tion is not significant: as long as every attempt to mmap a

named persistent region is done in a manner that persistently

tracks (a) the name of the region (e.g., file name), (b) the

virtual address assigned to the first byte of the mapped region,

and (c) the size of the mapped region, then management of

cross-region pointers can be handled by the code that runs

upon recovery after a failure.

F. Models Considered in this Paper

From the above, we focus on two programming models in

this paper. In both models, the underlying hardware is assumed

to provide PDOM-1, and the programmer is expected to

provide recovery code, so that persistent regions do not require

position independent pointers. Note that during recovery, it

will be necessary to both (a) apply a redo/undo log to clean

up from incomplete transactions, and (b) remap pointers within

the persistent region. Upon this base, the general persistence

model (GP) assumes that any single transaction may access

both NVM and DRAM, and that programs may access mem-

ory (reads and writes of DRAM, reads of NVM) from outside

of transactions. The ideal persistence model (IP) assumes that

a transaction may only access one type of memory (NVM or

DRAM), and that every access to NVM is performed from

within a transaction.

III. TRANSFORMING STM INTO PTM

We now present a strategy for transforming general-purpose

STM algorithms into PTM algorithms. We focus on a set of

lock-based, single-version STM algorithms [13], [14], [15],

[16], [17], [18], [19], that are compatible with the C++

TM Technical Specification [20]. These algorithms involve

221

five functions that interact with program addresses and STM

metadata:

• Begin: Start a transaction by snapshotting the thread’s

architectural state and possibly reading/updating global

metadata.

• Write(a, v): Speculatively write value v to address

a. Write may save the old value at address a to an

“undo” log and directly modify the value at a, or it might

store v in a private buffer, to “redo” at commit time. It

may also cause a transaction to validate (i.e., make sure

no concurrent transaction made changes to a location the

current transaction has already accessed).

• Read(a): Attempt to read the value at a. Like Write,

Read may cause a validation. It may also need to check

if a is in the redo log managed by Write.

• Commit: Finalize the transaction’s writes only if the

reads all remain valid.

• Abort: Roll back any writes, clear all thread-local

metadata, and restore the checkpoint from Begin to re-

try the transaction.

An instrumenting compiler [21], [22], [23], [24] inserts calls to

Begin and Commit at the boundaries of transactions. Within

the body of a transaction, every load and store is replaced

with a call to Read or Write. A variety of optimizations

have been proposed over the years to reduce the latency of

this instrumentation.
To detect conflicts, STM algorithms map program addresses

to some form of concurrency-control metadata. The metadata

may be explicit readers/writer locks [19], or ownership records

(orecs) [13] that superimpose a lock bit on a version number,

so that optimistic readers can avoid acquiring read locks,

instead validating the consistency of reads by tracking changes

in the versions of the orecs protecting locations they read. In

some cases, program values [17], [18] or bit vectors [16] are

used instead of orecs.
The general read strategy for STM is similar regardless

of the metadata: a transaction checks global metadata, reads

a location, and possibly checks the metadata again. If the

metadata is unchanged and compatible with previous reads,

the new value can be returned (and the read set updated to

include the new address). Otherwise, the transaction aborts.

To write, a transaction either places an address/value pair into

a write set (lazy), or locks the location, logs the old value in

an undo log, and updates the value directly (eager). With lazy

writes, it is necessary for reads to check the log, or else they

may fail to see values previously written by the same thread in

the same transaction. To commit, a lazy transaction acquires

locks for all its writes, validates its reads, replays its redo

log to update program memory, and releases locks. An eager

transaction merely validates and releases locks. Conversely,

to abort, a lazy transaction only needs to reset its local lists,

whereas an eager transaction must use its undo logs to restore

the values of locations it wrote, then release locks.
By definition, STM algorithms prevent deadlock. However,

some algorithms are prone to livelock and starvation. A

“distressed” transaction is one that repeatedly fails to commit,

due to conflicts with other transactions. There are a number

of sources of distress [25]. A thread may try to use an out-

of-band “contention manager” to resolve conflicts [26]. In the

worst case, a thread may resort to irrevocability [10], [27], a

mechanism in which a transaction runs in isolation, without

any instrumentation, in order to guarantee that it can complete.

Since an irrevocable transaction can never abort, irrevocability

is also used to allow transactions to turn off speculation, e.g.,

in order to perform I/O.

A. Ensuring Recoverability for Incomplete Transactions

Listing 1 presents the generic behavior of lazy and eager

STM algorithms, and extends them to make them correct when

operating on persistent regions. The comment algorithm
specific indicates that the next lines of code would vary

depending on the STM algorithm, but are immaterial to the

persistent transformation. These algorithms treat all memory as

persistent, issuing clwb and sfence instructions even when

interacting with DRAM. To do so is inefficient, but correct,

and simplifies the discussion in the remainder of this section.

In the GP model, the entirety of the effort in making a lazy

transaction recoverable occurs in the Commit function. Prior

to line 6, the state of memory is as if the transaction never

happened. At line 6, the transaction has acquired all of its

locks and ensured the validity of its reads. Additionally its

redo log is stored in persistent memory. In traditional STM,

the transaction would write back its redo log (line 10) and

then clean up. In PTM, the transaction must first ensure that

its entire redo log has reached a persistent level of the memory

hierarchy. Line 6 performs up to W clwb instructions, where

W is the number of entries in the redo log, to flush the entries

to the persistent storage. It then sets the transaction’s state to

active (line 8). Prior to line 8, if the system crashed, then

on recovery, the redo log would be discarded, and it would

be as if the transaction never ran. After line 8, if the program

crashed, the recovery procedure would see that s was active
for this thread, and hence its redo log would need write-back.

On line 10, the redo log is replayed to memory. Note

that this is an idempotent operation. If it were interrupted

by a crash, then on recovery, it could be re-done (though

potentially with re-mapped addresses, depending on the new

base virtual address of the persistent region). Since write-

back is idempotent, it does not matter if recovery leads to

it executing more than once, but every write-back must reach

persistent memory (via up to W clwb instructions on line 10).

Once line 12 is reached, it is known that the write-back was

successful, and need not be done again. After that, the thread

can release its locks and clean up (line 14).

The eager algorithm is more complex. The main issue is

that an undo (also idempotent) will be triggered by any system

failure between the first write by a transaction and the point

where it is known to have succeeded. We approximate this

space by marking the transaction active on line 23, prior

to its first read or write. As with the lazy algorithm, there

are no changes to the read code. However, before writing,

a transaction must log the old value to the undo log, and

222

Listing 1: Transforming STM to PTM

Thread-local Variables (Located in NVM):
rl : redo log for lazy algorithms, initially empty
ul : undo log for eager algorithms, initially empty
s : status of current transaction: {active, inactive}

function Begin.Lazy()
// algorithm specific:

1 StartTransaction ()

function Commit.Lazy()
2 if rl.empty then

// algorithm specific:
3 ResetMetadata ()
4 return

// algorithm specific:
5 AcquireLocksAndValidate (rl)

// changes for NVM:
6 clwb(rl)
7 sfence
8 clwb(s← active)
9 sfence

10 clwb(rl.writeBack())
11 sfence
12 clwb(s← inactive)
13 sfence

// algorithm specific:
14 ResetMetadata ()

function Read.Lazy(addr)
// Check redo log:

15 if addr ∈ rl then
16 return rl.get(addr)

// algorithm-specific:
17 val←ConsistentRead (addr)

// abort on error, else return val:
18 if err then Abort.Lazy ()
19 return val

function Write.Lazy(addr, val)
// Save addr/val to redo log:

20 rl.insert(addr, val)

function Abort.Lazy()
// algorithm specific:

21 ResetMetadata ()

function Begin.Eager()
// algorithm specific:

22 StartTransaction ()
// changes for NVM:

23 clwb(s← active)
24 sfence

function Commit.Eager()
25 if ul.empty then

// algorithm specific:
26 ResetMetadata ()
27 return

// changes for NVM
28 sfence
29 clwb(s← inactive)
30 sfence

// algorithm specific:
31 ResetMetadata ()

function Read.Eager(addr)
// Fast path if owned

32 if ThisTxOwns (addr) then
33 return ∗addr

// algorithm specific:
34 val←ConsistentRead (addr)

// abort on error, else return val:
35 if err then Abort.Lazy ()
36 return val

function Write.Eager(addr, val)
// Get permission to update addr

37 GetOwnershipOf (addr)
// changes for NVM

38 clwb(ul.insert(addr, ∗addr))
39 sfence

// update memory
40 clwb(∗addr ← val)

function Abort.Eager()
// changes for NVM

41 clwb(ul.writeBack())
42 sfence
43 clwb(s← inactive)
44 sfence

// algorithm specific:
45 ResetMetadata ()

persist the change (lines 38–39). In addition, aborting is more

complex, since it must restore memory, and that restoration

must reach the NVM before the transaction marks itself as

inactive.
For a successful transaction, both eager and lazy will incur

2W +2 clwb operations, to ensure that the redo or undo log

is persisted, that all writes to program memory are persisted,

and to persist two toggles of the transaction’s state. The key

difference is in fences: the lazy algorithm has 4, whereas the

eager algorithm has W + 3 fences.

B. Ensuring Progress and Instrumentation
Unlike STM, PTM cannot use irrevocability. There are

two problems. The first is that irrevocability does not use

instrumentation, and thus there is no mechanism by which

an irrevocable transaction can perform the clwb instructions

needed to ensure that updates reach the NVM. The second is

that in PDOM-1, the program counter is not persistent. If an

irrevocable transaction is in the midst of performing I/O when

there is a system failure, there may not be a mechanism for

determining, at recovery-time, if the I/O has taken place. For

the former problem, this means PTM cannot use irrevocability

for ensuring progress. For the latter, programs that perform I/O

from STM transactions will need to be rewritten in order to

use PTM.
Without irrevocability, we require a new mechanism to

prevent starvation and livelock. We propose an “hourglass”

scheduler. We say that a transaction TD is distressed if it

has aborted k consecutive times. After k aborts, irrevocability

would require that TD set some flag to prevent new transaction

attempts from starting, and then wait for all active transactions

to commit or abort. Then TD would run in isolation, after

which it would clear the flag. Note that TD must wait after

setting the flag, because it will not use instrumentation, and

thus will not be able to detect conflicts with concurrent

transactions.

The key idea behind the hourglass is to reduce concurrency

slowly, without making TD wait, in the hopes that TD can

complete earlier than if it waited until it could run in isolation.

Briefly, after TD sets the flag, it immediately begins its

(instrumented) transaction. Concurrent transactions continue to

execute, and may cause TD to abort. However, new transaction

attempts are not allowed, to include attempts by transactions

that aborted. Thus once TD has set the flag, it is guaranteed

that every concurrent transaction will either (a) commit, and

then be forbidden from starting a new transaction, or (b) abort,

and then be forbidden from starting a new transaction. While

these transactions are running, TD tries to complete. If it

continues to fail, it is guaranteed to eventually run in isolation,

and thus it can no longer starve.1

1Starvation is possible if some thread T can never acquire the flag.
Substituting the flag with an adaptation of the wait-free enqueue of the MCS
lock [28] would ensure progress even in the worst case.

223

(a) Legends

 0

 1000

 2000

 3000

 4000

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(b) B+Tree Insert

 0

 1100

 2200

 3300

 4400

 5500

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(c) B+Tree Mix

 0

 100

 200

 300

 400

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(d) TPCC-B+Tree

 0

 100

 200

 300

 400

 500

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(e) TPCC-HashTable

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(f) TATP

 0

 280

 560

 840

 1120

 1400

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(g) Vacation (low)

 0

 150

 300

 450

 600

 750

 900

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(h) Vacation (high)

 0

 110

 220

 330

 440

 550

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
op

s/
s)

Number of Threads

(i) Memcached

Fig. 2: Performance comparison of general-purpose STM to naive PTM (general model).

An added benefit of the hourglass, relative to irrevocability,

is reduced latency in Begin. While the details of implement-

ing irrevocability are outside of the scope of this paper, the

coordination between regular and irrevocable transactions in

Begin resembles Dekker locks [29], requiring every transac-

tion to announce its intent to start, then fence, then check for

irrevocable transactions, and possibly clear its intention and

loop. In contrast, hourglass does not require transactions to

announce that they have started, saving a memory fence. In

the worst case, this could allow each thread to “sneak” one

additional transaction attempt after TD sets the flag, but as

long as distressed transactions are rare, we expect the latency

savings to outweigh this risk.

C. Performance of Naive PTM and STM

Figure 2 presents the performance of several general-

purpose STM algorithms and their PTM equivalents across

a set of common persistence benchmarks. We compare

seven STM algorithms. “Lock” refers to a lightweight, non-

concurrent STM where all transactions are protected by a

single global lock. “Orec-eager” uses ownership records and

undo logging, similar to GCC TM [14]. “Orec-lazy” is iden-

tical to “orec-eager”, except it acquires locks at commit time

and uses redo logging [13], [15]. “Orec-mixed” uses redo

logging, but still acquires locks early, like orec-eager [30].

Orec-mixed has less overhead than orec-lazy on lines 15–16,

because it can use knowledge of the locations it has locked

to reduce the incidence of lookups in the redo log. However,

for workloads with high contention, it is likely to scale worse

than orec-lazy. “NOrec” [18] is a lazy algorithm that does

not use orecs, instead relying on a single sequence lock to

order transaction commits, and storing the values it reads so

that it can validate address/value pairs instead of orec version

numbers. “TLRW” [19] is an eager algorithm with carefully-

crafted readers/writer locks. “Ring” [16] is a lazy algorithm

that uses a log of 1024-entry bit vectors to capture the history

of committed writer transactions. The persistent versions of the

above algorithms are indicated by the “p” prefix. They were

224

created via the transformation in Listing 1. The exception is

“Lock”. We created two versions of “Lock”, one eager, one

lazy. These implementations bridge the gap between STM and

past work on persistent critical sections [31]. Excluding “lock”

algorithms, all STM and PTM algorithms ensure progress with

the hourglass scheduler.

We instrumented code using an open-source LLVM exten-

sion for STM [24], which has been shown to have low in-

strumentation latency for general-purpose STM. We integrated

the 7 STM and 8 PTM algorithms into it, which allowed us

to isolate differences among STM algorithms, e.g., by using

the same redo and undo log implementations. For the “p-

lock-eager” PTM, we created a custom version of the LLVM

extension that did not instrument reads. We also employed

Link Time Optimization (LTO), which inlined most of the

function call overhead related to instrumentation.

All experiments were conducted on a Dell PowerEdge R640

with two 2.1GHz Intel Xeon Platinum 8160 processors and

192GB of RAM. Each processor has 24 cores / 48 threads,

runs Red Hat Linux server 7.4, and uses LLVM/Clang 6.0 with

O3 optimizations. Experiments are the average of five trials;

to avoid NUMA effects, we limited execution to a single CPU

socket. Note that on this system, the RAM is not persistent,

but clwb incurs accurate latencies.

We consider every open-source multi-threaded PTM bench-

mark we could find, which includes (i) one real world ap-

plication, Memcached [32], [33], [1]; (ii) write-only bench-

marks from DudeTM [34]: the TPCC transaction processing

benchmark, TATP telecom application benchmark, and a B+

tree data structure microbenchmark; (iii) the “vacation” travel

reservation benchmark [35], [1]. We tested the B+ tree for

an insert-only workload, as well as a workload with an even

mix of lookup, insert, range query, and remove operations.

We ran two TPCC benchmarks, one using a B+ tree as

the index, the other using a hashtable; both were the New

Order workload. We tested Update Location transactions for

TATP, using a hashtable for the index. We also looked at

the recommended “high” and “low” contention settings for

vacation. We evaluated Memcached by assigning 8 threads in

one NUMA zone to serve as clients, and then varying from

1 to 48 worker threads in a second NUMA zone. For the

Memcached experiments, we used a get/set ratio of 90/10.

The most striking finding of these experiments is that

supporting persistence seems to tip the balance in favor of

lazy strategies. We shall see in subsequent sections that this

observation is mitigated, to a degree, by algorithm-specific

optimizations for eager PTM. While the performance of orec-

lazy and orec-eager are competitive with each other across all

benchmarks, the linear number of sfence instructions hurts

the performance of p-orec-eager. The (eager) TLRW algorithm

is consistently among the best in Figure 2(c)(f)(g)(h), as is

the persistent version. The success of persistent TLRW is its

unique, scalable approach to privatization safety: it does not

require quiescence, which introduces costs that grow with the

number of threads.

Another surprise was the poor performance of NOrec.

Support for persistence can increase the time that transactions

spend holding locks. NOrec is more sensitive to this overhead

than the other STM algorithms we consider. NOrec is lauded

for its ability to provide a simple, scalable fallback when

hardware TM cannot succeed [36], [37], but at the current

time, the clwb instruction is incompatible with hardware TM.

Without hardware acceleration, p-norec does not appear viable.

For orec-mixed, which matches the PTM algorithm in

Mnemosyne [30], we see that the optimization for reducing

lookups in the redo log has little benefit: it has a scalability

cost, due to early locking, and does not save much read lookup

latency. Consequently, orec-lazy performs better overall. Note

that the scalability trends from the original Mnemosyne paper

match with the behaviors we observed.

The last algorithm we considered was RingSTM. Like

NOrec, RingSTM is a scalable lazy STM. RingSTM is less

precise in its conflict detection than any of the other al-

gorithms we consider, potentially leading to more aborts.

However, it provides a feature that NOrec lacks: like the

orec-based algorithms and TLRW, it can overlap the write-

back of multiple software transactions. Unfortunately, naively

transforming RingSTM to support persistence does not result

in good performance.

IV. PTM OPTIMIZATIONS

A. Captured Memory

Most STM systems avoid instrumentation for accesses to

memory on stack frames whose lifetime was limited by

the scope of the transaction. In addition, Riegel et al. [22]

and Dragojevic et al. [38] developed techniques to avoid

instrumentation of “captured memory”, locations that could

be statically shown to be accessible only to the thread running

the transaction. In some cases, captured memory would still

require lightweight undo logging, e.g., for accesses to portions

of the stack that were not transaction-local. While effective,

captured memory optimizations are not part of modern STM

implementations, due to the pointer analysis needed before any

significant gains are achieved.

For NVM transactions, an important subset of captured

memory is the memory allocated to a transaction during its

execution. In our workloads, a transaction that allocates mem-

ory (e.g., calls malloc) is guaranteed to write to that memory.

Thus it needs some amount of instrumentation (at least a

clwb of each cache line written). A lightweight, dynamic

optimization for these allocations can have a significant impact

on latency. We call this optimization “last allocation tracking.”

A typical STM will log the result of every malloc called

within a transaction, so that it can free those pointers if

the transaction aborts. To support last allocation tracking, we

instead store a tuple, consisting of the returned value and also

the size of the allocated region. We then make the following

two modifications to the PTM implementation. First, on any

Read or Write, we check if the address being accessed is

within the range of the most recent allocation. If so, we do

not perform any further instrumentation, instead performing

the read or write directly to memory. This results in an

225

TPCC-HashTable TPCC-B+Tree B+Tree (Insert) Vacation (low) Vacation (high) Memcached

p-lock-eager 1.674 1.543 1.235 1.190 1.139 1.01
p-lock-lazy 1.055 1.045 1.041 1.026 1.021 1.01
p-orec-eager 1.674 1.443 1.126 1.179 1.177 1.272
p-orec-lazy 1.115 1.101 1.048 1.067 1.069 1.12

p-norec 1.107 1.081 1.061 1.052 1.024 0.999
p-ring 1.068 1.093 1.011 1.003 1.092 1.031
p-tlrw 1.626 1.358 1.127 1.173 1.162 1.264

p-orec-mixed 1.118 1.125 1.088 1.099 1.058 1.026

TABLE II: Speedup from the last allocation tracking optimization (single thread)

TPCC-HashTable TPCC-B+Tree TATP B+Tree (Insert) B+Tree (Mix) Vacation (low) Vacation (high) Memcached

p-lock-eager 1.229 1.519 1.049 1.366 1.167 1.231 1.197 1.11
p-lock-lazy 1.086 1.227 1.296 1.226 1.229 1.218 1.205 1.03
p-orec-eager 1.185 1.464 1.224 1.406 1.109 1.185 1.196 1.16
p-orec-lazy 1.041 1.124 1.084 1.113 1.096 1.104 1.120 1.114

p-norec 0.423 0.315 0.905 0.750 1.042 0.651 0.567 1.02
p-ring 1.022 1.121 1.107 1.158 1.075 1.076 1.058 1.022
p-tlrw 1.251 1.347 1.116 1.357 1.183 1.155 1.177 1.139

p-orec-mixed 1.088 1.113 1.052 1.063 1.086 1.144 1.097 1.055

TABLE III: Single-thread speedup of aligned memory and coarse-grained logging

additional branch before lines 15 and 20 for the lazy algorithm

in Listing 1, and before lines 32 and 37 of the eager algorithm.

Second, at commit time, prior to line 7 of the lazy algorithm

or line 29 of the eager algorithm, we loop through the list of

allocations. For each, we iterate through its range, and clwb
once per cache line. In this manner, we ensure that all writes to

the new memory region have crossed the persistence domain

before marking the transaction as complete. For completeness,

note that these steps must also be performed in the read-only

fast path of the commit operations, in case a transaction’s only

writes are to a region it allocated.

Last allocation tracking affects latency, but not scalability.

To evaluate its effectiveness, Table II presents its impact on

single-threaded execution of our benchmarks. In the “lock-

eager” algorithm, where reads are not instrumented, the impact

should be least; however, it is 13% or higher for all but

Memcached. This is due to the reduction in sfence instruc-

tions that the technique achieves for eager algorithms. Indeed,

p-orec-eager and p-tlrw also show substantial improvement.

The benefits for lazy algorithms are more limited (3% to

12%), and more in line with the gains to be expected from

captured memory instrumentation in STM. We conclude that

last allocation tracking is a generally effective strategy, and

particularly effective for eager PTM.

B. Memory Alignment and Logging Granularity

The IP model assumes addresses in NVM will only be

accessed transactionally. Since NVM is given to the program

at the granularity of pages, the IP model permits a coarser

granularity of management than in general-purpose STM.

In STM, when a transaction accesses the byte at address A,

it cannot eagerly read adjacent bytes, even if those addresses

are protected by the same metadata (e.g., the same orec),

because adjacent addresses may be accessed by a concurrent,

non-transactional thread. Thus with undo logs, entries in the

log must have variable granularity, and with redo logs, a

system must either (a) log at the granularity of individual

bytes, or (b) accompany each coarse log entry with a bitmap

indicating which bytes of the entry are valid. These choices

also affect how the redo log is checked during reads (lines 15–

16): In a general-purpose STM implementation that supports

C++ casting and mixed-granularity access, the lookup in

Listing 1 may need to use the bitmap to compose bytes from

the redo log with bytes that would be read on line 17.

Composing logging granularity with memory alignment

creates a new opportunity to improve PTM performance. We

dynamically replace each malloc of NVM with a call to

aligned_malloc, and we align on a boundary that is deter-

mined by the underlying STM (e.g., to match orec granularity).

We then log at that same granularity. For undo logging, this

means we can log at a fixed granularity (we chose half a

cache line, 32 bytes); the log then holds 〈address, value〉
tuples, instead of 〈address, value, length〉. For redo logging,

the redo log no longer needs a bitmap, and redo log entries

always are populated with a full 32 bytes of program data

read from NVM. As discussed above, Read is also simplified,

leading to fewer instructions and fewer branches on each read.

Our decision to use 32-byte granularity was based on

balancing improvements in performance (especially for TPCC

and Vacation) against the increased potential for conflicts due

to false sharing and the potential for unnecessary logging due

to poor spatial locality (especially in the B+ Tree and TATP).

In separate experiments, we found that 16-byte granularity im-

proved performance for the B+ Tree, and 64-byte granularity

was best for TPCC. We opted to show a single consistent

granularity, and we encourage developers to think carefully

about granularity, so that it can be a tunable parameter in

future systems.

Table III presents the impact of this optimization for single-

threaded code. Note that while the optimization has the

potential to harm scalability, if threads concurrently access

the same cache line, such problems do not manifest in our

226

TPCC-HashTable TPCC-B+Tree TATP B+Tree (Insert) B+Tree (Mix) Vacation (low) Vacation (high) Memcached

Speedup 13.3% 14.2% 0.67% 10.91% 2.5% 2.85% 4.05% 9.07%

TABLE IV: Single-thread speedup of fence pipelining for TLRW

benchmarks, which exhibit good spatial locality and are free

from false sharing.

The impact of the optimization varies by workload and PTM

algorithm. While it is generally effective, it performs poorly

for NOrec. NOrec differs from the other algorithms in this

study, in that it does not use metadata to detect conflicts among

threads. Instead, it logs the locations that were read, and the

values observed at those locations. Coarsening the redo log

granularity leads to a coarsening of the read log, which means

that any read must log 32 bytes. This increased write pressure

during reads translates to worse performance for NOrec, while

the other PTM algorithms enjoy speedups of 2% to 46%.

Note that in the GP model, exploiting this optimization

would require the transaction to maintain two redo logs: one

for NVM addresses, with coarse granularity, and one for

DRAM addresses, with STM granularity.

C. Fence Pipelining

Eager PTM algorithms incur a penalty due to the need to

flush undo log entries before writing new values to the NVM.

With W writes, the addition of W sfences has a deleterious

effect on single-thread latency, even in p-lock-eager.

Among eager STM algorithms, TLRW is unique in that

every memory access, whether read or write, must acquire

a lock. These acquisition operations cause the same type of

ordering as is needed for undo logging. That is, in TLRW,

line 34 has a memory fence, as does line 37. However, the

fence on line 37 must precede the clwb on line 38, as it is

necessary before dereferencing addr.

While we cannot combine two fences within the same

Write call, we can coalesce the sfence on line 39 with

a subsequent fence in the next call to Read or Write. Our

TLRW “pipeline” optimization defers the write and clwb on

line 40, by storing the address and value to a thread-local

variable. It also omits the fence on line 39. Then, on the next

Read or Write, after line 34 or line 37, we execute the

deferred store and clwb. We also execute the deferred store

immediately before line 33, and immediately before line 29.

In this manner, the most recent write to NVM delays until

the transaction performs its next operation that requires a

memory fence, allowing the fences to be combined. As a

result, persistent TLRW is able to reduce its fencing overhead

to the same as the original TLRW algorithm.

Table IV shows the impact on single-thread latency for

TLRW when using this optimization. Across our benchmarks,

the optimization reaches 14% speedup in the best case, and

never reduces performance.

D. Deferred Flushing

In lazy PTM algorithms, the Commit operation is respon-

sible for writing values to main memory on line 10. These

values must be flushed to the NVM via clwb instructions.

Unfortunately, clwb has high latency, and line 10 executes

while holding locks. We propose shrinking the critical sections

by performing the clwb instructions after locks are released.

As long as a thread has not yet marked itself inactive,

it would seem that it could tolerate a crash between line 10

and some later point when it has released locks but not yet

performed its clwbs: during recovery, it could replay its redo

log again, and perform the clwbs then. However, an incorrect

ordering could arise. In Listing 1, if two transactions both

write to X , and there is a system failure during one of the

transactions’ execution of line 10, then the other thread is

either (a) not yet to line 5, or (b) past line 14. Thus during

recovery, only one thread will have X in its active redo log.

In contrast, if the clwbs happen after locks are released, but

before becoming inactive, then two threads can have X in

their redo logs, and the recovery algorithm will not know

which to write back first.

Conveniently, in all but the TLRW algorithm, some global

counter, or single global lock, is used to order all writing

transactions. For algorithms that use a global counter, we can

use the value of this counter in place of active, and 0 in

place of inactive, to convey the commit order to the recovery

algorithm, so that writeback can be done in the proper order.

For TLRW and single-lock algorithms, we use the CPU’s high-

resolution timestamp counter (rdtscp), which is coherent

across cores on the x86.

In more detail, we replace the active status word with a

timestamp representing the transaction’s commit order. Then

we split line 10, such that the write-back occurs without
clwbs. After write-back completes, we release locks (part of

line 14), then we issue the clwbs, then clear the status, and

then run the rest of line 14. In this manner, flushing new values

to the persistence domain is done without holding locks. Note

that if a thread delays before issuing its clwb of location L,

then some other thread may lock L, update it, and flush its

update. In this case, coherence ensures that the delayed clwb
will flush the new value.

Table V depicts the performance improvement from this

optimization. The effect is most pronounced for TATP, which

is dominated by small transactions. In TATP, at 24 threads

performance is more than 2.7× the unoptimized 24-thread

throughput. For some workloads, we observe a small slow-

down (up to 3%), due to the shorter critical sections leading

to transactions committing in different orders. However, the

overall impact is positive.

V. COMBINING OPTIMIZATIONS

We conclude our evaluation by measuring the impact of

optimizations, in combination, for each benchmark. We are

227

TPCC-HashTable TATP B+Tree (Insert) Vacation (low) Memcached

Threads 4 8 24 4 8 24 4 8 24 4 8 24 4 8 24
p-lock-lazy 1.199 1.003 1.258 1.317 1.392 2.791 1.069 1.643 1.056 1.035 1.032 1.085 1.005 1.33 1.354
p-orec-lazy 1.026 1.052 1.007 1.018 1.056 1.050 1.010 0.998 1.008 1.012 1.017 0.998 1.057 1.368 1.485

p-norec 1.108 1.167 1.147 1.301 1.245 1.229 1.086 1.141 1.169 1.061 1.087 1.100 0.992 1.256 1.272
p-ring 1.041 1.028 1.130 1.152 1.211 1.457 1.085 1.145 1.152 1.027 1.014 1.017 1.111 1.184 1.631

p-orec-mixed 0.998 1.003 1.012 0.979 1.002 1.034 1.002 1.017 1.047 0.971 0.980 0.991 1.201 1.271 1.321

TABLE V: Speedup of Deferred Flushing (single thread)

particularly focused on understanding the implications of the

programming model on performance.

Recall that in the general (GP) model, a single transaction

might access both NVM and DRAM. In such a scenario,

the cost of determining the nature of an address may be

expensive: if N persistent heaps are mapped into the program’s

address space, then determining if an address A is in NVM

could require N base/bound checks. To avoid the worst case,

our GP implementations of PTM omit optimizations that

are inappropriate for DRAM transactions. Since every GP

transaction might access DRAM, we also keep privatization

overheads (e.g., quiescence) in place. In contrast, PTM algo-

rithms in the IP model follow prior work [30], [12] in only

requiring quiescence when unmapping a persistent region, so

that individual transactions do not need to quiesce.

This leads to the following configurations. For the GP

model, we use the hourglass scheduler, last allocation tracking,

fence pipelining (in TLRW), and deferred flushing. For the IP

model, we add 32-byte logging granularity for redo and undo

logs, and we remove quiescence. Note that TLRW does not

require quiescence.

A. Performance in the General Persistence Model

In Figure 3, algorithms optimized for the GP model are

prefixed with gp. After optimization, the performance for each

algorithm improves, often by a substantial margin. The peak

speedup of the best choice, when compared to the naive PTM

transformation (from Figure 2), is from 1.1× (b) to 1.3×
(i), with a geometric mean of 1.22×. If it were possible to

pick the best PTM algorithm at run time, based on advance

knowledge of the workload, thread count, and other program

characteristics, we might expect this much improvement. Note

that the decision may not be difficult, since either gp-orec-

lazy or gp-tlrw is near the top in every workload. If only one

algorithm could be used for all programs, gp-orec-lazy appears

to provide the best overall performance.

Fence pipelining had a significant effect on eager TLRW,

helping it to perform 1.7× better than other PTM algorithms

on Vacation, compared to 1.15× without the optimization.

However, eager TLRW has unsatisfactory performance in

benchmarks with high write frequencies or large read sets,

due to the latency of acquiring locks on every read.

The most disappointing results were for RingSTM and

NOrec. While these algorithms provide privatization safety

without quiescence, neither matched gp-orec-lazy at high

thread counts. In separate experiments, we made RingSTM

somewhat more competitive at low thread counts by using

its “relaxed commit order” optimization [16]. However, this

optimization sacrifices privatization safety, and is offset by a

need for quiescence. In the case of NOrec, note that whenever

a writing transaction commits, all other transactions block.

Adding clwb instructions and fences to the commit sequence

for PTM increases latency at this most critical point.

B. Performance in the Ideal Persistence Model

We now turn our attention to the performance of PTM

algorithms after applying the additional optimizations of the

IP model. Here, we find that improvements in single-thread

latency, arising from the use of coarse granularity logging and

last access tracking, are stable: the boost to algorithms at one

thread is borne out at higher thread counts. Furthermore, when

it can be assumed that transactions only access NVM, and thus

do not require quiescence, the scalability is greatly improved.

As a result, the three orec-based algorithms rise above the

rest, with only one instance (Vacation, low contention, 48

threads) where TLRW outperforms. Furthermore, while opti-

mizations are effective in reducing the overhead of orec-eager,

the lazy algorithms perform better, and in general, increasing

laziness (via commit-time locking) has a beneficial impact

on scalability. The mixed mode (encounter-time locking with

write-back), which was proposed for Mnemosyne [30], occa-

sionally outperforms orec-lazy, but when orec-lazy performs

better, it is by a larger margin, suggesting that orec-lazy is the

best PTM algorithm for the IP model. The peak performance

speedup for orec-lazy, when comparing with the GP model, is

from 1.23× (d) to 4.06× (c), with a geometric mean of 1.92×
across all benchmarks.

C. Implications for STM

As we have discussed throughout this paper, the program-

ming models for STM and PTM are governed by different

requirements. General-purpose STM must assume a worst

case, as described by Yoo et al. [5], that does not occur

for PTM. Still, the optimizations proposed in this paper can

be applicable to STM, so long as the underlying workload

and system exhibit the right characteristics. For example, the

workloads in our experiments are compatible with the IP

model, and thus any STM produced from an IP algorithm

by removing clwb and sfence instructions should be both

correct and faster than that corresponding IP algorithm. As

future work, we believe it will be valuable to develop static

analyses that can discover when PTM optimizations can be

applied to an STM workload.

228

(a) Legends

 0
 1100
 2200
 3300
 4400
 5500
 6600
 7700
 8800
 9900

 11000

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(b) B+Tree Insert

 0
 1700
 3400
 5100
 6800
 8500

 10200
 11900
 13600
 15300
 17000

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(c) B+Tree Mix

 0

 100

 200

 300

 400

 500

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(d) TPCC-B+Tree

 0

 200

 400

 600

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(e) TPCC-HashTable

 0

 2600

 5200

 7800

 10400

 13000

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(f) TATP

 0

 300

 600

 900

 1200

 1500

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(g) Vacation (low)

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
tp

s)

Number of Threads

(h) Vacation (high)

 0

 200

 400

 600

 800

1 2 4 8 16 24 32 48

T
hr

ou
gh

pu
t (

K
op

s/
s)

Number of Threads

(i) Memcached

Fig. 3: Optimized performance of PTM algorithms. The GP prefix indicates that the PTM applied optimizations for the General

Persistence model. IP indicates that additional optimizations for the Ideal Persistence model were also applied.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the performance of PTM algo-

rithms. We considered two programming models, one in which

a single transaction could interact with traditional DRAM and

also NVM, and another in which transactions only accessed

NVM. We also presented optimizations for PTM, significantly

improved PTM latency and throughput.

Our study is the most comprehensive to date, considering

a diverse set of STM algorithms and every publicly-available

PTM benchmark. It shows that the choice of PTM algorithm

will depend critically on the programming model: under

our general persistence model, a variety of PTM algorithms

performed comparably well, especially at low thread counts,

whereas in the ideal model, a single algorithm was best. An

important question is whether the ideal model is realistic: at

the time of this writing, there are no commercially-available

NVM-only systems, nor are there any production-worthy ap-

plications that use STM for transactions over DRAM. Fur-

thermore, at the present time hardware TM (HTM) is not

compatible with NVM.

In the future, we plan to use HTM to prefetch or pre-

compute results for persistent transactions, even if those results

must be flushed using a software protocol. We also plan to

look at special-purpose STM algorithms, to see if there are

opportunities to optimize them for PTM. Additionally, while

the p-orec-lazy algorithm has proven to be the most successful,

its latency for performing lookups in its redo log is not trivial.

We plan to develop hardware extensions, such as content-

addressable memory, to reduce this overhead in the common

case. We also plan to explore new STM and PTM algorithms

that are able to offer stable performance and good scaling on

NUMA systems. Lastly, we plan to explore static analysis that

can reduce instrumentation, e.g., by decomposing the PTM

interface and coalescing undo or redo operations, similar to

past work on STM [39].

229

REFERENCES

[1] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS’17,
Xi’an, China, April 2017.

[2] N. Shavit and D. Touitou, “Software Transactional Memory,” in Pro-
ceedings of the 14th ACM Symposium on Principles of Distributed
Computing, Ottawa, ON, Canada, Aug. 1995.

[3] M. P. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III, “Soft-
ware Transactional Memory for Dynamic-sized Data Structures,” in
Proceedings of the 22nd ACM Symposium on Principles of Distributed
Computing, Boston, MA, Jul. 2003.

[4] A. Dragojevic and T. Harris, “STM in the Small: Trading Generality for
Performance in Software Transactional Memory,” in Proceedings of the
EuroSys2012 Conference, Bern, Switzerland, Apr. 2012.

[5] R. Y. et al., “Kicking the Tires of Software Transactional Memory:
Why the Going Gets Tough,” in Proceedings of the 20th SPAA, Munich,
Germany, Jun. 2008.

[6] V. Marathe, A. Mishra, A. Trivedi, Y. Huang, F. Zaghloul, S. Kashyap,
M. Seltzer, T. Harris, S. Byan, B. Bridge, and D. Dice, “Persistent
memory transactions,” in arXiv preprint arXiv:1804.00701, 2018.

[7] J. C. et al., “NV-Heaps: Making Persistent Objects Fast and Safe
with Next-generation, Non-volatile Memories,” in Proceedings of the
Sixteenth ASPLOS, New York, NY, USA, Mar. 2011.

[8] Intel Corporation, “Nvml: Implementing persistent memory applica-
tions,” https://www.snia.org/sites/default/files/.

[9] M. Spear, V. Marathe, L. Dalessandro, and M. Scott, “Privatization Tech-
niques for Software Transactional Memory (POSTER),” in Proceedings
of the 26th ACM Symposium on Principles of Distributed Computing,
Portland, OR, Aug. 2007.

[10] A. Welc, B. Saha, and A.-R. Adl-Tabatabai, “Irrevocable Transactions
and their Applications,” in Proceedings of the 20th ACM Symposium
on Parallelism in Algorithms and Architectures, Munich, Germany, Jun.
2008.

[11] T. Zhou, P. Zardoshti, and M. Spear, “Practical Experience with
Transactional Lock Elision,” in Proceedings of the 46th International
Conference on Parallel Processing, Bristol, UK, Aug. 2017.

[12] A. Correia, P. Felber, and P. Ramalhete, “Romulus: Efficient algorithms
for persistent transactional memory,” in Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures. ACM,
2018, pp. 271–282.

[13] D. Dice, O. Shalev, and N. Shavit, “Transactional Locking II,” in Pro-
ceedings of the 20th International Symposium on Distributed Computing,
Stockholm, Sweden, Sep. 2006.

[14] P. F. et al., “Dynamic Performance Tuning of Word-Based Software
Transactional Memory,” in Proceedings of the 13th PPoPP, Salt Lake
City, UT, Feb. 2008.

[15] M. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott, “A Compre-
hensive Strategy for Contention Management in Software Transactional
Memory,” in Proceedings of the 14th ACM Symposium on Principles
and Practice of Parallel Programming, Raleigh, NC, Feb. 2009.

[16] M. S. et al., “RingSTM: Scalable Transactions with a Single Atomic
Instruction,” in Proceedings of the 20th SPAA, Munich, Germany, Jun.
2008.

[17] M. Olszewski, J. Cutler, and J. G. Steffan, “JudoSTM: A Dynamic
Binary-Rewriting Approach to Software Transactional Memory,” in Pro-
ceedings of the 16th International Conference on Parallel Architecture
and Compilation Techniques, Brasov, Romania, Sep. 2007.

[18] L. Dalessandro, M. Spear, and M. L. Scott, “NOrec: Streamlining STM
by Abolishing Ownership Records,” in Proceedings of the 15th PPoPP,
Bangalore, India, Jan. 2010.

[19] D. Dice and N. Shavit, “TLRW: Return of the Read-Write Lock,” in
Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms
and Architectures, Santorini, Greece, Jun. 2010.

[20] ISO/IEC JTC 1/SC 22/WG 21, “Technical Specification for C++
Extensions for Transactional Memory,” May 2015. [Online]. Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf

[21] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits, J. Cownie,
R. Geva, S. Kozhukow, R. Narayanaswamy, J. Olivier, S. Preis, B. Saha,
A. Tal, and X. Tian, “Design and Implementation of Transactional
Constructs for C/C++,” in Proceedings of the 23rd ACM Conference on

Object Oriented Programming, Systems, Languages, and Applications,
Nashville, TN, USA, Oct. 2008.

[22] T. Riegel, C. Fetzer, and P. Felber, “Automatic Data Partitioning in
Software Transactional Memories,” in Proceedings of the 20th ACM
Symposium on Parallelism in Algorithms and Architectures, Munich,
Germany, Jun. 2008.

[23] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riviere,
“Evaluation of AMD’s Advanced Synchronization Facility within a
Complete Transactional Memory Stack,” in Proceedings of the Eu-
roSys2010 Conference, Paris, France, Apr. 2010.

[24] P. Zardoshti, T. Zhou, P. Balaji, M. Scott, and M. Spear, “Simplifying
Transactional Memory Support in C++,” pp. 25:1–25:24, Jul. 2019.

[25] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,
and D. A. Wood, “Performance Pathologies in Hardware Transactional
Memory,” in Proceedings of the 34th International Symposium on
Computer Architecture, San Diego, CA, Jun. 2007.

[26] W. N. Scherer III and M. L. Scott, “Advanced Contention Management
for Dynamic Software Transactional Memory,” in Proceedings of the
24th ACM Symposium on Principles of Distributed Computing, Las
Vegas, NV, Jul. 2005.

[27] M. S. et al., “Implementing and Exploiting Inevitability in Software
Transactional Memory,” in Proceedings of the 37th ICPP, Portland, OR,
Sep. 2008.

[28] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scalable Syn-
chronization on Shared-Memory Multiprocessors,” ACM Transactions
on Computer Systems, vol. 9, no. 1, 1991.

[29] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[30] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ACM SIGARCH Computer Architecture News,
March 2011.

[31] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
Locks for Non-Volatile Memory Consistency,” in ACM SIGPLAN No-
tices, vol. 49, no. 10. ACM, 2014, pp. 433–452.

[32] memcached.org, “Memcached, a distributed memory object caching
system.” 2014, http://memcached.org/.

[33] W. Ruan, T. Vyas, Y. Liu, and M. Spear, “Transactionalizing Legacy
Code: An Experience Report Using GCC and Memcached,” in Pro-
ceedings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems, Salt Lake City,
UT, Mar. 2014.

[34] M. L. et al., “DudeTM: Building Durable Transactions with Decoupling
for Persistent Memory,” in Proceedings of the 22nd ASPLOS, Xi’an,
China, Apr. 2017.

[35] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stan-
ford Transactional Applications for Multi-processing,” in Proceedings
of IISWC, Seattle, WA, Sep. 2008.

[36] A. Matveev and N. Shavit, “Reduced Hardware NORec: A Safe and
Scalable Hybrid Transactional Memory,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Istanbul, Turkey, Mar. 2015.

[37] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. Scott, and
M. Spear, “Hybrid NOrec: A Case Study in the Effectiveness of Best
Effort Hardware Transactional Memory,” in Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Newport Beach, CA, Mar. 2011.

[38] A. Dragojevic, Y. Ni, and A.-R. Adl-Tabatabai, “Optimizing Transac-
tions for Captured Memory,” in Proceedings of the 21st ACM Symposium
on Parallelism in Algorithms and Architectures, Calgary, AB, Canada,
Aug. 2009.

[39] T. Harris, M. Plesko, A. Shinar, and D. Tarditi, “Optimizing Memory
Transactions,” in Proceedings of the 27th ACM Conference on Program-
ming Language Design and Implementation, Ottawa, ON, Canada, Jun.
2006.

230

