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Abstract—Recent advances in side-channel attacks put into
question the viability of Simultaneous Multithreading (SMT)
architectures from the security standpoint. To address this prob-
lem, we propose SMT-COP—a system that eliminates all known
side-channels through shared execution logic, including ports
and functional units, on SMT processors. At the core of SMT-
COP is a small modification to the instruction scheduling logic
that allows support for both spatial and temporal partitioning of
the execution units to prevent controllable contention for these
resources that causes side-channel attacks. We demonstrate that
the security benefits of SMT-COP are achieved with modest
performance overhead and hardware complexity, and without
relying on software support. Further performance improvements
can be achieved when SMT-COP is applied selectively, and
we consider three forms of such selective application: a) in
response to detecting resource contention; b) in response to
detecting manipulations with time measurement infrastructure;
and c) in response to explicit requests by applications. This study
represents a step towards making SMT processors more secure.

I. INTRODUCTION

Simultaneous Multi-threading (SMT) is an important ar-
chitectural paradigm that supports concurrent execution of
multiple programs on an out-of-order processor core with
modest increase in processor complexity, area and power
consumption. By allowing instructions from multiple threads
to compete for resources on a single core, SMT increases the
number of independent instructions available for issue each
cycle, allowing more efficient pipeline utilization and thus
higher instruction throughput. These advantages have led to
widespread adoption by microprocessor vendors.

Unfortunately, a growing body of research shows that the
performance benefits of SMT come with significant security
risks. In addition to facilitating timing attacks on private
caches [1]–[3] and branch predictors [4], SMT creates new
opportunities to extract secret information through shared
execution resources, which include the processor’s functional
units (FUs) and associated issue ports. Specifically, an attacker
can create a timing side-channel by issuing a large number of
instructions to a specific execution resource, and by measuring
its execution latency. From this measurement, the attacker
can detect contention and infer whether a victim executes
instructions that use the same execution resource. Variations in
the victim’s execution time, as measured by the attacker, can
leak sensitive data. For example, the well-publicized PortSmash
attack [5] uses this approach to extract private keys from an
OpenSSL server. As another recent example, SMoTherSpectre

attack utilizes port contention on SMT to mount a code-reuse
attack to leak data from OpenSSL [6].

Compounded with other vulnerabilities in SMT processors,
execution resource side-channels present a serious quandary
to chipmakers and their customers. The security challenges
of SMT have motivated some developers, such as those
contributing to the open BSD operating system, to abandon
SMT completely [7], while a recent academic work has
suggested re-purposing SMT facilities to accelerate other
aspects of execution, such as context switching in virtualized
systems [8]. At the same time, SMT represents a decades-
long investment of research and development, and continues
to enjoy significant commitment from the industry. Intel [9],
AMD [10], and IBM [11] continue to make extensive use of
SMT in their high-end commercial designs, and recently ARM
entered the SMT design space with a new architecture targeting
security-critical automotive and aeronautic applications [12].
With the continuing slowdown of Moore’s law and the demise
of Dennard’s scaling, architectural optimizations such as
SMT are becoming increasingly vital to sustained processor
performance and throughput. The challenge now is to retain
these performance benefits in a secure manner.

To this end, we propose SMT-COP (short for SMT COntext
Partitioning) — a generalizable, hardware-supported approach
that eliminates execution logic side-channels in SMT processors
by partitioning functional units and/or associated issue ports
between threads running on the same core. This is accomplished
using novel, lightweight hardware implemented largely in
parallel to the existing dynamic scheduler, which reserves
a subset of execution resources for each thread running on
the core. Depending on the topology of the underlying archi-
tecture, resources can be permanently assigned to a particular
thread (spatial partitioning) or multiplexed between them
(temporal partitioning). When enabled, SMT-COP eliminates
FU contention by instructions issued by different threads,
and thus closes the execution logic side-channel. Unlike
existing approaches that disable SMT acceleration as a trade-
off for security, we show that SMT-COP completely eliminates
the execution logic side channels with a mean performance
degradation of only 8% across the simulated 2-threaded mixes.
In addition, we discuss several strategies to apply SMT-
COP selectively to further reduce performance impact, while
maintaining the same level of security guarantees.

An important benefit of SMT-COP is that all partitioning

43

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00012



policies, including two of the three selective partitioning
strategies, can be managed in hardware without reliance on
software, including trusted system software. This property
is especially important due to the increasing popularity of
isolated execution systems such as Intel SGX [13]–[15],
whose security models exclude the operating system from
the trusted computing base. We show that SMT-COP enforces
this security model while allowing the OS to manage the high-
level performance impacts of partitioned execution, making
our system practical for deployment on shared computation
platforms that make use of SGX and other isolated execution
technologies.

While SMT side-channel mitigations have been proposed for
caches [16]–[20], branch predictors [4], [21], and the TLB logic
[22], defenses against execution logic side channels remain in
their early stages. To our knowledge, SMT-COP is the first
implementation to resolve execution logic side-channels in
SMT architectures without requiring costly process migrations
or indefinite disabling of SMT capabilities. Moreover, while
the partitioning of other SMT resources has been explored in
prior, performance-oriented works, SMT-COP is the first to
address the unique security challenges of partitioning execution
resources. The resources addressed in these works, such as issue
queues, issue bandwidth, and decoding bandwidth, are compar-
atively simple to partition due to their homogeneous structure.
In contrast, execution resources in modern SMT processors
exhibit complex topologies that can include pipelined and non-
pipelined functional units with various execution latencies.

In summary, this paper makes the following contributions:

• We propose SMT-COP — a set of partitioning schemes
that eliminate information leakage through shared execu-
tion logic in SMT processors, and discuss their application
to a realistic SMT architecture.

• We describe the gate-level implementation of the core
SMT-COP architecture, and discuss its integration into
existing SMT scheduling logic. We show that this inte-
gration can be accomplished with at most one extra gate
on the critical path of the scheduling logic, and even that
can be hidden in typical implementations.

• We evaluate SMT-COP using a cycle-accurate SMT
simulator. We demonstrate SMT-COP’s security by closing
a side channel on a simulated architecture, while incur-
ring only a 8% performance loss compared to baseline
SMT when SMT-COP is continuously applied to typical
workloads.

• We propose optimizations that selectively apply partition-
ing to critical program regions, reducing or eliminating
partitioning overheads during normal execution, and eval-
uate the performance benefits of one such optimization.

• We show that the proposed strategies can be implemented
even when system software is untrusted, making SMT-
COP synergistic with isolated execution systems such as
Intel’s SGX.

While SMT-COP closes execution logic side-channels and
eliminates attacks such as PortSmash and SMoTherSpectre, it
is only a step towards completely securing SMT processors.
New attacks exploiting other vulnerabilities continue to emerge
[23], and defenses from these attacks will be synergistic with

Figure 1: SMT Architecture

SMT-COP. In fact, the mechanisms of SMT-COP can inspire
solutions to close other known and hypothetical side-channels
to create a fully-secure SMT architecture.

II. BACKGROUND

As a basis for our discussion of SMT-COP, this section
describes the baseline SMT architecture used in our system’s
design and evaluation. Additionally, to motivate the design of
our partitioning strategy, this section details the execution logic
vulnerability that SMT-COP seeks to eliminate.

A. Reference SMT architecture

The reference SMT architecture for SMT-COP, shown
in Figure 1, is similar in general organization to current
Intel designs [9]. The Issue Queue (IQ) buffers decoded
instructions until dependencies are satisfied and issue slots
become available. Each cycle, the scheduler selects instructions
whose dependencies have been satisfied, and issues up to eight
ready instructions to appropriate functional units (FUs). The
FUs are organized into groups, each served by a designated
issue port. Since each issue port accepts a single instruction
per cycle, this organization places an additional constraint on
resource availability. For example, because port zero serves
both the integer divider and floating point divider, the scheduler
cannot issue an IntDIV and and FPDIV instruction in the
same cycle, even if both of the corresponding units are available.
Thus, contention on ports, as well as on functional units
themselves, can be exploited as a basis for side-channel attacks,
as demonstrated in [5].
In the reference architecture, as in typical commercial

architectures, most functional units are either pipelined or
have a single-cycle execution latency, and are thus able to
begin executing a new instruction every cycle. Some units,
however, are non-pipelined and have a multi-cycle execution
latency, meaning that they are unavailable for multiple cycles
while executing an instruction. This is the case, for instance,
for division logic in traditional Intel designs [9], as well as the
division and square root units in the reference architecture.

B. Execution Logic Side-channels on SMT Cores

The execution logic side-channel arises when instructions
from multiple threads compete for FUs or their associated issue
ports, which we generically refer to as execution resources.
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Figure 2: Timing of a spy thread executing (A) with execution

logic contention and (B) without execution logic contention.

Figure 2 shows a generalized side-channel between two
threads, a Spy s and Victim v, which run on the same SMT
processor and contend for execution resource RES. Thread
v has two stages of execution, whose ordering and duration
depends on sensitive data. In one phase, shown in scenario (A),
v does not issue any instructions that require RES; in a second
phase, shown in (B), v uses RES extensively. s attacks v by
attempting to issue multiple instructions to RES. In scenario
(A), RES is uncontended by v, and RES thus can process an
instruction from s every cycle. In scenario (B), v frequently
issues instructions to RES, making the resource unavailable
to s on alternating cycles. Consequently, the three instructions
from s take measurably longer to execute. If the alternating
phases of v’s depend on sensitive data, s can recover this data
by repeatedly measuring the execution latency. This method
can be the basis of a covert channel, in which a colluding
victim deliberately alternates between contentious and non-
contentious behavior in order to exfiltrate sensitive data, or of
a side channel, in which an oblivious victim leaks information,
such as a cryptographic key, through incidental variations in
execution behavior.
� �
...
loop:
lfence ; Enforce in order commit
rdtsc ; Store cycle count in rax
lfence
mov %rax, %rbx ; Save cycle count in rbx
.rept 100
imul $2, %ecx ; Force contention on multiply
.endr
lfence
rdtsc ; Store end cycle count in rax
lfence
shl $32 %rax
or %rax, %rbx ; move it to ecx with start time
...
(store start/end time in memory and reiterate loop)

� �

Listing 1: Spy code exploiting an execution logic side-
channel through the integer multiply unit in x86

Listing 1 shows how a spy program similar to the one
described in [5] can be implemented in x86-64 assembly
language. In this case, the side-channel measured involves the
integer multiply unit or its associated port. The rtdsc instruction
is used to record the value of a continuously incremented cycle
counter at the beginning and the end of the chain of contention
instructions. The cycle counts stored at the beginning and the
end of the spy loop are stored, and the differences can be used
to compute the execution latency on the multiplier over the
course of execution.

In addition to targeting specific functional units, attacks
can be launched against the issue ports that serve groups of
functional units. In such attacks, a spy thread issues a large

Figure 3: Timing of a spy and victim thread executing under the

SMT-COP partitioning scheme. Note that the times observed by

the spy for both of the victims execution phases are identical.

number of instructions whose functional units share a port
with those involved in critical phases of a victim’s execution.
Recent work has shown port-based side channels to be a viable
method of extracting cryptographic keys from the openSSL
server [5]. Thus, efforts to secure SMT execution logic must
include both the functional units themselves, as well as the
ports that serve them.

III. PARTITIONING STRATEGY

SMT-COP closes execution logic side channels by eliminat-
ing contention between threads for execution resources. Rather
than allowing threads to compete freely for a shared pool of
resources, SMT-COP reserves specific execution resources for
each thread according to fixed policies that do not depend
on thread behavior. This section discusses two strategies for
partitioning execution resources. The first strategy, called
temporal partitioning, multiplexes a single resource between
threads over a period of one or multiple cycles. Temporal
partitioning is ideal for unique resources that must be shared
among threads. The second strategy, spatial partitioning,
statically allocates instances of a particular resource class to
specific threads. Spatial partitioning can be applied to resources
with redundant instances that can be evenly divided among
threads. This section demonstrates how each strategy eliminates
the vulnerability discussed in section II, and introduces policies
that apply partitioning strategically to reclaim most of the
performance benefit of SMT without compromising security.

A. Temporal partitioning

1) Pipelined and single-cycle latency resources: Figure
3 demonstrates the elimination of the timing side-channel
through temporal partitioning of an execution resource, using
the execution scenario introduced in Figure 2. In the execution
scenarios shown, SMT-COP multiplexes an execution resource
RES between a spy s and victim process v every cycle. In cycles
2 and 4, RES is allocated to v (and denied to s) regardless
of whether v has pending instructions that use RES. The
deterministic assignment schedule masks the execution of v, and
the latency of s is unaffected by the behavior of v with regards
to RES. Consequently, the timing properties of scenarios (A)
and (B) are indistinguishable from the perspective of s, and
information leakage is eliminated.

2) Non-pipelined resources with multi-cycle latency: The
baseline temporal partitioning policy shown in Figure 3
applies to resources that can accept an instruction every cycle,
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Figure 4: Timing diagram of a non-pipelined, temporally

partitioned resource with a multicycle latency, with instructions

arriving at various cycles.

Figure 5: Spatial partitioning of duplicated resources.

including fully pipelined resources and those with a single-
cycle execution latency. While such resources are prevalent in
modern architectures, some functional units, such as the radix-
16 dividers in historical Intel designs, are non-pipelined and
require multiple cycles to operate on an instruction. A naive
extension of spatial partitioning would involve extending the
allocation period for a non-pipelined resource from one cycle to
match the maximum execution latency of the resource. However,
as shown in Figure 4, this simple approach is not sufficient
to eliminate contention. In Figure 4-A, Thread 0 issues an
instruction to RES on cycle 1. Since RES is currently assigned
to A, the instruction is issued successfully and completes
within the assignment period, avoiding contention with Thread
1. However, if an instruction arrives in the second cycle of the
allocation period, as shown in Figure 4-B, the instruction will
continue to occupy the functional unit into the allocation period
for Thread 1, creating the possibility for contention. To avoid
such conflicts, the partitioning logic must enforce an issue gap,
shown in Figure 4-C, to ensure that no instructions issue in the
last L-1 cycles of the allocation period, where L is the maximum
latency of RES. Instructions that become ready during the issue
gap for Thread 0 are delayed until the beginning of the thread’s
next allocation period. To provide greater flexibility in issuing
instructions, the allocation period can be extended beyond the
maximum latency of the protected resource, as shown in Figure
4-C, to create additional cycles during which instructions from
a given thread can be committed.

B. Spatial partitioning

Figure 5 demonstrates the use of spatial partitioning to close
a similar side channel when multiple instances of a functional

unit class are available. In the absence of partitioning, s could
construct a side channel by issuing enough instructions each
cycle to contend for multiple instances of the same resource
class. Under spatial partitioning, however, s and v are each
assigned a functional unit to which their instructions have
uncontested access, regardless of their respective instruction
mix. Because s is confined to a designated resource instance, it
cannot take advantage of the idle resource assigned to v during
the program phase shown in (A), and thus cannot observe a
timing difference with respect to v’s execution. Similarly, in
phase (B), the static resource allocation policy masks v’s use
of the resource. In this way, spatial partitioning of resources
also eliminates the side-channel.

C. Partitioning example

Though conceptually simple, the implementation of parti-
tioning must account for the complexities of contemporary
execution logic. In addition to using a combination of temporal
and spatial schemes to partition various functional units, SMT-
COP must also manage the partitioning of issue ports. Figure
6 applies the policies developed in this section to a toy version
of the Intel-style architecture introduced in section II. In this
example, two threads issue instructions to the execution logic,
which has three issue ports. Port 0 can be used to issue an
instruction to either an ALU, a multiply unit (MUL) or a divider
(DIV). DIV is a non-pipelined unit with an execution latency
of 2 cycles and an allocation period of 3 cycles, meaning that
the partitioning policy allows instructions to be issued to this
unit during the first two cycles of each allocation period. All
other resources have a single-cycle latency, and are temporally
partitioned with an allocation period of one cycle. Port 0 is
itself vulnerable to side channel attacks, and is thus temporally
partitioned on the same schedule as the associated single-cycle
resources. Ports 1 and 2 each serve a single ALU. Both ports
and their associated resources are spatially partitioned between
the two threads.

Threads 1 and 2 execute the code fragments shown in Figure
6-B, while their execution over four cycles is shown Figure
6-A. In cycle 1, thread 1 has three ready instructions: a div
instructions, and two add instructions. Under the temporal
partitioning policy, port 0 and its associated resources are
initially assigned to Thread 1, allowing the DIV to be issued
to the corresponding functional unit over port 0. The first add
can be dispatched over the spatially partitioned ALU attached
to port 1. While a second ALU is allocated to thread 1 on
port 0, the second ADD cannot be issued because the scheduler
uses port 0 in this cycle to issue the DIV. Similarly, spatial
partitioning prevents this add from being issued to the ALU
on port 1, which is assigned to thread 2. This allows thread
2 to schedule an add on port 1, although a second add from
thread 2 stalls because ports 0 and 1 are assigned to thread 1.

In cycle 2, port zero and its single-cycle resources are
allocated to thread 2. This prevents thread 1 from issuing
the outstanding add to the unit on this port, causing it to
use its spatially assigned ALU instead. The add executed by
thread 2 in the previous cycle provides the dependencies for
a multiply instruction, which is free to use the multiply
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Figure 6: Timing diagram of contention-free execution in a simplified SMT architecture.

unit now allocated to thread 2. The add instruction that was
previously stalled is also able to execute on port 2.

In cycle 3, previous instruction satisfies dependencies for
a DIV in each thread. Additionally, the first DIV instruction
issued by context 0 in the first cycle has completed execution,
freeing the divider on port 0. However, neither div instruction
can execute in this cycle. The DIV instruction from thread
2 is prevented from executing because the divide unit is still
assigned to thread 1, as is the associated port. Even though
thread 1 has access to the divider, it is prevented from using
it by the issue gap policy, which prevents its execution latency
from creating contention when the divider is reassigned to
thread 2 in the following cycle.

Finally, in cycle 4, port 0 and the divider become available
to thread 2, which is free to issue its final DIV instruction.
The pending DIV from thread 1 will be stalled until cycle 7,
when these resources are re-allocated to thread 1.

D. Selective Application of SMT-COP

While the evaluation of SMT-COP in Section V shows
modest performance impacts even under continuous partition-
ing, various selective invocation strategies can be deployed to
limit the impact of partitioning even further. These approaches
involve enabling and disabling SMT-COP protections based
on the security needs of a thread, thus limiting partition-
ing overheads to periods of execution where information
leakage poses a meaningful threat. This section discusses
three strategies for selective partitioning: Contention-Driven
Partitioning (CDP), Measurement-Driven Partitioning (MDP)
and Application-Driven Partitioning (CDP)

1) Contention-Driven Partitioning: The CDP approach is an
optimization, where partitioning for each functional unit type is
enabled only when active contention from the executing threads
for this type of functional units exists. As an example, consider
a dual-threaded execution, where the two threads share a non-
pipelined DIV functional unit. Two counters are initialized to
zero, one for each thread. When a DIV instruction from a
given thread is decoded, the corresponding counter is set to its
maximum predetermined value (lets say, 10K cycles). If in a
given cycle no DIV instructions are decoded, the corresponding
thread counter is decremented by one, or remains at zero if
it is already zero. Partitioning of the DIV functional unit is

enabled when both counters are at non-zero values. If one
of the counters is at zero, this implies that the corresponding
thread did not encounter any DIV instructions for a long period
time, which is deemed sufficient to indicate the absence of the
attack.

CDP exploits the observation that side-channel attacks must
typically measure contention at a certain granularity in order
to extract meaningful information. Although an attacker could
detect the initial contention event that triggered the CDP policy,
additional contentions occurring during the CDP invocation
period would be masked, severely limiting the granularity of
the information that can be extracted. In this sense, CDP relaxes
the principled security guarantees of continual partitioning, but
can nonetheless make side-channel attacks impractical if the
invocation period is long enough to mask meaningful variations
in the victims resource utilization. CDP is best used to protect
specialized functional units, such as dividers, which experience
limited contention during normal operation, and can be applied
selectively to the functional units that are determined to have
the largest negative impact on performance due to partitioning.

2) Measurement-driven Partitioning: The MDP approach
triggers partitioning when a thread performs a timing measure-
ment, for instance by using an rdtsc instruction. A successful
side-channel attack requires that multiple such measurements
be performed in a relatively short interval of time. When
the first measurement is detected from any thread, MDP
enables partitioning and keeps it active for a period of time
long enough to make the attack based on subsequent timing
readings ineffective, essentially making all critical accesses
that are made under attack in fully-partitioned mode, thus
masking timing information and preventing information leakage.
After the predetermined number of cycles, the processor
returns to normal, non-partitioned operation. The use of
rdtsc instructions, which is the most common and reliable
measurement instruction used in timing attacks, can be detected
with minimal modification to the decode logic, and other
mechanisms could be included to detect other measurement
strategies. For example, [24] observed that software-based
timers could be detected using the method described in [25].

Of the selective partitioning schemes we discuss, MDP has
the strongest potential for performance savings. Indeed, because
only a small number of benign threads make regular use of
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Figure 7: SMT-COP components

rdtsc instructions or other timing operations, the majority
of execution would be able to proceed with full SMT sharing.
Thus, the overhead relative to baseline of SMT-COP running
in MDP mode is likely to approach zero for most workloads.

3) Application-driven partitioning: Finally, ADP uses ex-
plicit requests from the applications to request partitioned
resources. The duration of partitioning can be managed either
by allowing the application to set a timeout counter, or by
providing an additional instruction that allows an application
to explicitly disable partitioning. This method is ideal for
applications that combine sensitive sections of code with other
instructions that do not require protection. For instance, a
thread that occasionally performs cryptographic operations can
request ADP protections only while those operations are in
progress, and return to baseline SMT while executing code
that does not depend on sensitive data.

4) Managing selective partitioning: The enabling and
disabling of partitioning in SMT-COP balances the needs
of OS-based scheduling with the needs of sensitive threads
for a secure execution environment. While the high-level
partitioning policy for each processor, and the corresponding
performance penalties, can be managed by the untrusted OS,
secure processes can verify that the necessary guarantees
are provided and decline to execute if they are not. This
model borrows from the concept of SGX, which makes the
OS responsible for managing secure execution environments,
but uses trusted hardware to guarantee that environment is
configured correctly. In the case of SMT-COP, this eliminates
the requirement of trusting the OS, while preventing programs
claiming sensitive status from abusing SMT-COP and incurring
excessive slowdowns. Section IV-B describes the hardware
support for this mechanism.

IV. SMT-COP IMPLEMENTATION

Although the partitioning policies themselves are concep-
tually simple, their implementation at the level of hardware
requires careful evaluation. First, SMT-COP components must
be integrated without significantly disrupting the timing and
organization of the underlying architecture. Second, the mech-
anisms for selectively invoking SMT-COP partitioning must
balance applications’ security requirements with the system
software’s ability to manage performance at a high level.
Specifically, an application must be able to establish partitioning
without relying on untrusted system software, but should not
be able to abuse SMT-COP partitioning in ways that effect

Figure 8: SMT-COP partition table

system performance unnecessarily. Respectively, these criteria
inform the design of the partitioning scoreboard and scheduler
integration in sections IV-A and IV-C, and the design of the
activation logic in section IV-B.

Figure 7 shows the high-level organization of the hardware
needed to implement SMT-COP in a typical SMT core. The
partition scoreboard (A) maintains the context assignments
of the execution resources, as well as the update logic to
multiplex temporally partitioned resources between threads.
This scoreboard maintains an interface (B) with the wake-
up/scheduling logic of the baseline architecture, which controls
the issue of instructions to various execution resources. In some
scheduler designs, a thread-id must be included in each IQ
entry to facilitate partitioning. Finally, to allow secure activation
and deactivation of the partitioning scheme, SMT-COP adds
a dedicated set of activation registers (C) with associated
ISA instructions to securely enable and disable partitioning
according to the current security requirements. This mechanism
supports the three selective partitioning policies discussed in
Section III-D. The following sections detail the design and
operation of these components.

A. Partition scoreboard
To enforce partitioning, SMT-COP maintains a scoreboard

to track the availability of each resource relative to each
thread context. For a 2-way SMT (which is the norm in most
of today’s designs), a single bit can represent the context
assignment of a given resource. However, the mechanisms
that we discuss can be easily extended to accommodate more
aggressive architectures with larger number of contexts.
While spatial allocations are maintained throughout execu-

tion, and can simply be hardwired at design time, temporal
allocations vary continuously and must be updated after each
assignment period. Figure 8 shows the logic to maintain a set
of temporal resource allocations. The entry for each FU is a
state machine that switches between contexts after a predefined
number of cycles. The context ID of the current assignment
is stored as a single bit in a T flip-flop. The state of the T
flip-flop, and thus the assigned context, is switched every N
cycles by a simple ring counter — essentially an N-bit shift
register containing a single bit set to ”1”, which drives the
output high and inverts the bit in the T flip-flop whenever the
asserted bit shifts into a designated position.

B. Selective Invocation of SMT-COP
The hardware shown in Figure 9 implements the selective

partitioning policies described in section III-D. The core
selective partitioning support consists of three registers and a
flag. The partition flag pf enables and disables partitioning.
The partition request register preq stores the number of
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Figure 9: Selective partitioning logic in SMT-COP

cycles in each selective partitioning period, which is loaded
into partition period counter pctr whenever partitioning is
invoked. Finally, a partition budget counter pbdg allows the
OS to manage the availability of partitioning.

Figure 9 shows the operation of these components. A
program with requirements for secure execution first configures
the selective partitioning logic by populating preq with the
number of partitioned cycles required by its security policy (1).
Next, pf is asserted to invoke partitioning (2). This operation
can be performed either by hardware in response to a security
event (in CDP and MDP), or by the application itself (in ADP).
The assertion of pf triggers the filling of pctr with the value
in preq, (3) and enables the decrementing of both preq and
pbdg every cycle.

In general, partitioning will be turned off after the requested
period indicated in pctr has elapsed (4a). However, if the
cycle budget provided by the OS in pbdg is depleted before
pctr, a hardware exception will occur, transferring control to
the OS (4b). The OS then has the option to allocate additional
cycles in pbdg, allowing partitioned execution to continue
(5c). Alternatively, the OS can reschedule or terminate the
process to prevent abuse of partitioning in accordance with
established policies.

Under ADP, preq and pctr could be ignored, allowing
the application to use a special cpart instruction to directly
disable partitioning after a sensitive set of operations is
completed. In this configuration, pbdg would still enforce
high-level restrictions on the use of partitioning facilities.

Table I shows the instructions needed to implement the
logic in Figure 9, and the privilege level needed to use the
instruction. The enclave privilege level is borrowed from Intel’s
SGX, and applies to operations that can be used by attested user
applications but not by the OS. Critically, the instructions that
establish partitioning requirements are available only under the
enclave privilege level, and are inaccessible to the OS. While
the OS can manage the performance effects of partitioning by
setting the value of pbdg, a compromised OS cannot force
sensitive processes to execute without the requested level of
partitioning: if pbdg is set to zero, the logic described in Figure
9 will prevent enclaves with an asserted partition flag from
executing until the OS can provide the requested partitioning.
During context switches, SMT-COP can use existing SGX-
style mechanisms to store the value of pf in OS-inaccessible
memory, and restore it when the process re-scheduled. In this
way, practical selective partitioning can be deployed without

Name Action Use Level
lpreq op0 op0→preq Set partitioning request for

op0 cycles
Enclave

spf 1→pf Invoke partitioning directly in
ADP mode

Enclave

upf 0→fpart,
0→flpart

Disable partitioning directly
in ADP mode

Enclave

spbdg op0 op0→pbdg Allow partitioning for op0
cycles upon request

OS

Table I: Selective partitioning interface in SMT-COP

Figure 10: Generic SMT scheduling logic (A) with SMT-

COP modifications (B)

assuming the OS to be trusted.

C. Integration
Ideally, the integration of the partitioning logic must be done

in such a way as to minimize disruption to existing architectural
structures. Given the diversity of SMT architectures, the details
and optimization of SMT-COP integration require consideration
in light of existing design choices. While it is beyond the scope
of the present paper to describe every possible integration
scenario, we describe integration at the abstract level using
a generalization of SMT hardware, then explore a specific
implementation in which the parallelism of the underlying
architecture can be exploited to remove the SMT-COP logic
from the critical path.

1) Integration with generic wakeup logic: In contemporary
pipelines, the logical place to install SMT-COP is at the schedul-
ing stage of the pipeline. This pipeline stage is responsible for
issuing SMT instructions to the processor’s execution resources,
and can be leveraged to provide fine-grained control. Although
integration at an earlier stage, such as instruction dispatch,
may be possible, it would be more complex to implement in a
precise manner. Despite the variety of existing schedulers, most
can be abstracted as shown in Figure 10. Instructions fetched
from memory are dispatched to an issue queue, which stores the
instructions until their dependencies are resolved. The wakeup
logic receives information on completed instructions, and sets
a ready bit for instructions whose dependencies have been
computed. Each instruction with satisfied dependencies asserts
a ready signal to the selection logic, which determines which
ready instructions can be issued to the execution logic, and
asserts a grant signal for each selected instruction. Instructions
for which grant signals are asserted are then issued to execution
resources.

In effect, SMT-COP adds an additional layer of scheduling
to deny instructions the use of resources that are not currently
assigned to the same context. The abstract logic defined thus
far presents a simple opportunity for integration by intercepting
ready signals as shown in Figure 10. The gates shown compare
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Figure 11: Integration of SMT-COP into the classical scheduler

described in [26], eliminating additional gate depth.

the thread ID of the instruction, assumed to be present in
the IQ entry, with the allocation of a functional unit in the
partition table. The OR gate is used to allow disabling/enabling
partitioning based on the state of the selective invocation logic.
The resulting signal is then combined with the original ready
signal to generate a new ready signal that respects partitioning.
While this mechanism involves four gates, only the final AND
gate is in series with the baseline scheduling logic; the gate
delays for comparison and selective invocation can be masked
by the complex wake-up logic.

2) Example of optimized integration into a specific scheduler:
While the preceding example illustrates a generic integration
framework that can apply broadly to many classes of scheduling
logic, integration into specific schedulers presents opportunities
to eliminate even the single-gate increase in logic depth required
by this solution. To illustrate this point, we use the classic
scheduler presented in [26], [27].

The scheme described in [26], shown in Figure 11A, uses
a tree of arbiter cells to generate grant signals based on both
instruction readiness and functional unit availability. Each
arbiter receives a fixed number of request signals from entries
in the issue logic, and asserts the corresponding grant signals
based on a priority encoding scheme. The arbiter also sets an
anyreq signal when any of the request lines is asserted, and
accepts a enable signal, which can be set low to suppress any
grant signals that would otherwise be generated. The anyreq and
enable signals are used to compose a tree of arbiters as shown
in 11A, which can be scaled to cover a large issue window.
The enable signal for an arbiter represents the availability of
the corresponding functional unit.

The root arbiter and issue window can be modified to adapt
this scheme to SMT-COP without incurring additional overhead
in terms of gate depth. Note that in the tree scheme shown in
Figure11, grant-0 and grant-1 on the root arbiter enable all
grant signals for one half of the issue window, while grant-2
and grant-3 enable signals of the other half. SMT-COP can thus
be incorporated by partitioning the issue window between the
two threads, and ensuring that the grant signals received by each
are modified by the functional unit’s availability with regards
to that thread. As shown in Figure 11B, this is accomplished
by modifying the root arbiter logic to condition the enable
signals on the functional unit’s context assignment bit in the
partition table. Specifically, new gates are integrated with the
arbiter’s grant generation modules to ensure that grants signals

Figure 12: Partitioning strategy for the evaluated SMT-COP im-

plementation.

are only asserted for the portion of the issue queue containing
instructions authorized to use the functional unit.
Because the additional gates are inserted at the root of the

tree, their impact is masked by the comparatively long delay
required for request signals to propagate up the tree. This
design advances on the generic logic introduced in Figure
reffig:generic by providing stronger assurances that the SMT-
COP logic will not effect the critical path.

V. EVALUATION

A. Experimental Setup

To evaluate the security and performance properties of SMT-
COP, we implemented SMT-COP using M-Sim [28], a cycle-
accurate simulator for SMT architectures. While M-Sim is
based on the DEC-Alpha RISC instruction set, the results are
indicative of performance for other instruction sets, such as the
ARM instruction set or RISC-like x64 μops. Our model supports
two thread contexts, similar to the majority of commercial
designs.
We modified M-Sim by adding issue ports and a SMT-

COP partitioning scoreboard, and implemented the execution
logic shown in Figure 1. Figure 12 shows the partitioning
rules applied to the ports and functional units. Ports 0-1
were temporally partitioned between the two supported thread
contexts. The Integer and Floating Point ALU units on each
port, as well as the pipelined multipliers on port 1, were
temporally partitioned in concert with their respective ports.
The floating point divider, integer divider, and square root units,
were assumed to be non-pipelined with a latency of 14 cycles,
and were temporally partitioned with an allocation period of 15
cycles. The additional cycle in the allocation period is needed
to prevent the first cycle of the allocation period, during which
instructions can be issued, from becoming synchronized with
the temporal partitioning policy of the port, thus permanently
denying access to one of the threads. The remaining functional
units and ports were spatially partitioned between threads.
Initially, we experimented with various longer allocation

periods for the non-pipelined units, but found that these changes
had little impact on performance, with a slight tendency toward
degradation.

The remaining simulation parameters are shown in table II.
Our issue queue capacity was partitioned equally between the
two thread contexts.

B. Security Evaluation

To validate our implementation of SMT-COP, we constructed
a classical SMT covert channel similar to the one described
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total IQ size 64 RF size 128

decode width 8 issue width 8

l1 data KiB 32 l1 ins KiB 32

l2 KiB 256 l3 MiB 2

Table II: Configuration of a Simulated Processor

Figure 13: Signal through multiplier covert channel. The signal

”1010101010” is received by the spy.

in [1] and showed the elimination of information leakage
under partitioning. Because a covert channel involves collusion
between the attacker and its victim, such attacks permit
significantly more reliable leakage of information than side-
channels that exploit incidental aspects of the victim’s execution.
Thus, the elimination of the covert channel can be extended
to the analogous side channel without loss of generality. The
attack involves a spy process equivalent to the one described
in listing 1, and a Trojan process which runs on the same
SMT core and discloses information through contention on the
multiply unit. The Trojan signals a ”1” by issuing a series of
multiply instructions in rapid succession, and a ”0” by issuing
nop instructions that leave the multiply unit free. The Spy
measures the relative timings of its own multiply operations
to recover the message.

Figure 13 shows the signal received by the spy, with
partitioning enabled and disabled, in terms of the latency to
execute a series of MUL instructions over the course of the
spy’s execution. The solid, red line shows the signal received
through an un-partitioned multiply unit. This signal shows clear
variations that disclose the simple message (1010101010)
transmitted by the Trojan process. The blue, dashed line shows
the signal received by the same spy when partitioning is enabled.
The latter signal shows no significant variation over time;
indeed, the only variation observed was limited to ±1 cycle.
By experimenting with simulator parameters, we verified that
this variation is related to contention over commit bandwidth,
and not the execution logic. These results confirm that SMT-
COP partitioning eliminates the execution logic covert channel,
and by extension the execution logic side-channel.

C. Performance Evaluation

To evaluate the performance of SMT-COP, we randomly
created workloads from combinations of the SPEC CPU 2006
benchmarks compiled for the Alpha architecture. Although it
was infeasible to simulate all possible benchmark combinations,
we followed the methodology of previous SMT performance
evaluations [29] by selecting combinations to cover many
possible execution scenarios. Harmonic means are used unless
otherwise noted.

int fp mix
bwaves-gamess astar-gcc astar-sphinx
cactusadm-namd astar-omnetpp cactusADM-omnetpp

GemsFDTD-zeusmp gcc-bzip2 gobmk-dealII
milc-gromacs gobmk-hmmer h264ref
namd-povray h264ref-omnetpp hmmer-zeusmp
namd-povray hmmer-sjeng leslie3d-gobmk
povray-calculix sjeng-libquantum kibquantum-milc
sphinx3-zeusmp bzip2-h264ref sjeng-povray

Table III: SMT workloads

These workloads, shown in table III, fall into three categories.
Workloads in the int category contain two SPEC Integer
benchmarks, while those in the fp category contain two SPEC
floating point benchmarks. Workloads in a third category, mix,
pair one floating point and one integer-intensive benchmark.
The int and fp workloads are expected to use different sets of
functional units, and their differential performances provide
insights into the performance characteristics of partitioned
architectures.

In our first experiment, we evaluated the performance impact
(in terms of combined IPC throughput) of an always-on SMT-
COP architecture compared to non-partitioned SMT. The first 5
billion instructions of each thread were fast-forwarded, and the
workloads were then simulated until either thread committed
one Billion instructions.

1) IPC Comparison by Workload Class: Figure 14 shows the
results of these evaluations. Under always-on partitioning, SMT-
COP achieved a mean IPC throughput of 1.52, in comparison to
a mean IPC of 1.64 for non-partitioned SMT, thus encountering
only a 8% performance loss.

Partitioning affected the int, fp and mix workloads in different
ways. The int workloads showed a mean IPC throughput of
1.38 under partitioning, compared to 1.43 for the baseline.
Integer-heavy workloads are thus markedly favorable for SMT-
COP partitioning, showing only 4% performance loss on
average. In contrast, fp workloads incurred a mean IPC of
1.69, relative to a baseline IPC of 1.87, resulting in 10% loss
of performance. The mix workloads had a mean IPC of 1.52
compared to 1.68 for baseline, resulting in 10% performance
degradation.

We ascribe the low overheads of int workloads to two primary
factors. First, the comparatively large number of integer ALUs
available to each thread during any cycle clearly has favorable
implications for throughput under partitioning. Second, the
functional units required by integer workloads are almost
entirely pipelined, reducing the potentially disruptive effects of
multi-cycle allocation periods. We note that while the integer
divider has such an allocation period, it was practically never
used by the benchmarks in our evaluation set. Conversely, the
relatively high overheads associated with fp and mix workloads
arise from their use of resource types with few instances, and
the multi-latency temporal partition that must be applied to
some of these resources.
These results indicate that even with comprehensive parti-

tioning, SMT-COP conserves much of the benefit of baseline
SMT. For reference, we evaluated the mean IPC throughput
for single-threaded runs for the individual integer and floating
point benchmarks used in our experiments, and compared
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Figure 14: Performance Overheads of SMT-COP for SPEC 2006 Benchmarks

these values to the mean IPC throughputs for baseline and
partitioned SMT reported above. In this evaluation, compre-
hensive SMT-COP retained 69% and 62% of the performance
speedup provided by baseline SMT, for fp and int workloads,
respectively. Retention improroves significantly for selective
partitioning strategies, as described below.

In addition to evaluating IPC throughput, we measured the
fairness of SMT-COP using the methodology presented in [30].
The results of this evaluation were closely aligned with those
for IPC. The mean degradation in fairness under SMT-COP for
the complete set of workloads was 8%, while degradations
of 11%, 5%, and 6% occurred for fp, int, and mix workloads
respectively.

To gain more detailed insights into the source of SMT-
COP overheads, we instrumented the simulator to measure
the number of issue stalls arising from the partitioning of
each resource. Figure 15 shows the results of this evaluation.
Because some workloads experienced zero stalls for certain
resources, arithmetic means are used to summarize the results
for each workload class. The results of this evaluation confirm
our inferences regarding the sources of higher overhead in the
fp workloads.

Although the baseline performance results demonstrate SMT-
COP’s ability to retain much of the acceleration provided
by SMT, the performances of different workloads suggest
ways in which a system could be optimized to further
enhance SMT-COP. Competition among floating point intensive
applications for limited resources was a significant source
of slowdown in SMT-COP. This effect could be mitigated
by implementing policies that avoid co-scheduling multiple
floating point intensive threads on the same SMT core in cases
where int and mix workloads would provide better throughput.
Symbiotic scheduling schemes such as those explored in [31]
could be used to implement this policy, and could be applied by
the OS without compromising SMT-COP’s security guarantees.

2) CDP Performance Evaluation: In addition to evaluating
the baseline configuration of SMT-COP, we implemented
CDP to reduce the overheads associated with floating point
workloads. Specifically, we applied CDP to the fp-multiply
and fp-divide units in our baseline architecture, which are
the primary source of the increased overheads of the floating
point workloads under SMT-COP. Initially, we experimented
with various partitioning periods ranging from 1000 to 40k
cycles. However, as with the allocation periods for temporally
partitioned functional units, these experiments did not produce

significant differences in performance. We thus report results
for a representative 10K cycle partitioning period.
Figure 16 shows the results of this evaluation for floating

point workloads. The mean IPC performance for the CDP
implementation is 1.77, which increases the floating point
performance of SMT-COP to about 94% of baseline IPC. This
represents the retention of 82% of the performance gains of
baseline SMT, relative to mean single-threaded floating point
IPC. These results show that CDP can largely close the gap
between floating point and integer performance in SMT-COP.

VI. RELATED WORKS

Previous proposals have examined the effects of SMT
resource partitioning on throughput and/or fairness. The work
of [32] examined the impact of statically partitioning multiple
datapath resources among SMT contexts, including the issue
queue, issue bandwidth, reorder buffer, and commit bandwidth.
This study is only concerned with performance aspects of
partitioning, without considering security implications. The
partitioning schemes of [32] do not stop attacks on execution
units addressed in this paper. Various policies have also been
proposed to partition fetch and issue bandwidth based on
metrics such as memory accesses [29], [30], branch behavior,
[33], or the utilization of other pipeline resources [34]. Similar
to [32], these works addressed performance and fairness, rather
than security: since bandwidth allocations depend on program
execution features, they do not eliminate possible side-channels,
including those through the execution logic. Previous work
also investigated performance-driven optimizations to SMT
scheduling logic [35], [36]. These solutions can be combined
with SMT-COP to add security. The general approach of
temporally partitioning a resource to eliminate timing side-
channels was previously explored in [37]. This work applied
temporal partitioning to a shared memory controller, rather
than SMT execution logic.

Prior work demonstrating information leakage through SMT
execution logic [1], [5], [38] motivated the development of
SMT-COP. The work of [1] identified contention on func-
tional units as a potential source of information leakage, and
demonstrated a covert channel using contention on the multiply
unit. In addition, [1] briefly proposed two mitigations to
execution side-channels, but did not pursue implementation or
provide performance evaluations. The first proposal selectively
disables SMT on processors running sensitive workloads, while
the second modifies existing fairness-enforcement hardware
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Figure 15: Fraction of stalls attributed to each type of functional unit, with arithmetic means

Figure 16: Comparison of IPC throughput for baseline SMT-

COP partitioning, CDP with 10k cycle timeout, and un-

partitioned SMT.

on Intel architectures to partition scheduler queues between
executing threads. Though effective in terms of security, the first
method involves expensive rescheduling operations that rely on
potentially insecure systems software. The second approach is
presented as a mitigation rather than a hard defense, and leaves
open the possibility of information leakage, as per-thread caps
on queue occupancy would still allow execution delays due
to the presence of instructions previously enqueued by other
threads.

The work of [38] demonstrated the feasibility of using a
functional unit side-channel in an attack, specifically targeting
the OpenSSL implementation of RSA key generation. [5]
evaluated a related vulnerability involving execution ports,
which is used to construct both a covert-channel, and in a
side-channel attack to extract a private key from OpenSSL.
As another recent example, SMoTherSpectre attack utilizes
port contention on SMT to mount a code-reuse attack to leak
data from OpenSSL [6]. In briefly discussing mitigations, [5]
recommends simply disabling SMT for sensitive processes.
SMT-COP protects from both of these attacks without disabling
SMT.

Prior research also demonstrated information leakage through
other SMT components, including private caches [39], [40],
branch predictors [38], and TLB logic [41]. Vulnerabilities
through shared caches and branch predictors have also been
extensively studied in the context of single-threaded cores, both
in multi-core and single-core settings. For example, [42] uses
collisions in the branch predictor tables to extract ASLR offset

data, which can be used to circumvent address randomization.
Along similar lines, the Spectre attack [43] combines branch
predictor and cache vulnerabilities to force the execution of
malicious code that extracts sensitive data. Cache side-channels
[18], [39], [44]–[48] are well established as a generalized
vector for information leakage, and have also been shown to be
significantly enhanced by SMT architectures [1], [2]. Recent
speculative attacks also demonstrated possible information
leakage in SMT processors through shared fill buffers [23].

Researchers have also investigated defense mechanisms [4],
[16]–[21] against attacks on these resources, and these types
of attacks and defences are generally well understood. These
proposals are orthogonal and complimentary to SMT-COP, and
could be combined with our system to create a comprehensively
leakage-free SMT architecture.

The timestamp fuzzing approach proposed in [24] attempts
to hinder efforts to measure contention latencies by adding
random noise to rtdsc measurements. Consequently, this
solution mitigates existing timing side-channels, including those
through execution logic. However, this policy is potentially
challenging to deploy, as a small number of applications have
legitimate uses for rtdsc instructions and must be granted
permission to use them in a secure manner. More significantly,
subsequent work has shown attacks that circumvent protections
based solely on timestamp fuzzing [49].

VII. CONCLUDING REMARKS

Side-channel attacks exploiting shared processor resources
have recently emerged as a serious security threat. SMT
processors are particularly vulnerable to such attacks due
to the degree of sharing and their ability to execute several
programs simultaneously, one of which can be a victim and
one an attacker. In this paper we proposed SMT-COP — a
mechanism to spatially and temporally partition the execution
ports and associated functional units in SMT processors to
close execution side-channels and stop recently emerged SMT
attacks. We demonstrated that the protection can be achieved
with modest performance impact and minimal impact on the
design complexity and timing of the scheduling logic. We
also proposed several optimizations to enable execution logic
partitioning selectively, achieving further improvements in
performance.
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