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I. INTRODUCTION

Main memory is one of the most important components on

modern computer systems, and various applications require a

larger memory capacity for handling the explosively increasing

amount of data. [1]–[4]. DRAM has been commonly used as

main memory for a few decades, but its density and cost are

not expected to scale further due to physical limitations [5].

On the other hand, non-volatile memory used in block storage

devices (e.g., NAND flash memory and Intel® 3D XPoint™

memory used in SSDs) still continue to scale because of tech-

nology improvements [6]. Therefore, hybrid memory systems
that use block devices as an extension of DRAM are attracting

a lot of attention in both industry and academia, because they

can configure high-performance, large-capacity, and low-cost

main memory [7]–[13].

II. MOTIVATION

A memory-mapped file is a virtual memory feature sup-

ported by various operating systems, which can be used to

configure hybrid memory systems. It enables applications to

transparently access data stored on block devices by mapping

files to their virtual memory address spaces. When an ap-

plication accesses data not stored in DRAM, a CPU raises

a page fault and an operating system synchronously reads a

corresponding page from a mapped file on a block device and

store it in a DRAM cache called page cache. After that, the
CPU performs a load/store instruction to access the data.

Fig. 1. Store-after-Read (SaR) operations to update data that is not stored in
the page cache.

Unfortunately, even when an application updates a portion

of a page that is not stored in the page cache, an operating

system must synchronously read the entire page from a file due

to the data management in a page granularity. In this case, as

the application writes new data to the page, it does not require

old data stored in the file. In this paper, we call this procedure

(a) Write page fault handling

(b) Write back operation in background

Fig. 2. Design of AR-MMAP-PF.

Store-after-Read (SaR) operation and illustrate it in Fig. 1. It
puts the read latency of a block device in the critical path of

a store instruction.

III. AR-MMAP

Therefore, we propose AR-MMAP that is an asynchronous
read method to reduce the impact of SaR operations on

application performance. We illustrate the design of AR-

MMAP in Fig. 2. When a write page fault occurs, AR-MMAP

initializes every cache line in a new page allocated in the

page cache to a specific initial value and completes page fault
handling without reading a corresponding page from a file.

Instead, it reads the page from a file in background. Thus,

a CPU can perform a store instruction immediately without

waiting the completion of a read I/O operation. When a dirty

page in the page cache is written back to a file, AR-MMAP

identifies cache lines that are not updated by an application

and overwrites them with the correct data obtained from a file.

However, AR-MMAP has three requirements for applica-

tions to guarantee data consistency. First, applications must

write data to a memory-mapped region in units of cache

lines. If a cache line is partially updated, some portions of

an initial value written by AR-MMAP are written back to

a mapped file. Second, applications must detect reads of an

initial value and synchronize corresponding pages in the page

cache with correct data stored in mapped files. Otherwise,
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Fig. 3. Execution time evaluation with the YCSB running on memcached.

initial values in the page cache might be read by applications.

Third, applications must not write data that is identical to

an initial value to a memory-mapped region, because AR-

MMAP overwrites cache lines containing initial values with

old data. Although it is not trivial to modify applications to

satisfy these requirements, AR-MMAP does not require any

additional hardware owing to the assistance of applications.

IV. EVALUATION

We implement AR-MMAP in a Linux kernel version

4.14.84 and compare its performance with that of a default

kernel on a real server that contains an 18-core Xeon® E5-

2697 v4 processor, Intel® DC P3700 SSD [14], and Intel®

Optane™ 900P SSD [15]. In this paper, we use memcached
[16], an in-memory key-value cache, as a use case and

modify it so that it satisfies all of the three requirements of

AR-MMAP. For performance evaluation of AR-MMAP, we

run the Yahoo! Could Serving Benchmark (YCSB) [17] on

the modified memcached. We configure each thread of this

benchmark to process 100,000 1 KB records and vary the

number of threads from one to sixteen. Note that in order to

emulate a situation where the total data size of the YCSB is

larger than the capacity of DRAM, the size of page cache is

limited to 25% of the total data size with the Linux cgroup.
Fig. 3 plots the execution time of a read-update mixed (50%

reads and 50% updates) workload of the YCSB. The execution

time is normalized by that measured with the default kernel for

each number of threads. In this figure, we can see that AR-

MMAP reduces the execution time by 7.3% to 30.5% with

the P3700 SSD compared to the default kernel. The benefit of

AR-MMAP gets smaller as the number of threads is increased,

because the impact of SaR operations can be hidden with

the parallelism of more threads. This figure also includes the

results of All DRAM that stores all records of the YCSB in

DRAM. As all read operations in addition to update operations

are also performed on DRAM in this case, the execution time

reductions are larger than those by AR-MMAP. On the other

hand, the benefit of AR-MMAP is very small with the Optane

900P SSD, because its performance is much higher than that

of the P3700 SSD. However, as its cost is also much higher

than that of the P3700 SSD, AR-MMAP is effective when we

configure a low-cost hybrid memory systems with slower but

cheaper SSDs like the P3700 SSD.

V. RELATED WORK

Various techniques have ever been proposed to improve

the performance and/or usability of memory-mapped files

[8]–[13]. However, they cannot alleviate the impact of SaR

operations on application performance. Papagiannis et al. [18]

implemented a custom memory-mapped I/O mechanism in

their original key-value store. It avoids unnecessary SaR

operations for pages that are entirely updated. In contrast,

our proposed AR-MMAP can alleviate the impact of SaR

operations even for pages that are partially updated.
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