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Abstract—Thread packing (TP) is a widely-used technique
to improve the efficiency of parallel systems. Despite extensive
prior works, relatively little work has been done to inves-
tigate its performance inefficiencies. To bridge this gap, we
quantify its performance impact on synchronization-intensive
applications and identify the root causes of its performance
inefficiencies.
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I. INTRODUCTION

Dynamic concurrency control is an effective technique for

high-performance and energy-efficient computing [3, 4, 5, 6,

7, 10]. With dynamic concurrency control, the concurrency

level of the target parallel application is dynamically con-

trolled based on the runtime information such as the load

intensity of the target application to satisfy the user-specified

requirements (e.g., performance, power consumption).

Among the various techniques for dynamic concurrency

control, thread packing (TP) [3] is one of the most widely-

used techniques [3, 4, 5, 6, 7, 10]. With TP, the OS or

runtime system dynamically packs the threads of the target

parallel application to an equal or smaller number of cores

than the thread count based on the runtime information to

improve the overall performance and energy efficiency. One

of the main advantages of TP is its high applicability as it

can be applied to parallel applications that lack the capability

of dynamically changing the thread count.

Despite the extensive prior works that employ TP for

dynamic concurrency control, relatively little work has

been done to investigate the performance inefficiencies of

TP. Without the thorough performance characterization of

TP, dynamic concurrency control based on TP is likely

to achieve suboptimal performance and energy efficiency.

To bridge this gap, we present the in-depth performance

characterization of TP and identify the root causes of its

performance inefficiencies.

II. EXPERIMENTAL METHODOLOGY

System Configuration: We use a 16-core NUMA system

with two 8-core Intel E5-2640 CPUs.

Benchmarks: We employ five synchronization-intensive

multithreaded benchmarks (Table I), which frequently use

the barrier synchronization primitives, from the PAR-

Table I: Evaluated synchronization-intensive benchmarks

Benchmark Dataset Synch. interval
length in ms

Barnes (BA) [9] Native 596.62 (coarse)

Block TD solver (BT) [8] C 66.69 (coarse)

Canneal (CA) [2] Native 2.42 (fine)

Conjugate grad. (CG) [8] C 4.10 (fine)

Discrete 3D FFT (FT) [8] C 248.53 (coarse)

Figure 1: Performance comparison of thread reduction and

thread packing with 16 threads and various core counts

SEC [2], SPLASH [9], and NPB [1, 8] benchmark suites.

The thread count of each benchmark is set to the allocated

core count for thread reduction1 and the total core count of

the underlying system for thread packing.

Table I shows the synchronization characteristics of the

synchronization-intensive benchmarks. The synchronization

interval length of each benchmark is defined as the average

time (in milliseconds) between two consecutive barriers.

If the synchronization interval length of a benchmark is

short (or long), it is classified as the one that employs fine-

grain (or coarse-grain) synchronization. The synchronization

interval length of each benchmark in Table I is collected by

executing it with 16 cores and 16 threads.

III. CHARACTERIZING THREAD PACKING

We present the quantitative performance comparison of

thread reduction (TR) [3] and thread packing (TP) using
1In line with the prior work [3], we refer to a technique that statically

sets (reduces) the thread count of the target application to the allocated core
count as thread reduction (TR). Note that TR itself lacks the capability of
dynamic concurrency control as the degree of parallelism (i.e., the thread
count) is fixed during the entire execution of the target application.
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Figure 2: Execution time breakdowns of thread reduction

and thread packing with 16 threads on 15 cores

various synchronization-intensive applications, core counts,

and thread counts. We compare the performance of TR and

TP with the five synchronization-intensive benchmarks and

various core counts (i.e., from 1 to 16 cores). The thread

counts of the TR and TP versions of each benchmark are

set to the allocated core count and 16, respectively. Figure 1

shows the execution time ratio of the TR version to the TP

version of each benchmark. In other words, the lower the

ratio is, the worse the performance of TP is.

First, TP achieves significantly lower performance than

TR when the allocated core count is not a divisor of the

thread count of the target application. For instance, TP

exhibits 33.7% longer execution time on average (geometric

mean) than TR across the synchronization-intensive bench-

marks when the allocated core is 15. This is because some of

the cores are packed with more threads than the other cores

when the core count is not a divisor of the thread count.

Since the threads that are packed on the cores with more

threads receive less per-thread computation resource, they

execute slower than the other threads and become the overall

performance bottleneck. In contrast, TR does not suffer from

this performance pathology because each thread is allocated

with its dedicated core, eliminating any imbalance in per-

thread computation resource.

To gain a deeper insight into the overall performance

trends, Figure 2 presents the execution time breakdowns of

each version of the synchronization-intensive benchmarks,

normalized to the TP version. Each bar consists of the

CPU time spent for executing the instructions in the user

mode (User), executing the instructions in the kernel mode

(System), idling (Idle), and handling the I/O operations

(I/O). Figure 2 shows that the Idle time accounts for a

larger portion of the total execution time with TP than TR

across most of the benchmarks because of the imbalance in

per-thread computation resource.

Second, TP incurs more performance degradation with

larger core counts. This is mainly because the difference in

the per-thread computation resource across threads becomes

larger with larger core counts. For instance, with 16 threads

and 15 cores, the overloaded core is assigned with 2 threads

and the other cores are assigned with 1 thread, resulting in

the imbalance factor of 2. In contrast, with 16 threads and

7 cores, the overloaded core is assigned with 3 threads and

the other cores are assigned with 2 threads, resulting in the

imbalance factor of 1.5 (lower than that with 16 threads and

15 cores).

Third, TP incurs more performance degradation with the

benchmarks (e.g., CA) that employ fine-grain synchroniza-

tion. This is mainly because scheduling activities of the

Linux kernel are performed at a coarse grain, failing to

mitigate the performance degradation of TP.

We summarize the overall performance trends as follows:

• TP achieves significantly lower performance than TR

across the evaluated synchronization-intensive bench-

marks when the allocated core count is not a divisor of

the thread count.

• TP incurs more performance degradation as the allo-

cated core count increases.

• Applications that employ fine-grain synchronization

tend to suffer from the performance pathologies of TP

more seriously.

• While omitted for conciseness, our experimental results

show that the performance pathologies of TP arise with

a wide range of system scales.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we characterize the performance of thread

packing (TP) and identify the root causes of its inefficien-

cies. Our performance characterization results suggest that

the performance inefficiencies of TP significantly limit its

practicality and must be robustly addressed. As future work,

we plan to investigate runtime techniques for improving the

efficiency of TP.
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