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Abstract—Optimizing scientific applications on today’s
accelerator-based high performance computing systems can be
challenging, especially when multiple GPUs and CPUs with
heterogeneous memories and persistent non-volatile memories
are present. An example is Summit, an accelerator-based system
at the Oak Ridge Leadership Computing Facility (OLCF) that
is rated as the world’s fastest supercomputer to-date. New
strategies are thus needed to expose the parallelism in legacy
applications, while being amenable to efficient mapping to the
underlying architecture.

In this paper we discuss our experiences and strategies to port
a scientific application, DCA++, to Summit. DCA++ is a high-
performance research application that solves quantum many-
body problems with a cutting edge quantum cluster algorithm,
the dynamical cluster approximation.

Our strategies aim to synergize the strengths of the different
programming models in the code. These include: (a) stream-
lining the interactions between the CPU threads and the GPUs,
(b) implementing computing kernels on the GPUs and decreasing
CPU-GPU memory transfers, (c) allowing asynchronous GPU
communications, and (d) increasing compute intensity by com-
bining linear algebraic operations.

Full-scale production runs using all 4600 Summit nodes
attained a peak performance of 73.5 PFLOPS with a mixed
precision implementation. We observed a perfect strong and weak
scaling for the quantum Monte Carlo solver in DCA++, while
encountering about 2× input/output (I/O) and MPI communica-
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tion overhead on the time-to-solution for the full machine run.
Our hardware agnostic optimizations are designed to alleviate
the communication and I/O challenges observed, while improving
the compute intensity and obtaining optimal performance on a
complex, hybrid architecture like Summit.

Index Terms—DCA, Quantum Monte Carlo, QMC, CUDA,
CUDA aware MPI, Summit@OLCF, Spectrum MPI

I. INTRODUCTION

With rapidly changing microprocessor designs, the next

generation high performance computers will have massive

amounts of hierarchical memory available on the node, from

user-managed caches, DRAM, high bandwidth memory and

non-volatile memory (NVMs). On the other hand, exploring

the best ways to integrate multiple programming models for

collective optimization of performance remains one of the

biggest challenges. Systems like OLCF’s Summit1 generate the

majority of floating point operations per second (FLOPS) from

GPUs (as high as 97%), which are throughput optimized with

a large number of threads, while CPUs are latency optimized.

Thus, finding the right balance between memory access and

computation work distribution, according to the underlying

heterogeneous hardware without sacrificing efficiency and

scalability, is still an outstanding research problem.

The first step to addressing this issue is to understand how

“asynchronous” execution models can be used to: (a) describe

units of work; (b) let the runtime system efficiently schedule

work to hide the latency in accessing various memory hierar-

chies and NUMA domains; and (c) determine if heterogeneous

threads are a possible solution. Current programming models

that provide “rigid” synchronization constructs (e.g., full sys-

tem barriers at the end of loops) may not be able to scale due

to the high overhead of the massive parallelism with threads.

1World’s fastest supercomputer with a theoretical performance of 200
peta-FLOPS (PFLOPS) as of June 2019 [1].
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In this work, we discuss the programming styles and

strategies that were used in the development of DCA++.

DCA++ implements a quantum cluster method [2] known as

the dynamical cluster approximation (DCA) [2]–[4], with a

quantum Monte Carlo (QMC) kernel for modeling strongly

correlated electron systems. The DCA++ code currently uses

three different programming models (MPI, CUDA, and C++

Standard threads), together with numerical libraries (BLAS,

LAPACK and MAGMA), to expose the parallelization in

computations. Optimizing one single programming model does

not necessarily help us achieve our efficiency / scalability

goal. We discuss our vision on how we may use a general

programming style or strategy(ies) to exploit the underlying

memory hierarchy.

A. Contribution

The primary contributions of this work are outlined below:

(a) Custom thread pool for on-node parallelization and man-

aging GPU driver threads.

(b) Improved delayed sub-matrix updates to increase GPU

utilization.

(c) Asynchronous communication among multiple GPUs on

Summit.

(d) Accumulation of complex measurements ported from the

CPU to GPU, accounting for significant performance

improvement in runtime and GPU utilization.

(e) Delayed Non-uniform Fast Fourier Transform in single-

particle accumulation.

(f) Batched matrix-matrix multiplication for small 2D

Fourier transforms in two-particle accumulation.

(g) Mixed precision operations on GPUs.

II. BACKGROUND

The study and understanding of strongly correlated elec-

tronic systems is one of the greatest challenges in condensed

matter physics today. Strongly correlated electron systems are

characterized by strong electron-electron interactions, which

give rise to exotic states and fascinating properties such as

multiferroicity2 and high-temperature superconductivity. These

properties open the door for technological advances in appli-

cations such as data storage and MRI machines. However,

current methodologies based on density functional theory

(DFT), the workhorses for electronic structure calculations, fail

to describe the effects of correlations that govern the physics

in strongly interacting electron systems.

The complexity of the general electronic structure problem

and the failure of DFT has led to the development of reduced

models that are believed to capture the relevant physics under-

lying the observed properties. The most prominent example is

the use of the two-dimensional (2D) Hubbard model for the

study of high-temperature superconducting copper-oxide based

materials (cuprates) [5], [6], for instance. The Hubbard model

describes interacting electrons on a lattice, which can hop

2Multiferroics are materials exhibiting more than one ferroic property
such as ferromagnetism and /or ferroelectricity.

between lattice sites and interact through an on-site Coulomb

repulsion. Formally, the Hamiltonian is given by

H = H0 +Hint = −t
∑
〈i,j〉,σ

c†iσcjσ + U
∑
i

ni↑ni↓ . (1)

The first term of (1), where 〈i, j〉 indicates that the sum

runs over nearest-neighbor sites i and j, represents the electron

hopping with amplitude t. The second term, where the sum

runs over all lattice sites i, captures the on-site Coulomb

interaction of strength U . The index σ ∈ {↑, ↓} represents

the electron spin. Systems with multiple electron bands per

lattice site are also supported.

Mathematically, the Hamiltonian is represented by a matrix.

Solving for the possible energy levels and states of the system

is equivalent to solving for the eigenvalues and eigenstates

of the Hamiltonian matrix. However, exact diagonalization

studies of the 2D Hubbard model are restricted to very small

lattices as the problem size scales exponentially with the

number of lattice sites. Quantum Monte Carlo simulations,

in turn, are plagued by the infamous fermion sign problem,

which again limits the accessible lattice sizes and prevents

calculations at low temperatures [7]. To study Hubbard model

type of problems, dynamical mean field theory (DMFT) [8]

has become one method of choice. In DMFT the complexity

of the infinite lattice problem is reduced by mapping it to a

self-consistent solution of an effective impurity model, thereby

treating only spatially local correlations exactly and including

non-local correlations on a mean-field level. In order to treat

additional non-local correlations that are important to under-

stand the mechanism of high-temperature superconductivity,

for example, DMFT has been extended by quantum cluster ap-

proaches such as the dynamical cluster approximation (DCA)

[2]–[4].

DCA is a numerical simulation tool to predict physical

behaviors (such as superconductivity, magnetism, etc.) of

correlated quantum materials [9]. The DCA++ code3 computes

the many-body (single-particle and two-particle) Green’s func-

tions for a Hubbard-type material of interest. Properties of the

materials, such as the superconducting transition temperature,

can be calculated from these many-body Green’s functions.

DCA++ has an iterative, self-consistent algorithm with two

primary kernels (see Fig. 1): (a) Coarse-graining of the single-

particle Green’s function to reduce the complexity of the

infinite size lattice problem to that of an effective finite size

cluster problem, and, (b) quantum Monte Carlo based solution

of the effective cluster problem.

Almost all of DCA’s computing time is spent in the QMC

solver. Fig. 2 shows its general workflow.

A. Coarse-graining

The DCA algorithm replaces the infinite lattice problem

by a finite-size impurity cluster that is embedded in a

3The DCA++ code has been created in a collaboration between Oak
Ridge National Laboratory (ORNL) and ETH Zurich. ORNL’s DCA++ code
won the Gordon Bell Award in 2008 for the first petascale computation of
high-temperature superconductors [10].

433



Input

Lattice Mapping

each thread

;

each thread

;

Coarse Graining

Cluster MappingCluster Mapping

QMCSolver

"Walker"Walker

"Accumulator"

L2 Sigma Difference > dca_accuracy

Thread [1..T]

MPI [1..N]

MPI [1..N]

"Thread[1..M]"

MPI [1..N]

MPI [1..N]

Fig. 1. General workflow of the DCA++ application, showing two primary
kernels and input/output to each of the kernels. On distributed multi-core
machines we exploit the underlying hardware with a two level (MPI +
threading) parallelization scheme.

self-consistent mean-field. Formally, we substitute the

lattice self-energy by ΣDCA(�k, iωn), a piecewise constant

continuation of the cluster self-energy Σc( �K, iωn):
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Fig. 2. The computation structure of the quantum Monte Carlo kernel. This
figure shows the levels of parallelism in an iteration of the QMC solver (the
MPI communication, thread level parallelism and accelerator level ). Each rank
(N1 – N4) is assigned a Markov Chain and the initial Green’s function, G.
Each rank spawns worker threads (walkers and accumulators). Computation
performed by the walker threads are done on the GPU, upon completion
the walkers send measurements over to the accumulator threads, running on
the CPU (asynchronous computation) to generate partial G’s (GN2

′, GN2
′′,

GN2
′′′ etc. on node N2). The partial G’s are then reduced within the node

to give GN2 (GN1, GN3 and GN4 for nodes N1, N3 and N4 accordingly),
followed by a MPI_AllReduce operation that computes the final G. This
G is then fed into the coarse-graining step in the next iteration.

ΣDCA(�k, iωn) =
∑
�K

φ �K(�k) Σc( �K, iωn) , (2)

where ωn = 2nπ
β is a Matsubara frequency, β = 1/T is the

inverse temperature, and the patch function φ �K(�k) is one if the

momentum �k lies inside the �K th patch, and is zero otherwise.

The sum runs over a mesh of points in �K-space, centered

around by the reciprocal cluster points �k.

The single-particle Green’s function G(�k, iωn), which de-

scribes the propagation of a single electron bearing a momen-

tum �k and a frequency ωn, is then coarse-grained over the

patches to obtain the coarse-grained single-particle Green’s

function Ḡ( �K, iωn):

Ḡ( �K, iωn) =
Nc

VBZ

∫
d�k φ �K(�k)

[
G−1

0 (�k, iωn)− ΣDCA(�k, iωn)
]−1

,

(3)

where Nc denotes the cluster size, VBZ is the volume of the

Brillouin zone, and

G0(�k, iωn) =
1

iωn −H0(�k) + μ
(4)

is the Green’s function corresponding to the non-interacting

part of the Hamiltonian, H0 in (1). The chemical potential μ
is a parameter that needs to be adjusted by iterating the coarse-

graining step until the desired electron density is obtained.

The density can be calculated from the value of the Fourier

transform of G(�k, iωn) into real space and time coordinates,

then evaluated at zero time and displacement in real space.

This makes the problem tractable by reducing the degrees of

freedom to those of the cluster, while still retaining informa-

tion about the remaining lattice degrees of freedom in an aver-

aged fashion. The coarse-grained Green’s function Ḡ( �K, iωn)
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and the cluster self-energy Σc( �K, iωn) = ΣDCA( �K, iωn)
define the bare Green’s function of an effective cluster problem

through the Dyson equation,

G0( �K, iωn) =
[
Ḡ−1( �K, iωn) + Σc( �K, iωn)

]−1

. (5)

From G0( �K, iωn), we can use the Monte Carlo techniques,

to be described in the following subsection, to produce a

corrected coarse-grained single-particle Green’s function that

includes the contribution from the interacting part of the

Hamiltonian, Hint in (1). We can then calculate a new cluster

self-energy Σc( �K, iωn) for the next iteration, which closes the

DCA self-consistency loop.

B. Quantum Monte Carlo (QMC) solver

We employ a continuous time auxiliary-field (CT-AUX)

QMC algorithm [11], [12]. Our implementation of the CT-

AUX solver incorporates submatrix updates [12] and accu-

mulation of measurements with non-equidistant fast Fourier

transforms [13]. In the CT-AUX methodology, the partition

function Z is expressed as an expansion in terms of the N -

matrices
(
Nσ
{si,τi}k

)
:

Z =
∑
k≥0

∑
si=±1
1≤i≤k

∫ β

0

dτ1· · ·
∫ β

τk−1

dτk

(
K

2β

)k

Zk({si, τi}k),

Zk({si, τi}k) = Z0

∏
σ=↑,↓

∣∣∣Nσ
{si,τi}k

∣∣∣−1

,

(6)

and Z0 = Tre−βH0 . Here, the imaginary time τ1 . . . τk ∈
[0, β). The constant K is introduced to express Z in the

interacting representation; the quartic interaction term in the

Hamiltonian has been replaced through a Rombout’s decou-

pling by a coupling to an Ising auxiliary spin field si [11],

and σ =↑, ↓ is the electron spin. The outer sum runs over the

expansion order k, and the inner sum runs over the k auxiliary

spin fields si.
During the simulation, the expansion order k has a peaked

distribution around a mean value that scales as O(Nc U/T ),
where Nc is the cluster size and T is the temperature. The

memory requirement for the random walk scales as O(k2),
while the computational cost scales as O(k3).

The quantity that needs to be measured from the random

walk (by the walkers), and to be used in the following

iterations of the DCA loop, is the single-particle Green’s

function (dropping variable dependence for clarity):

G = G0 − G0 M G0, (7)

where G = G(�k, iωn) and G0 = G0( �K, iωn) are introduced

in Section II-A, M is a k × k matrix produced by the MC

walker, closely related to the inverse of N from (6).

Samples of M , which is a translational invariant function

of real space and imaginary time, are measured during the

MC procedure. Working in frequency and momentum Fourier

space has the advantage that all terms that enter in (7) are

diagonal. We therefore perform a series of batched 2D Fourier

transforms over the two time indices of M to transform them

to the frequency domain. Similarly, we transform the space

indices to the momentum domain.

Besides the single-particle function, another important quan-

tity to accumulate is the 4-point two-particle correlation func-

tion Gtp. We compute Gtp in the particle-particle channel,

from which one can extract information of the superconducting

behavior. In the QMC algorithm, this function is accumulated

according to

Gtp(K1,K2,K3) +=
∑
σ

Gσ(K3−K2,K3−K1)G−σ(K2,K1) .

(8)

Here Ki is a combined index representing a particular point

in the momentum and frequency space, and σ specifies the

electron spin value.

This Gtp correlation function describes the propagation

of a pair of electrons with opposite spin from momen-

tum/frequency (K2,K3 − K2) and center of mass momen-

tum/frequency K3 to their scattered states with momen-

tum/frequency (K1,K3 −K1).

The Appendix summarizes the definition of each physical

quantity introduced in this section and to be used in the the

next section for the implementation of DCA++ algorithm.

III. IMPLEMENTATION

In this section, we outline our implementation of the im-

proved DCA++ code, as well as our design and parallelization

strategies on the Summit supercomputer. As shown in Fig. 1,

the two main kernels of DCA++ are: (a) the coarse-graining

step, and, (b) the quantum Monte Carlo solver. A primary

challenge in the optimization of this code is that the runtime

of different sections of the algorithm scales differently with a

subset of the input parameters.

A. Input parameters

We set up a low temperature simulation of a system

representing a typical production level execution: a single-

band square lattice Hubbard model with Coulomb repulsion

U/t = 4, temperature T/t = 0.02 and DCA cluster size

Nc = 36. The average expansion order observed with this

set of parameters is k = 2600. A fixed number of 80 million

total measurements were performed to study strong scaling,

while a fixed number of 50,000 measurements per node (i.e.,

a fixed runtime of about 12 minutes) were performed for the

weak scaling study.

Each simulation sampled ωsp = 2048 Matsubara frequencies

for the single-particle Green’s function and ωtp = 128 Matsub-

ara frequencies for each dimension of the two-particle Green’s

function. All the 10 possible independent momentum transfers

were computed, while the exchange frequency was fixed at

Δω = 0. The performance evaluation, resource allocation,

and problem specific optimization strategies reported later in

Sections III and IV will refer to this system.
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B. Coarse-graining

The coarse-graining step in (3) does not scale with the

inverse temperature, and its contribution to the runtime is

generally negligible for a production level run. Nevertheless

its overhead can impact the testing and development of the

code, especially as, depending on the initial configuration, (3)

needs to be recomputed several times until the electron density

has converged to the target density.

We parallelized this step of the algorithm with a com-

bination of MPI distribution and multi-threading (C++

std::threads). Each thread of each process can simply integrate

the Green’s function independently for a set of frequency and

cluster momentum values.

This portion of the code greatly benefited from our new par-

allelization implementation based on a thread pool, described

in more detail in Section III-D. We further optimized the code

by: (a) improving the scheduling of the intra-process work,

(b) implementing specialized functions for the inversion of

small matrices, and (c) reducing the number of floating point

operations by taking advantage of the spin symmetry in (3).

Note that the symmetric property of an Hamiltonian matrix

also reduces the memory overhead.

All these optimization led to a significant speedup of

the coarse-graining step compared to the previous DCA++

implementation in version 1.0.0 [14]. The performance varies

widely depending on different system sizes and input param-

eters; on Summit we observed an improvement of 100× to

1000×.

C. Quantum Monte Carlo (QMC) solver

The high dimensional integral in (6) is solved by Monte

Carlo methods. The Monte Carlo integration in DCA++ is the

most computationally intensive step. When porting DCA++ to

Summit, this kernel is where we spent most of our optimiza-

tion effort. These optimizations include the employment of

various parallelization techniques, getting higher GPU utiliza-

tion, reducing memory usage and addressing load imbalance

across nodes.

Monte Carlo algorithms can be massively parallelized by

executing concurrent, independent Markov chains across mul-

tiple nodes. Considering that the majority of the computing

capacity of a simultaneous multi-threading (SMT) machine

(e.g. Summit) comes from the GPUs, one must optimize these

embarrassingly parallel kernels, both inter-node and on-node,

to take full advantage of the underlying hardware.

On machines with hybrid nodes consisting of multi-core

CPUs and GPUs, Monte Carlo implementation and paral-

lelization strategies are hence a little different. Naive im-

plementation of the QMC kernel is not suitable for GPU

acceleration, because the algorithm contains many decision

branches based on the stochastic acceptance or refusal of each

update of the configuration, which needs to be performed

on the CPU. To increase the compute intensity during this

Monte Carlo acceptance-rejection step, DCA++ implements

the continuous-time auxiliary-field algorithm (CT-AUX) with a

submatrix update technique that groups multiple matrix-vector

multiplications into a single matrix-matrix multiply [15]. This

has already been implemented in version 1.0.0 [14].

1) Monte Carlo (MC) walkers: In the QMC solver, the

MC walks are performed to sample the expansion order (k)

space in (6) to obtain an estimation of the sum of the series

expansion. Pictorially, one might imagine a MC move as a

“spin flip” of the Ising auxiliary spin field si, which results in a

change in a column of a matrix. The acceptance probability of

each MC move is proportional to the ratio of the determinant

of the updated matrix with the determinant of the old one

(see e.g., [10] for more details). If the explicit inverse of the

old matrix is available, the new determinant can be computed

using the matrix-determinant lemma, which entails a matrix-

vector multiplication of O(k2) complexity.

In our implementation, the MC walkers combine the effect

of several MC moves into a large matrix-matrix multiplication

and perform the computation on the GPU [12]. While the

complexity of this method is still O(k2) per update, it ensures

that we use the GPU cache efficiently while reducing the

rounds of CPU-GPU communication.

The CPU processes the acceptance of each individual move

and their interaction with each other by growing a smaller

submatrix. We optimized the previous implementation by

using asynchronous copies between the CPU and GPU. We

also improved the implementation of custom kernels for matrix

row and column reorientation by exposing more parallelism to

the GPU threads. These optimization in the MC walker kernel

led to a performance benefit of 1.3× measured while running

a single CPU thread and a single GPU stream.

2) Monte Carlo two-particle accumulation: The second

part of the QMC solver is the measurement of the configura-

tions generated by the MC walkers. We also calculate a larger

two-particle correlation function to capture interesting physical

phenomena of condensed matter, such as superconducting

phase transition at lower temperature.

Based on the input parameters, the number of floating point

operations required to accumulate a measurement scales up to

O(k2 ωtp + k ω2
tp +ω3

tp), where k is the expansion order of the

MC integration, and ωtp is the number of discrete Matsubara

frequencies stored for each dimension of the two-particle

function (see Section III-A for the input parameters we use as

our test case). The number of frequencies required to capture

a phase transition scales with the inverse temperature, which

scales with the expansion order. Hence, the computational cost

of the accumulation step becomes as relevant as the MC walk,

and efficient utilization of the GPUs on hybrid architectures

like Summit is necessary.

Version 2.0 also supports computing multiple frequencies

and momentum transfers in a single execution, allowing the

computation of the full correlation function in a single run.

Our main challenge while developing version 2.0 was to

create a high performance GPU code that also minimizes

the amount of data movement between the CPU-GPU and

GPU-GPU memory. The memory footprint is of particular

importance, as the output correlation function takes more

than 3 GB of device memory, while each intermediate result
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takes around 750MB of memory for the specific system in

Section III-A.
To address this problem, we store intermediate GPU results

in private class members of type std::shared_pointer.

Each C++ objects can be executed and tested independently,

while a higher level manager object can direct each imple-

mentation object to reuse the same memory allocation, when

appropriate.
The two-particle accumulation is implemented by invoking

the following kernels on a GPU stream:

(a) 2D transform from time to frequency domain. The

first step is to perform a 2D Fourier transform of M
from the time domain to the frequency domain. While

this transformation is implemented as a delayed non-

uniform fast Fourier transform (DNFFT) in the case of

the single-particle function, for the two-particle case we

implemented it as a matrix-matrix multiplication.

The non-uniform fast Fourier transform algorithm

(NFFT) requires the convolution of the data on a uniform,

fine grid before applying the FFT algorithm. The memory

required to store a 2D convolution of each orbital pair

is too expensive that it is impossible to execute them

concurrently with sufficient accuracy, unless the number

of transforms is limited. In our test case, for each MC

sample, 1296 Fourier transforms of matrices of average

size 72 × 72 are performed. Considering the bandwidth

of the global memory and the peak performance of a

NVIDIA Tesla V100, the problem is close to the ridge

point of a roofline model. Hence matrix-multiplication is

favored over NFFT, in terms of global memory consump-

tion and access.

We have also considered using the 3M algorithm [16]

to implement the complex matrix multiplications with a

reduced number of floating point operations. While we

use it in the CPU version, we opted out in the GPU

implementation due to additional memory requirement.

We used the batched matrix multiplication routine in

the MAGMA 2.4.0 library [17] to execute the Fourier

transforms in parallel on the GPU.

(b) 2D transform from space to momentum domain.
Another set of 2D Fourier transforms needs to be per-

formed on the space indices of the input tensor. In

our test case, 8385 transforms of 36 × 36 matrices are

performed, using batched matrix-matrix multiplications.

Using a batched FFT algorithm might be necessary if

the DCA++ code was extended to larger clusters, but in

our use case the matrix-matrix multiplication was more

reasonable. Using a custom Fourier matrix allows us to

easily work with clusters of arbitrary shapes and spatial

dimensions, and to combine the Fourier transform with

another linear transformation used to improve the coarse-

graining results in certain cases.

(c) Single-particle Green’s function (G) computation. The

single-particle function G is computed according to (7).

(d) Two-particle Green’s function (Gtp) accumulation.
Finally the single-particle functions are combined to give

the two-particle function through (8). When more than

one accumulation stream per GPU is run concurrently,

this update is an atomic operation. This operation is the

most memory intensive part of the computation. While

storing Gtp on the device allows us to exploit the much

larger bandwidth of GPU memory compared to RAM and

to avoid communications with the CPU, we are limited to

the device memory size. Looking forward, a distributed

MC sampling scheme will need to be implemented to

enable calculations using larger clusters with higher fre-

quency and momentum transfer.

D. Parallelization strategies

Monte Carlo simulations are embarrassingly parallel, which

we exploit on distributed multi-core machines with a two level

(MPI + threading) parallelization scheme (see Fig. 2). On

node, we parallelize the Monte Carlo over several CPU threads

using a custom thread pool. We create several instances of

independent Markov chains, each managed by a walker object
(producer), and one or more accumulator object(s) (consumer)

that measures the single- and two-particle Green’s functions.

In addition, we employed the following strategies to further

improve the performance of our code.

Running multiple walker objects concurrently. This helps

keep the GPU busy while a memory copy is performed.

Each GPU stream associated with the walker waits for the

sub-matrix computation performed on the CPU. As a walker
performs FLOP-intensive operations both on the CPU and on a

CUDA stream, we recommend using as many walkers as CPU

cores, and up to the same number of accumulators provided

it fits in the GPU memory.

Dynamically distributing work at runtime. Unlike version

1.0.0 of DCA++ where the measurements were statically

distributed among MPI ranks and threads, in version 2.0 we

addressed the load imbalance across threads, by allowing each

accumulator to measure a different number of samples, up to

a fixed number of measurements per rank. The measurements

are still distributed statically over the MPI ranks to avoid

inter-node communications, while within the MPI process the

measurements are dynamically assigned to idle threads. For

walker-accumulator synchronization we use two techniques,

either shared threads or separate walker / accumulator thread.

Using equal number of walkers and accumulators. There

is no communication between different CPU threads; after

a walker object produces a MC sample, the accumulator is

called immediately, and en-queues the measurement on an

independent GPU stream, allowing the walker to immediately

start another MC step. Fig. 3 shows a UML diagram of the

synchronization of the shared walker and accumulator threads.

Using less accumulators than walkers due to limitations
in memory. Available accumulators wait in a queue. Upon

the generation of a new MC configuration, the walker copies

it to the front of the queue and signals the accumulator to

start the measurement, and resumes the random walk. When

the accumulator thread finishes its measurement, it goes to the

back of the queue. This method was already implemented in
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version 1.0.0; we improved the efficiency of the queries to the

queue by using the synchronization primitives (std::mutex
and std::conditional_variable) offered by the C++

Standard Library (STL). Fig. 4 shows a UML diagram of the

synchronization between the separate walker and accumulator
threads.

Careful memory management when using multiple ac-
cumulators. Each accumulator object stores a private copy

of the single-particle measurements, while the more memory

intensive two-particle results are accumulated atomically to the

same address space. We observed no performance benefit by

running version 2.0 with more software threads than physical

cores, and only negligible gain in using two threads per core

for the accumulators in version 1.0.0.
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Fig. 3. UML sequence diagram of synchronized walker and accumulator
threading scheme. Wire frame arrows indicate asynchronous calls.

Manually setting thread affinity and using the simulta-
neous multi-threading (SMT) feature. We noticed that the

code performs better significantly. We used the GNU interface

to the POSIX scheduling. As we executed the new code with

1 thread per physical core, we set the affinity of each thread

to 4 contiguous, non-overlapping virtual cores, except for the

master thread that shares the same affinity with one of the

worker threads in the pool, as they do not run concurrently.
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Accumulators
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loop [: measurements]
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[: Accumulators [ ]]

loop [: walkers done, queue empty]
update

measure

par
[: Accumulators [ ]

reduced

Fig. 4. UML sequence diagram of separate walker and accumulator threads.
Wire frame arrows indicate asynchronous calls.

The speedup of the new code due to these settings is reported

in Table I. The old code exhibits speedup as well when

using the smt4 flag, hence we use it for all the subsequent

measurements.

TABLE I
SPEEDUP OF THE NEW CODE DUE TO CHOICE OF SIMULTANEOUS

MULTI-THREADING (SMT) LEVEL, AND DUE TO THE MANUAL BINDING

OF THE THREAD AFFINITY. THE SAME NUMBER OF THREADS EQUAL TO

THE NUMBER OF PHYSICAL CORES HAS BEEN USED.

SMT = 1 SMT = 4
default affinity - 1.5×
manual affinity 1.07× 2×

Custom thread pool. DCA version 1.1.0 implemented

multi-threading by continuously spawning and merging

POSIX threads. This induced a large overhead that was

compounded by the fact that (3) was parallelized over the

inner summation of �k points, rather than on the cluster points
�K and frequencies ωn. This caused thousands of threads to

be spawned and joined.

Besides a better parallelization scheme, we also need

a thread pool to limit the creation of OS threads in

DCA++, especially for inputs that require running the coarse-

graining multiple times. We implemented a custom thread

pool using C++11 std::thread. We maintain an array

of std::thread objects and array of queues of work
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TABLE II
NEW CONTRIBUTIONS IN DCA 2.0 OVER DCA 1.1.0.

Implementation DCA 1.1.0 DCA 2.0

Threading model POSIX threads with short lifespan
Customized thread pool using C++
std::thread

Coarse-graining MPI with poor intra-node work distribution

• MPI and improved multi-threading
• Improved intra-process scheduling
• Specialized implementations for inversion of

small matrices
• Reduced floating-point operations by using spin

symmetry

Monte Carlo walker computation On GPU
On GPU, with improved asynchronous CPU-GPU
communications using multiple GPU’s on Summit
and NVLink

Monte Carlo accumulator computation On CPU
On GPU – this is the major contribution to the
performance improvement

Walker-accumulator interaction

• Single accumulator queue with spin locks
• Temporary configuration copies on the CPU
• Static workload distribution

• Improved implementation: avoids spinning on
locks using conditional variables

• Direct GPU-GPU communication between
walker and accumulator

• Dynamic intra-node workload distribution
• Overlapping computation and communication

items represented by std::packaged_task objects. The

completion of an asynchronous call can be queried through the

generated std::future object. The work is dispatched in

a simple round-robin fashion, with an additional integration

of a work-stealing algorithm. The same thread pool is used

both in the coarse-graining step and in the Monte Carlo

integration, where further synchronization between walker and

accumulator threads is expressed in terms of std::mutex
and std::conditional_variable objects.

Compared to the naked POSIX implementation, we have

significantly lowered the overhead. A clean trace can be

generated by most CPU profilers, as the number of OS threads

is constant during the execution. We have obtained a signif-

icant performance improvement by being able to access the

underlying POSIX implementation on Summit, and manually

setting the thread affinity, as shown above.

E. New contributions in DCA++ 2.0 over DCA++ 1.1.0

Table II summarizes the new contributions in DCA++ 2.0

over the older DCA++ 1.1.0 code that lead to the performance

improvements described in this paper.

IV. RESULTS

A. System Architecture: Summit

For our evaluation we mainly used OLCF’s Summit super-

computer. Summit is a 200 PFLOPS IBM AC922 system that

was ranked the first place in the TOP500 list in June 2019

[1]. It delivers approximately 8 times the computational per-

formance of Titan with 4608 hybrid nodes. Each Summit node

contains 2 IBM POWER9 22C 3.07GHz CPUs with 512GB

DDR4 RAM and 6 NVIDIA Volta V100 GPUs with 96GB

high bandwidth memory (HBM) (divided into 2 sockets), all

connected together with NVIDIA’s high-speed NVLink.

B. System Setup

We ran the test case (described in section III-A) on

Summit and compared the performance of the old version

1.1.04 and the new version 2.05 of the code. For each

version, we used 1 GPU and 7 CPU cores per MPI rank

- an even division of all 42 CPU cores on a node into

6 ranks. We ran 1 MPI rank per resource set6, and 6

resource sets per node. We compiled the code with GCC

6.4 using optimization flags -Ofast -funroll-loops
-DNDEBUG -mcpu=power9 -mtune=power9, and opti-

mized the number of software threads for each version.

C. Application Setup

The old code version 1.1.0 was based on version 1.0.0

with minimal modifications to read the same input file and

compute the same Gtp entries for a fair comparison with the

new version. The structure of the code remains the same.

We ran it with 13 accumulators and one walker per rank. It

is because the accumulation took place on the CPU, which

created a bottleneck in the process. Up to 16 accumulators

can fit into the memory, but we observed no run-time benefit

in mapping more accumulator threads to the same physical

core.

We ran the new version of the code with 7 walkers and

7 accumulators, with each walker and accumulator sharing a

4https://github.com/CompFUSE/DCA/releases/tag/paper.2019.old code
5https://github.com/CompFUSE/DCA/releases/tag/paper.2019.new code
6The concept of “resource set” is introduced by IBM’s job launcher

jsrun developed for the Summit Power system.
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thread in a MPI process (see Fig. 3). Since the MC walkers

perform most of the compute intensive work, the run-time

of the MC walkers is limited by the shared GPU resources.

On the other hand, the run-time dependence on the number

of accumulators is negligible. It is possible to use only one

accumulator on a single thread to gather information from all

MC walkers on other threads without a performance penalty.

That is, the walker and the accumulator do not share the same

thread (see Fig. 4).

D. Evaluation

1) Strong scaling performance: We first define the time-

to-solution (TTS) as the “figure of merit” (FOM) to quantify

the strong scaling performance of the code. This is equivalent

to the time required to obtain a fixed number of MC mea-

surements on different number of nodes. Fig. 5 reports the

run-time comparison of the two versions performing a fixed

number of 80 million measurements.
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Fig. 5. Strong scaling plot (log-log) of a production run on OLCF’s
Summit, 80 million measurements (see Section III-A for the detailed system
information). Red squares exhibit a linear scaling of the QMC kernel. Blue
circles show the scaling of the entire DCA++ run-time including MPI
communications for data movement across nodes and I/O from and to the
GPFS file system on Summit. The black square shows the time spent (6.79
hours) by the old code on all 4600 nodes. We observe a performance
improvement of up to 113× comparing the new code with the old code.

We first observe a significant speedup of 113× compared to

the old code (version 1.1.0). This difference is mainly due to

the asynchronous accumulation of measurements on the GPU

in the new code.

With the new code, we observe that the Monte Carlo time

exhibits a perfect strong scaling with the increasing node count

(red squares). It is because as the number of measurements is

evenly divided among the MC walkers, and the number of MC

walkers is proportional to the number of nodes employed, the

linear decrease in the QMC run-time is a direct consequence

of the principle of division of work.

To understand the effect of I/O and communications over-

head on the TTS, we plotted the total run-time (blue circles)

as a comparison. The overhead is almost constant, around 3.5
minutes, for each node count. This is caused by the reading

of the initial configuration from the parallel file system, the

communication and averaging of the Monte Carlo results and

in a small part by the coarse-graining. Although the coarse-

graining is embarrassingly parallel across momentum and

frequency points, we observed that the communication time

can exceed the computation time. We therefore decided to limit

the parallelism of this kernel to gangs of 100 nodes. To lower

the overhead for global sum reductions, we pack different

messages together, casting complex to real pairs and integer

metadata to real numbers whenever it is possible. While the

overhead is still significant, the time-to-solution is still better

than the one reported in [9]. Improvements to the parallel file

system can alleviate the overhead problem.

2) Weak scaling performance: Next, we performed a weak

scaling analysis by increasing the number of measurements

with the number of compute nodes, while keeping the run-

time fixed at 13 minutes. In statistics, the standard error of

the mean is inversely proportional to the square root of the

number of measurements (i.e., ∼ 1/
√
nmeasurements). It is thus

a reasonable FOM to verify the performance of the weak

scaling for Monte Carlo simulations, which quantifies the

improvements in the quality and precision of the simulations

as a function of computing resources.

The error bars on G and Gtp were computed using the

jackknife technique, with the measurements from one MPI

rank grouped together as a bin. Fig. 6 reports the measured

relative errors, which is the l2 norm of the error normalized by

the norm of the signal. As observed from the figure, the error

scales inversely proportional to the square root of the number

of measurements, which signifies a perfect weak scaling.
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Fig. 6. Weak scaling plot (log-log) using the same system as in Fig. 5. For
this plot, we fix the QMC run-time at 10 minutes and observe the number
of measurements obtained. The higher the measurements, the higher is the
accuracy, which leads to a lower error. Lower is better. This plot shows the
error for G.

Another observation from Fig. 6 is that given the number of
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measurements, the statistical error for G is much larger than

the single precision accuracy. This hints at the possibility of

making use of mixed precision to improve the performance:

MC walks (Section III-C1) and the single-particle measure-

ments (Section III-C2(c)) in double precision for the accuracy,

while the two-particle measurements (Section III-C2(d)) are

in single precision. Performance gained were measured as

FLOPS count improvement in the following sub-subsection.

3) FLOPS count: We calculated the performance by up-

dating a FLOP counter at each large matrix multiplication on a

GPU in the walker routine and the Gtp accumulation routines.

This provides a tight lower bound to the FLOPS count of

our application. We validated our counting mechanism using

the NVProf profiler on a single node. Considering the peak

performance by the MC step, we got 64.1 PFLOPS for the

new code, while the old code ran only at 0.577 PFLOPS as

it was limited by the long run-time spent on the two-particle

accumulation. With the mixed precision implementation, the

new code achieved a peak performance of 73.6 PFLOPS on

Summit. The higher FLOPS count is due to the use of single

precision in the two-particle measurements, which is about two

times faster than double precision operations. As the relative

error on Gtp is significantly larger than 10−7 on our largest

run, higher precision is not warranted for this calculation.

4) Roofline plot: In this section we analyze the most time-

consuming kernels of our application. We focus on the Monte

Carlo integration part, as the coarse-graining part is no longer

relevant in terms of compute time or FLOPS after applying

the optimizations presented in the previous section, at least for

the chosen physical system.

dg
em

m
64

x6
4

up
da

te
G

4

sw
ap

R
ow

s

up
da

te
G

m
em

cp
yD

to
H

0

20

40

60

P
er

ce
n
ta

g
e

(%
)

GPU Utilization

Floating Point Operations
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in each kernel and the memory transfer. dgemm 64x64, swapRows and
memcpyDtoH (copy from GPU to CPU) are used by the MC walker, updateG
is used by the single particle accumulator, and updateG4 by the two-particle
accumulator.

Fig. 7 reports the proportion of GPU utilization and floating

Fig. 8. Performance of the most FLOP-intensive kernels compared against
the roofline model of an NVIDIA V100 GPU with a peak performance of
7.2 TFLOPS and a bandwidth of 900 GB/s. The legend is ordered by total
FLOP consumption. The batched gemm kernels are part of the prepossessing
in the two-particle accumulation, but they do not contribute significantly to
the run-time.

point operations for each kernel contributing the most to the

TTS, while the roofline plot in Fig. 8 shows the efficiency

of the most FLOP-intensive kernels. These measurements

were obtained using NVIDIA visual profiler (NVProf) on a

serialized execution, i.e. one walker, one accumulator, and one

GPU stream. We have validated our plot with the Intel Advisor

on the PizDaint system7 at Swiss National Supercomputing

Centre (CSCS), ETH Zurich.

Most of the time was spent on the dgemm kernel for

matrix-matrix multiplications used by the MC walker, and on

the updateG4 kernel used by two-particle accumulation. One

should note that these kernels are already highly optimized

and close to the theoretical peak performance. The bandwidth

of the kernel swapRows, used for the reordering of the MC

configurations, is limited by the strided access to column-

major data, and a similar swapColumns kernel is also nec-

essary. In principle, the kernel updateG used in single-particle

accumulation could be further optimized by distributing the

workload among threads that would result in fewer bank

conflicts. But given its small share in the run-time, the benefit

of such an effort would be rather small.

In summary, the high performance of our application is

attributed by a number of factors. Firstly, a good portion of the

run-time is spent on efficient matrix-multiplications in the MC

walkers that accounts for most of the FLOP count. Secondly,

the overlap of computations and data transfers is enabled by

using multiple GPU streams to keep the device busy during

memory transfers and CPU updates. Finally, the parallelized

measurement scheme contributes only a small overhead while

greatly improves the concurrency.

7A Cray XC50 machine with Xeon E5-2690v3 12C 2.6GHz CPUs and
NVIDIA Tesla P100 GPUs. Sixth place in the TOP500 list as of June 2019
[1].
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V. LESSONS LEARNED

From our experience porting DCA++ to Summit, we outline

a few good practices in software engineering (especially for

C++ codes) which result in more readable, manageable, and

reliable software:

• Develop good templated APIs for the bookkeeping of data

structures and layout for the communication of arrays

either over MPI or between CPUs and GPUs.

• Maintain an object-oriented design when possible. In

our implementation, each computation step is represented

by an object. Each object can be specialized both with

an easily testable CPU-only implementation, and an

optimized GPU-accelerated version. Usually the GPU

specialization inherits from the CPU version. Template

arguments are useful for selecting the implementation

while maintaining the same API.

• Object encapsulation and memory re-utilization can be

combined with a careful use of shared pointers to GPU

resources.

• Each object is tested individually by unit tests and the

CPU implementation acts as a baseline.

On the utilization of Summit, there are a few points to note

apart from ordinary best practices on accelerator-based HPC:

• One needs to be hardware-aware and decide carefully

how software threads are mapped to hardware threads.

This includes the distribution of the CPU and GPU

resources on a node into different resource sets, thread

binding, and the simultaneous multi-thread (SMT) levels.

• With powerful GPUs, allowing multiple CPU threads, or

MPI ranks, to access the same GPU can help increase the

compute intensity. In this case, the GPU Multi-Process

Service (MPS) should be used.

• Collective MPI reductions incur significant overhead on

such a large machine. Minimize the number of calls to

the MPI API by packing the data, and consider local

re-evaluations instead of communications for relatively

small kernels.

• Familiarize with the job scheduling system and use the

appropriate job submission options (BSUB) and JSRUN

flags8 to allocate resources on Summit, in order to opti-

mize utilization of the computing power.

• The performance tools (either vendor-developed or third

parties) to show a holistic view of the CPU / GPU

activities are still not mature enough on Summit. It was

a challenge to optimize our code without having such

information.

VI. CONCLUSION

In this paper we presented our new and improved algorithms

for the DCA++ application (version 2.0). We evaluated and

compared our latest improvements with the old version 1.0.0

on OLCF’s Summit supercomputer. We observed a peak

8One may use the “jsrunVisualizer” tool provided by OLCF (https:
//jsrunvisualizer.olcf.ornl.gov) to visualize the effects of jsrun options on the
resource allocations on a Summit node.

performance of 73.5 PFLOPS for the quantum Monte Carlo

solver on Summit and up to 113× performance improvement

over the old code running at full scale on 4600 Summit

nodes. The improved calculation of dynamical properties us-

ing modern programming models, to exploit the underlying

hardware memory hierarchy, will provide important tests of

the simplified models to explain real materials.
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APPENDIX

Here we summarize the definition of all the relevant physical

quantities used in this paper:

(a) Σc( �K, iωn): cluster self energy. Either an input or the

result of the previous DCA iteration. It represents the

correction to the electron states due to interactions.

(b) ΣDCA(�k, iωn): Piecewise extension of Σc( �K, iωn).

(c) G(�k, iωn) or G: single-particle Green’s function. It

describes the configuration of single electrons.

(d) Ḡ( �K, iωn): coarse-grained single-particle Green’s

function.

(e) G0( �K, iωn) or G0: bare single-particle Green’s function.

It is computed from Σc( �K, iωn) and Ḡ( �K, iωn) and is

used as an input for the MC solver. It represents the

configuration of non-interacting electrons.

(f) Gtp: two-particle Green’s function, also called the

four-point function. Output of the MC solver used to

determine relevant physical properties of the system. It

represents the correlation between a pair of electrons.

(g) β: inverse temperature. The lower the temperature, the

stronger the correlations between electrons are, and the

higher the average expansion order in the MC integration

is, directly impacting the run-time.

(h) H0: non-interacting Hamiltonian. Used to compute the

coarse-grained Green’s function Ḡ( �K, iωn). It represents

the energy of a non-interacting electron with a given
momentum.

(i) Hint: interacting Hamiltonian. Input to the MC solver. It

represents the interaction strength of pair of electrons on

two given orbitals.

(j) k: expansion order of (6). Its average value scales as

O(βNcU), where Nc is the cluster size and U is the

average interaction strength. Not to be confused with the

module of a momentum vector �k.

(k) M : k × k matrix. It is an intermediate result closely

related to G stored by the single-particle accumulator.

(l) Nσ
{si,τi}k or N : k× k matrix. Closely related to M and

stored in the MC walker.

For the physical parameters chosen in this paper, all the

single-particle function, i.e. G, G0 and Σc are
˜

5 MB large,

while the two-particle Green’s function G4 is 3.4 GB. The

size of the matrices N and M fluctuates with the expansion

order, but on average they are
˜

100 MB large.
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