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Fig. 1: Example of 3D-Stacked Memory Layout

I. EXTENDED ABSTRACT

Emerging High-Performance Computing (HPC) workloads,
such as graph analytics, machine learning, big data science, are
data-intensive. The data-intensive workloads usually present
irregular memory footprints with limited data locality, and thus
incur frequent cache misses and a growing desire for memory
bandwidth. Driven by this need, 3D-stacked memory devices
such as Hybrid Memory Cube (HMC) and High Bandwidth
Memory (HBM) are introduced to yield significantly higher
throughput. However, the traditional interfaces and optimiza-
tion methods for JEDEC DDR devices cannot fully exploit
the potential performance of 3D-stacked memory to handle
massive irregular memory accesses accompanied with data-
intensive applications.

3D-stacked memory devices (as shown in Figure 1), such
as the High Bandwidth Memory (HBM) [1] and Hybrid Mem-
ory Cube (HMC) [2], provide significantly higher bandwidth
with respect to conventional Double Data Rate synchronous
Dynamic Random Access Memory (DDR DRAM), and of-
fer an opportunity to better address requirements of data-
intensive applications. In these devices, the DRAM dies are
stacked on top of a logic die via 3D packaging. The logic
layer implements the memory controller that manages the
stacked DRAMs. Well known commercial devices using this
technology are the latest generations of NVIDIA’s Graphic
Processing Units (GPUs), Intel’s Xeon Phi processors and
Fujitsu PrimeHPC FX100.

One issue for data-intensive applications are the frequent
generation of memory hotspots, due to the fine-grained na-
ture of their data accesses. Memory hotspots are frequently
accessed memory locations that may significantly hinder the
performance of DRAM devices, due to their banked design.
In fact, frequent accesses to the same memory banks lead
to increased bank conflicts of the memory operations, thus
lengthening their latency [3]. Given nondeterministic memory

Fig. 2: SSSP

footprints presented in the irregular applications, the bank-
interleaving may not be able to avoid the hotspot formations
as expected.

We cluster the memory traces depending on the values of
physical addresses to identify any frequently accessed memory
regions. Since we cannot predict the number of clusters,
we use the unsupervised density-based spatial clustering of
applications with noise (DBSCAN) algorithm [4]. We set the
epsilon distance of DBSCAN to 1KB, which is equivalent to
the row size of HBM, to group adjacent memory accesses. We
set the time windows for the analysis to 10,000 clock cycles.

As shown in Figure 2, circles represent request clusters,
and distinct clusters are differentiated by colors. Crosses
identify unclustered requests with limited data locality. We
observe multiple request clusters, demonstrating the presence
of memory hotspots. Consequently, some DRAM banks are
more frequently accessed than others. Higher bank utilization
leads to a higher probability of bank conflicts [3]. However, if
we were able to monitor memory hotspots, we could employ
the information to optimize the performance of the memory
itself when executing data-intensive applications.

As such, we propose a novel Hotspot-Aware Manager
(HAM) infrastructure for 3D-stacked memory devices that
is capable of optimizing memory access streams via request
aggregation, hotspot detection, and in-memory prefetching.
HAM is a generalized design that is applicable to different 3D-
stacked memory devices, such as HBM and HMC, as shown
in Figure 3. For HBM that consists of multiple independent
channels with 2 HBM channels per DRAM die [1], we host a
HAM unit inside of each HBM channel controller to manage
the local accesses, as demonstrated in Figure 3. In the case
of HMC, the stacked DRAMs are vertically partitioned into
32 vaults and every 8 vaults are grouped as a quadrant [2].
As each vault within a quadrant shares the same HMC link
to transfer data between HMC and processors, the quadrant-
based HAM is employed rather than a vault-based design
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Fig. 3: Architecture of HAM in 3D Stacked Memory

to minimize the space overhead and die area occupation, as
shown in Figure 3.

As illustrated on the right side of Figure 3, HAM consists of
four major components: Coalesced Access Queue, Hot Bank
Table, Hotspot Prefetcher, and Prefetch Buffer.

The coalesced access queue (CAQ) is a First In First Out
(FIFO) queue that aggregates raw requests from processors
based on the respective row addresses. Each CAQ entry merges
the requests hitting the same DRAM row and signals the
prefetcher when poping out the requests from CAQ.

The hot bank table (HBT) records the number of accesses
to each DRAM bank in the 3D-stacked memory and indicates
whether a requested bank is hot or cold.

The hotspot prefetcher manages the prefetching logic. As
soon as a request is received from CAQ, prefetcher will check
whether requested row is cached or not. If the row is found in
the prefetcher buffer, then no prefetching is needed. Otherwise,
the prefetcher continues checking the target row and bank
status of this request. Once a hot row or hot bank is recognized,
then a prefetching request is issued to the specific vault or
channel and prefetch the entire row.

We also employ a two-port prefetch buffer in the HAM
design. The first port handles the access streams from the
request queue. While the second port tackles inquiries from
the hotspot prefetcher, which only inquires the addresses
of prefetch buffer entries. This implies that requests from
prefetcher never manipulate the data cached in the prefetch
buffer. In this circumstance, hardware hashing functions [5]
are utilized for referencing the prefetch buffer to reduce
space and energy overhead induced by the replicated hardware
comparators for both ports.

We evaluated HAM by simulating it in an architecture based
on RISC-V cores (implementing RV64IMAFDC ISA) [6] with
an attached HMC device. To compare the performance, we
implemented 3 more prefetching designs besides the HAM.
The baseline scheme (BASE) implements a memory-side
streaming prefetcher that loads the entire row (256B) to
the prefetch buffer if a miss occurs. The second case only
implements the CAQ for prefetching, which prefetches the
row if it is requested by two or more read requests in the
CAQ. Accordingly, the third case relies on the HBT that only
prefetches the data residing in the hot banks. Evidently, HAM

Fig. 4: Prefetch Buffer Hit Rate

shows highest hit rate (61.21%) for the prefetch buffer, which
achieves an average of 4.19X improvement compared with the
baseline case. Besides, on average, the hit rates of CAQ and
HBT are improved by 2.41X and 3.40X, respectively. As such,
HAM reduces a great amount of redundant memory accesses
to the 3D-stacked memory and boost the overall performance
of the memory system for data-intensive workloads.
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