
Exploring Memory Persistency Models for GPUs

Zhen Lin∗, Mohammad Alshboul∗, Yan Solihin†, Huiyang Zhou∗
∗North Carolina State University

{zlin4, maalshbo, hzhou}@ncsu.edu
†University of Central Florida

yan.solihin@ucf.edu

Abstract—Given its high integration density, high speed, byte
addressability, and low standby power, non-volatile or persistent
memory is expected to supplement/replace DRAM as main mem-
ory. Through persistency programming models (which define
durability ordering of stores) and durable transaction constructs,
the programmer can provide recoverable data structure (RDS)
which allows programs to recover to a consistent state after a
failure. While persistency models have been well studied for
CPUs, they have been neglected for graphics processing units
(GPUs). Considering the importance of GPUs as a dominant
accelerator for high performance computing, we investigate
persistency models for GPUs.

GPU applications exhibit substantial differences with CPUs
applications, hence in this paper we adapt, re-architect, and
optimize CPU persistency models for GPUs. We design a pragma-
based compiler scheme to express persistency models for GPUs.
We identify that the thread hierarchy in GPUs offers intuitive
scopes to form epochs and durable transactions. We find that
undo logging produces significant performance overheads. We
propose to use idempotency analysis to reduce both logging
frequency and the size of logs. Through both real-system and
simulation evaluations, we show low overheads of our proposed
architecture support.

I. INTRODUCTION

Non-volatile memory (NVM) or Persistent Memory (PM)

is here [1] and is expected to supplement/replace DRAM as

main memory due to its high integration density, comparably

high read speed, byte addressability, and low leakage power.

An example PM is Intel Optane DC Persistent Memory [2],

which is a DDR4-connected device supporting 3TB/socket

main memory. The non-volatility makes it possible to host data

persistently in main memory, blurring the boundary between

main memory and storage, thereby challenging the classical

computer system design.

Persistent data storage in main memory provides an oppor-

tunity to achieve recoverable data structures (RDS), which

allows programs to recover from crashes just by using data in

main memory instead of a checkpoint. Recent research [3], [4]

showed that by relying on RDS instead of checkpoints, highly

significant performance and write endurance improvements

can be obtained. Achieving RDS requires persistency models
along with instruction support, and a crash recovery technique

such as logging. Various memory persistency models have

been proposed for CPUs, defining the order in which stores

become durable in main memory, often in relation to ordering

defined in memory consistency models regarding when stores

become visible to other threads in a parallel program [5]. In

addition to store durability ordering, ensuring a consistent data

at any given point in time is required, typically supported

through durable transactions and their associated logging

mechanisms [6]–[8].

While persistency models in CPUs have been well explored,

they have been neglected in GPUs. We envision GPU will

make use of persistent memory in the near future for the

following key reasons besides the increased memory capacity

over volatile DRAM. First, in current systems, persistent data

is kept in files, and must be read to build data structures

at process start, written to files at process termination. The

conversion between persistent and temporary is expensive and

unnecessary with NVM. One such use case is in-memory

databases, especially the GPU accelerated ones including

Mega-KV [9], GPU B-Tree [10], Kinetica [11], etc. Second,

long-running GPU applications, including training deep neural

networks, computing proof of work in blockchain applications,

scientific computation using iterative approaches, etc., would

benefit from fault tolerance with RDS. Having recoverable

persistent data in NVM allows the processor to recover from

soft errors. This relegates system checkpointing for more seri-

ous faults, hence the checkpointing frequency can be reduced

[3]. Third, in fusion-like architecture, CPU and GPU share

PM. Therefore, we argue that GPU needs to support memory

persistency models.

In our study, we assume discrete GPU systems shown in

Figure 1, since discrete GPUs have high memory bandwidth

and are most commonly used in HPC (High-Performance

Computing) systems although the same support can be adopted

for fusion-like architectures. Recent GPUs support both unified

and non-unified memory [12]. With non-unified memory, the

programmer needs to explicitly copy the data between host-

side system memory and device memory while with unified

memory, the memory pages can be migrated on-demand, re-

ducing the programmer’s complexity. In this work, we consider

both unified and non-unified memory models and assume that

the persistency of the host-side system memory is properly

handled with existing approaches [5]–[7], [13].

CPU memory persistency needs to be re-architected for

GPUs, because of the following key differences: Workloads:

CPU benchmarks utilizing PM, such as Whisper [14], mainly

focus on database applications. In comparison, long-running

GPU tasks also include scientific computations, deep neu-

ral network training, large graph processing, and blockchain

mining. They exhibit different characteristics and execution

behavior. Bandwidth vs. latency: memory-intensive kernels in

310

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00032

Fig. 1: The system architecture with a discrete GPU, for which

NVM/PM replaces DRAM as device memory.

GPUs are typically bandwidth- (instead of latency-) sensitive.

Latency-oriented optimizations for CPUs such as durable

write-pending queues (WPQs) at the memory controller have

limited impact on GPUs. Furthermore, creating/updating logs

introduce additional write traffic/bandwidth, which affect

GPUs much more than CPUs. Multiple Memory Partition-
s/Controllers: a GPU is equipped with multiple memory

partitions and memory controllers for high bandwidth. The

pcommit instruction, which makes pending writes durable,

needs to be broadcasted to all MCs to flush all their WPQs.

Scratchpad memory: a typical server/desktop GPU memory

hierarchy has scratchpad memory (aka shared memory), which

needs to be considered for GPU memory persistency.

In this paper, we adapt, re-architect, and optimize CPU
persistency models for GPUs. The paper makes the following

contributions:

First, to provide both simplicity and flexibility to use the

persistency models, we propose pragmas for programmers

to specify their choice of persistency model and code region,

allowing the compiler to automatically generate GPU persis-

tency code.

Second, we propose GPU-friendly implementation of strict

persistency and relaxed (epoch) persistency. Whereas CPUs

rely only on clwb (cache-line-write-back)/clflushopt (cache-

line-flush-optimized) [6] instructions, we consider and com-

pare GPU alternatives: store write-through (store.wt) and

l2wb to flush all dirty blocks in the L2 cache. We found

that a mixture of them is warranted: store.wt is profitable for

writing undo logs without write allocation (as temporal locality

is absent in failure-free execution) and for implementing strict

persistency. We also found that l2wb is profitable in cases

where it is difficult/expensive to re-generate addresses required

for clwb. We also use the membar instruction as a persist

barrier between epochs. Since GPU memory controller WPQs

are not in the non-volatile domain, we evaluate the effect of

using pcommit instruction to flush blocks in WPQs to PM.

Third, for the epoch persistency model, we make an impor-

tant observation that the thread hierarchy in the GPU program-

ming model provides intuitive choices for epoch granularity.

Based on the characteristics of a kernel, we propose three

epoch granularities: kernel level, CTA (cooperative thread

array) level, and loop level. We show that epoch selection

is crucial to performance, and different workloads require dif-

ferent epoch scopes for optimal tradeoff between performance

and recoverability from crashes.

Fourth, due to GPU application performance being

bandwidth-sensitive and logging adds to bandwidth pressure,

we need to reduce the reliance on the logging, both in

frequency and the size of logs. We propose to leverage idem-

potency analysis [15], [16] at different GPU thread hierarchy

granularities and found that this analysis not only helps remove

the need to create undo logging, but also reduces the size of

logs when the epoch is not idempotent. We also show that

many GPU kernels can benefit from this optimization.

Finally, we show evaluation results on two platforms, real

GPUs (NVIDIA GTX1080) and simulated GPUs, that demon-

strate data persistency and recoverability on GPUs can be

achieved at low performance overheads.

II. BACKGROUND AND RELATED WORK

A. Memory Persistency Models on CPUs

Byte-addressable NVM, aka persistent memory (PM), pro-

vides opportunities for high-performance in-memory recov-

erable data structures (RDS). However, due to write-back

caches in CPUs, the durability order of writes to main

memory can be different from the program order of stores.

This does not present a problem for volatile memory such

as DRAM. But it is not the case for PM. For example,

assuming that the data fields ‘p → data’ and ‘p → state’

reside in different cache lines and the update to ‘p → data’

precedes the update to ‘p → state’. Due to the write-back

last-level cache (LLC), ‘p → state’ in memory may be

updated while ‘p → data’ has not. In this case, if a fault,

e.g., a power failure, happens, the persistent memory state

becomes incorrect after power is restored. To deal with this

issue and support correct implementations of RDS, memory

persistency models [5], [13] formally specify the order of

writes to PM. In particular, strict persistency means that the

persistent memory order is identical to the volatile memory

order, which is governed by the memory consistency model. In

comparison, relaxed persistency reduces the order constraints

and two such persistency models, epoch and strand persistency,

have been proposed [5], [13]. Under the epoch persistency

model, the execution of a thread is separated into epochs

separated by persist barriers.The durability order of stores

to different addresses is only enforced between epochs but

not within an epoch. The order of conflicting accesses, i.e.,

accesses to the same address, on the other hand, is maintained,

which is referred to as strong persistent atomicity. The strand

persistency model relaxes the order constraints even further but

requires programmers to express dependencies so as to remove

unwanted memory ordering. Therefore, we do not consider

strand persistency in this work.

The memory persistency models mentioned above specify

the durability order of stores but ordering alone does not

provide recoverability. For example, assume that with either

strict or epoch persistency, ‘p → data’ and ‘p → state’ in

PM are updated in the program order. But it is still possible

that a fault happens after ‘p → data’ is updated but before

‘p → state’ being updated. In this scenario, the memory

311

state in PM is still not correct for data recovery. What is

missing here is transaction-like semantics, which requires that

a group of stores are made durable together or none at all.

To achieve such operations for PM, durable transactions have

been proposed [6]–[8]. Through either redo or undo logging,

they enable data to be recovered if a failure occurs during a

transaction. The overhead of logging can be significant and

there are some recent works to either reduce the size of the

logs using recomputation [3] or to improve the performance

using hardware logging [17], [18].

B. GPU Architecture and Programming Model

Modern GPUs employ the single-instruction multiple-thread

(SIMT) architecture. A GPU consists of multiple streaming

multiprocessors (SMs). On each SM, there is one or more

warp schedulers to feed instructions to the ALU or memory

pipelines. The GPU memory hierarchy includes register files,

L1 D-caches, shared memory, constant caches, texture caches,

and an unified L2 cache. The L2 cache contains multiple

partitions and there is a memory controller for every one or

two partitions so as to achieve high memory access bandwidth.

The L1 D-caches typically do not use the write back (WB)

policy (e.g., a write evict policy instead) and currently there

is no coherence support among the L1 D-caches residing in

multiple SMs. The L2 cache uses the WB policy while the

GPU ISA may support the store instructions with an option to

write through the L2 cache.

The SIMT programming model is a single program multiple

data (SPMD) model and massive threads are organized in

a hierarchy. A kernel is launched with a grid of collabo-

rative thread arrays (CTAs). A CTA in turn contains many

threads, which can communicate and synchronize with each

other through shared memory. Each thread/CTA determines its

workload using its thread/CTA id. Each SM can host one or

more CTAs depending on their resource usage. The threads in

a CTA form warps, each of which is executed in the SIMD

manner when there is no control divergence. With divergence,

sub-warps may be formed to support multi-path execution

while threads in each sub-warp are executed in the SIMD

manner.

Memory consistency models have not been formally defined

on GPUs [19]. Until recently, Heterogeneous System Architec-

ture (HSA) Foundation [20] and OpenCL [21] start to adopt

the C11’s datarace-free-0 (DRF-0) model, which guarantees

sequential consistency (SC) for data-race-free code, but is

undefined for the cases with data-races. A few recent works

show that the overhead of SC or TSO (Total Store Order) can

be significantly reduced for GPUs [19], [22], [23].

There are a few prior works on memory persistency for

GPUs. Gope et al. [24] performed a case study of B+-tree on

GPUs with persistency memory support. They discussed the

impact of persistency barrier scopes on the GPU performance.

HeteroCheckpoint [25] leverages NVM as the storage for

checkpointing in the CPU-GPU heterogeneous systems.

1 lbm_kernel{
2 #pragma gpu_pm strict clwb
3 ... = input[loc1(tid)]; ... = input[loc2(tid)];
4 ... // compute...
5 output[loc1(tid)] = ...; output[loc2(tid)] = ...;}

(a)
1 lbm_strict{
2 ... = input[loc1(tid)]; ... = input[loc2(tid)];
3 ... // compute...
4 output[loc1(tid)] = ...;
5 clwb(&output[loc1(tid)]); {sfence; pcommit;} sfence;
6 output[loc2(tid)] = ...;
7 clwb(&output[loc2(tid)]); {sfence; pcommit;} sfence;}

(b)

Fig. 2: An example for strict persistency. (a) Original code

with pragma, (b) the code with the compiler added instructions

for strict persistency.

III. GPU MEMORY PERSISTENCY

We explore how to adapt and re-architect two memory

persistency models for GPUs: strict and epoch persistency. We

propose a compiler approach to facilitating programmers to

utilize the persistency models. In the original source code, the

programmer simply inserts pragmas to annotate the desired

persistency model along with the options of implementation.

Different pragmas are used for different persistent models:

#pragma gpu_pm strict options
#pragma gpu_pm epoch epoch_scope options

Our compiler produces code for execution on real GPUs

using existing GPU instructions, as well simulated GPUs

with new instructions that we add. The compiler approach

supports three scopes of an epoch, including kernel-level,

CTA-level and loop-level epochs, so as to take advantage of the

SIMT programming model. Epochs with different scopes from

these three can also be realized with the same architectural

support. For example, an user may explicitly specify a region

of kernel code containing several loops or a region of host

code containing multiple kernel invocations as an epoch using

persistency barriers.

A. Strict Persistency

To support strict persistency for GPUs, we can persist the

data in the program order. To do so, for each store, we add a

clwb (or clflush/clfushopt) instruction to write the dirty cache

line to the memory controller, a pcommit instruction to write

the data in the WPQ to persistent memory if the WPQ in the

memory controller is not durable, and sfence instructions to

ensure the order of memory operations. One such example

based on the benchmark lbm (see our methodology in Section

V) is shown in Figure 2. Figure 2(a) is the original code with

a gpu pm pragma to direct the compiler to generate code

for strict persistency. Figure 2(b) is the generated code. The

instruction pair {sfence, pcommit} is not needed if the WPQs

are durable.

Besides the clwb instruction, strict persistency can also be

implemented using store.wt instructions. A user can choose

this option by specifying ‘wt’ in the pragma, in which case the

312

compiler replaces all the store instructions with the store.wt
instructions.

In current GPUs, membar/fence instructions enforce mem-

ory ordering in NVIDIA PTX ISA [26]. The PTX manual

states that “The membar instruction guarantees that prior
memory accesses requested by this thread are performed at
the specified level, before later memory operations requested
by this thread following the membar instruction. The level
qualifier specifies the set of threads that may observe the
ordering effect of this operation.” For the evaluation on real

GPUs, we choose membar at the ‘gl’ level, i.e., the GPU level,

equivalent to the fence.gpu instruction. For the evaluation

on simulated GPUs, we implement the instruction with the

semantics that all its prior memory operations from the same

warp receive their acknowledgements.

The clwb instruction does not exist in current GPUs, hence

we use store.wt in its place for evaluation on real GPUs, and

implement it on the simulated GPUs. There is no existing

support for the pcommit instruction either in current GPUs.

Therefore, we introduce this instruction. As there are multiple

memory partitions and memory controllers, stores from the

same warp with different addresses may be mapped to different

memory controllers. As a result, in order to correctly imple-

ment the pcommit instruction, we need to drain the WPQs in

all the memory controllers. We model such semantics in our

simulator for the case when the WPQs are not durable.

B. Epoch Persistency

As discussed in Section II-B, the GPU/SIMT programming

model requires programmers to explicitly specify the thread

hierarchy. For HPC workloads, it is a common practice that

each thread is used to compute one or few elements in

the output domain and the threads in one CTA compute

a tile/subblock of output elements. For example, in matrix

multiplication, a thread is used to compute one or few elements

in the product matrix. A CTA computes a tile of elements

in the product matrix. For complex applications, the overall

computation can be decoupled into multiple kernels.

Epoch persistency requires choosing the scope of epochs.

Since an epoch scope corresponds to the code region that

needs to be re-executed on a failure, the scope of an epoch

must correspond to a code region that the programmer finds

easy to analyze and to reason about failure recovery. GPU

thread hierarchy provides intuitive epoch granularities for this

purpose: an entire kernel as an epoch, a CTA as an epoch, or

a loop iteration as an epoch.

To help users determine the proper epoch granularity, we

propose the following scheme. First, based on its runtime

characteristics, we classify a GPU kernel into one of the

three categories: (1) short-running kernels; (2) long-running

kernels with short-running CTAs; and (3) long-running kernels

with long-running CTAs. Note that determining long-running

vs. short-running needs to take the failure rate/mean-time-

to-failure (MTTF) and recovery cost into consideration to

ensure forward progress. Then we apply three different epoch

persistency models accordingly: kernel-level epoch persistency

1 ... //setup thread hierarchy, i.e., grid & block.
2 ... // prepare input array
3 #pragma gpu_pm epoch kernel scope=1
4 histo_kernel_2<<<grid, block>>>(input, output);
5 ... // consume output array

(a)
1 histo_kernel_2<<<grid, block>>>(input, output);
2 cudaDeviceSynchronize();
3 cudaL2WB();
4 cudaDeviceSynchronize(); //wait for l2wb to finish
5 ... // consume output array

(b)

Fig. 3: An example for kernel-level epoch persistency.(a)

Original code with pragma, (b) the code with compiler added

APIs for kernel-level epoch persistency.

for short-running kernels, CTA-level epoch persistency for

long-running kernels with short-running CTAs, and loop-level

epoch persistency for long-running kernels with long-running

CTAs.

a. Kernel-Level Epoch Persistency
For kernel-level epoch persistency, each kernel invocation

is an epoch. At the end of the kernel execution, we persist all

updated data and add a persist barrier. In current GPUs, the

dirty data in the L2 cache are not written back to the device

memory as the memory controller monitors the incoming data

requests (e.g., from the host CPU) and feeds the most recent

data from the L2 cache directly if needed. To support kernel-

level epoch, we propose to add a new l2wb instruction to

write back all dirty lines in the L2 into device PM. This

instruction can be used in either the kernel code or the host

code through a driver API. Figure 3 shows such an example

based on the histogram benchmark. The original host code is

shown in Figure 3(a). The pragma before the kernel launch is

for the compiler to generate the host code with the added

APIs, including the synchronization and l2wb. The scope

option is used to determine how many kernel invocations to

be included in an epoch. When multiple kernels are included

in one epoch, only one synchronization is inserted at the end

of the last kernel invocation. As a result, this option reduces

the synchronization overhead among kernel invocations. In the

example shown in Figure 3(b), the epoch only contains one

kernel invocation and the device synchronization function, cu-

daDeviceSynchronize(), is used as the persist barrier between

kernel invocations.

b. CTA-Level Epoch Persistency
In the CTA-level epoch persistency, each CTA is an epoch.

Durability ordering is not enforced for stores within a CTA and

we just need to persist all the updated data at the end of each

CTA. Many GPU applications, especially scientific computing

workloads including BLAS, stencil, FFT, etc., share a popular

programming pattern that the inputs are accessed at the be-

ginning of a kernel function and the outputs are generated at

the end, and many threads in a CTA collaboratively compute

a set of output data. Such a programming pattern fits nicely

with the CTA-level epoch persistency model. One such an

example based on the benchmark lbm is shown in Figure 4.

313

Algorithm 1 Code generation for CTA-level epoch persistency

with clwb
Input: Kernel source code
1: function EP-CTA-CLWB(Kernel)
2: Create a post-dominant block in the end of kernel
3: Move code generator to the created block
4: Get all global memory stores in the kernel
5: for each store do
6: Detect use-define chain of the store address
7: Replicate all statements in the chain if the address is no longer

available
8: Insert clwb with the address
9: end for

10: Insert sfence
11: if WPQ is volatile then
12: Insert pcommit and sfence
13: end if
14: end function

1 lbm_kernel{
2 #pragma gpu_pm epoch cta clwb
3 ... = input[loc1(tid)]; ... = input[loc2(tid)];
4 ... // compute...
5 output[loc1(tid)] = ...; output[loc2(tid)] = ...;}

(a)
1 lbm_CTA{
2 ... = input[loc1(tid)]; ... = input[loc2(tid)];
3 ... // compute
4 output[loc1(tid)] = ...; output[loc2(tid)] = ...;
5 clwb(&output[loc1(tid)]); clwb(&output[loc2(tid)]);
6 {sfence; pcommit;} sfence;}

(b)

Fig. 4: An example for CTA-level epoch persistency.(a) Orig-

inal code with pragma, (b) the code with the compiler added

instructions for CTA-level epoch persistency using the clwb

option.

Figure 4(a) shows the original code with a pragma to indicate

the compiler to generate the CTA-level epoch persistency code

using the clwb option. And the code with the compiler-inserted

instructions for persistency is shown in Figure 4(b). Compared

to the code using the strict persistency model in Figure 2(b),

the stores and the cache-line write backs are performed in

an overlapped manner instead of being sequential. The last

sfence instruction also serves as a persist barrier.

The compiler algorithm for such code transformation is

shown Algorithm 1. It first creates a basic block that post-

dominates all statements and this basic block is used for code

generation. Then it determines all global memory stores in

the kernel. For each store, the compiler detects the use-define

chain of the store address. In the created basic block, the whole

chain is replicated to re-calculate the address if necessary.

And the clwb instruction is inserted with the address to write

back the cache line. After all clwb instructions have been

generated, the sfence instruction is inserted to wait for the

clwb instructions to be posted.

Besides the clwb option, we can also use wt and/or l2wb
to implement CTA-level epoch persistency. In some kernel

functions, their outputs are distributed in the code and it may

be hard or too costly to re-generate the addresses at the end of

the kernel, which are to be used by the clwb instructions. In

such cases, we can either replace the store instructions with the

stores using the WT operator (i.e., store.wt) or resort to the

l2wb instruction followed by a sfence instruction to persist

all the dirty cache lines in the L2 cache, even some of them

are not updated by this particular CTA.

Note that we argue that there is no need for a CTA-

level synchronization, i.e., syncthreads(), after the last sfence
instruction. The reason is that every warp in the CTA will

execute the sfence instruction as its last instruction, which

guarantees that no further memory instructions will be issued

from this CTA.

We choose not to support the scope option for CTA-level

persistency. The reason is that in order to include multiple

CTAs into one epoch, these CTAs need to be synchronized

through an inter-CTA synchronization mechanism, which may

lead to performance degradation due to the lack of hardware

support for CTA ordering and global synchronization across

CTAs.

With CTA-level epochs, there is one distinction between

the epoch persistency model on CPU and GPU. As specified

in the GPU programming model, CTAs are supposed to

be executed in parallel without ordering constraints. As a

result, we can view that with CTA-level epochs, there are

multiple concurrent epochs running on a GPU. In contrast,

in a sequential program, epochs are executed sequentially and

there are order constraints between epochs.

c. Loop-Level Epoch Persistency
In the loop-level epoch persistency model, the scope of an

epoch can be reduced to an iteration of a long-running loop in a

kernel. Here, we use the benchmark tpacf as a case study. The

simplified kernel code is shown in Figure 5(a) and contains a

long-running nested loop. A pragma is inserted immediately

before the outer loop to indicate the scope of the epoch. Also,

because the code uses shared memory for the intermediate

results in every loop iteration. The compiler creates a shadow

copy of the shared memory array for each CTA and persists the

shadow copy for shared memory data recovery. As the shared

memory array is updated in every iteration in the innermost

loop, it is very costly to reconstruct such array indices at the

end of the outermost loop. Therefore, we can leverage the

l2wb instruction to write back all the L2 dirty lines, which is

then followed by a sfence instruction as the persist barrier to

ensure that no subsequent memory operations can be issued

from this warp until the write backs are finished. Note that due

to the costly overhead of the l2wb instruction, we only use

one thread in a CTA to execute this instruction. To reduce the

overhead of l2wb and sfence instructions, we allow multiple

loop iterations to be included in one epoch. In this example,

the scope is set to 4, which means the l2wb and sfence are

inserted every 4 loop iterations. The resulting code is shown

in Figure 5(b). For reference, we also include the (commented

out) code for strict persistency in lines 13 & 14.

With loop-level epoch persistency, the order constraints are

between the epochs (i.e., loop iterations) in a single warp

while epochs in different warps and CTAs can be executed

in parallel.

314

1 tpacf_kernel(g_hists, data) {
2 __shared__ int s_hists[N_BINS][N_THD];
3 ... // Initialization
4 // Long nested loop
5 #pragma gpu_pm epoch loop l2wb scope=4
6 for (i = 0; i < N_ELEMS; i += CTA_SIZE) {
7 for (k = 0; k < CTA_SIZE; k++) {
8 ...
9 bin_idx = ...

10 s_hists[bin_idx][tid] += 1;
11 } ... }

(a)
1 __device__ int shadow[N_CTA][N_BINS][N_THD]
2 tpacf_kernel_loop(g_hists, data) {
3 __shared__ int s_hists[N_BINS][N_THD];
4 ... // Initialization
5 // Long nested loop
6 for (i = 0; i < N_ELEMS; i += CTA_SIZE) {
7 for (k = 0; k < CTA_SIZE; k++) {
8 ...
9 bin_idx = ...

10 s_hists[bin_idx][tid] += 1;
11 shadow[cta_id][bin_idx][tid] = s_hist[bin_idx][tid];
12 //The next two lines are for strict persistency
13 //clwb(&shadow[cta_id][bin_idx][tid]);
14 //{sfence; pcommit;} sfence;
15 } //end of the inner loop
16 ...
17 __syncthreads();
18 if (i/CTA_SIZE % 4 == 3) {
19 if(tid == 0) l2wb; // write back L2 dirty cache lines
20 {sfence; pcommit;} sfence;}
21 } //end of the outer loop
22 ...}

(b)

Fig. 5: An example for loop-level epoch persistency. The

scratchpad memory is made persistent through a shadow copy

in global memory. (a) Original code with pragma, (b) the

code with the compiler added instructions for loop-level epoch

persistency using the l2wb option.

d. Summary
We explore both strict and epoch persistency models for

GPUs. A summary of their architectural support and their

targeted GPU kernels is presented in Table I. Note that

different models treat shared memory data (i.e., the data in the

scratchpad memory) differently. Among the epoch persistency

models, only the ones with the scope less than a CTA, e.g.,

the loop-level, need to construct a shadow copy in the global

memory and persist the data at the end of an epoch. For the

CTA- and kernel-level, the shared memory data are no longer

live at the end of an epoch, therefore there is no need for the

data to be persisted.

IV. DURABLE TRANSACTIONS FOR GPUS

The memory persistency models (Section III) specify the

durability ordering of stores, which is necessary but insuffi-

cient for guaranteeing a fail-safe state as discussed in Section

II-A. Durable transactions are often required to persist a group

of stores together or none at all. In this section, we discuss

turning an epoch into a durable transaction with undo logging,

or in some cases omit logging altogether by exploiting the

idempotency property of an epoch.

Software-based undo logging contains the following steps.

First, before a transaction starts, an undo log is created by

making a copy of the data to be updated and this undo log

1 enum flag {initial, inTx, complete};
2 ... //setup thread hierarchy, i.e., grid & block.
3 ... // prepare input array
4 cudaMemcpy(undo_log, output,
5 size, cudaMemcpyDeviceToDevice); // create undo log
6 flag = inTx;
7 clwb(&flag); sfence; //persist the flag in host memory
8 cudaDeviceSynchronize(); // wait for cudaMemcpy to finish
9 histo_kernel_2<<<grid, block>>>(input, output);

10 cudaDeviceSynchronize(); // wait for the kernel to finish
11
12 cudaL2WB();
13 cudaDeviceSynchronize(); //wait for l2wb to finish
14 flag = complete;
15 clwb(&flag); sfence; //persist the flag in host memory
16 ... // consume output array

Fig. 6: A code example for kernel-level durable transaction.

1 enum FLAG {initial, inTx, complete}; FLAG flag[NUM_CTA];
2 lbm_CTA_log{
3 ... = input[loc1(tid)]; ... = input[loc2(tid)];
4 //log[loc1[tid]] = output[loc1[tid]]; clwb(&log[loc1[tid]]);
5 st.wt &log[loc1(tid)], output[loc1(tid)];
6 st.wt &log[loc2(tid)], output[loc2(tid)];
7 // compute...
8 {sfence; pcommit;} sfence;
9 __syncthreads(); // logs are durable

10 if (tid == 0) {
11 st.wt &flag[ctaid], inTx; // inside tx
12 {sfence; pcommit;} sfence; }
13 output[loc1(tid)] = ...; output[loc2(tid)] = ...;
14 clwb(&output[loc1(tid)]); clwb(&output[loc2(tid)]);
15 {sfence; pcommit;} sfence;
16 __syncthreads(); // CTA is done
17 if (tid == 0) {
18 st.wt &flag[ctaid], complete; // committed
19 {sfence; pcommit;} sfence;}}

(a)
1 lbm_CTA_idem{
2 ... = input[loc1(tid)]; ... = input[loc2(tid)];
3 st.wt &flag[ctaid], inTx; // inside tx
4 {sfence; pcommit;} sfence;
5 // compute...
6 output[loc1(tid)] = ...; output[loc2(tid)] = ...;
7 clwb(&output[loc1(tid)]); clwb(&output[loc2(tid)]);
8 {sfence; pcommit;} sfence;
9 __syncthreads(); // CTA is done

10 if (tid == 0) {
11 st.wt &flag[ctaid], complete; // committed
12 {sfence; pcommit;} sfence; }}

(b)

Fig. 7: An example for CTA-level durable transaction. (a)

The code with undo logging, (b) the optimized code using

idempotency analysis.

is persisted. Second, we set and persist a flag to indicate that

the transaction is running. Third, during the transaction, data

are updated and at the end of the transaction, the updated data

are persisted. Fourth, we mark the transaction complete and

release the undo log.

With undo logging, the recovery code checks the flags to

see whether there is a transaction is interrupted. If so, it uses

the undo log to restore the data.

A. Kernel-Level Durable Transactions

As GPUs are used as accelerators, their input data are

prepared at the host side and copied to the device. Then,

the kernel is invoked by the host. Therefore, we propose to

implement kernel-level durable transactions in the host code.

We also assume that the host side memory is persistent. The

315

TABLE I: A summary of memory persistency models, the architectural support, and the targeted kernels.
Persistency

Models
Strict

Persistency
Relaxed Persistency

Kernel-Level Epoch CTA-Level Epoch Loop-Level Epoch

Architectural
Support

clwb/clflush(opt)/store.wt;
sfence; pcommit

l2wb;
DeviceSynchronization

clwb/clflush(opt); store.wt;
sfence; pcommit; l2wb

clwb/clflush(opt); store.wt;
sfence; pcommit; l2wb

Suitable Kernel All Short-running kernels
Long-running kernels

with short-running CTAs
Long-running kernels

with long-running CTAs

resulting code based on the histogram benchmark is shown

in Figure 6. We define a flag to show whether a transaction

is running (‘inTx’) or completed. A copy of the data to be

updated (i.e., output) is persisted in the device memory using

the ‘cudaMemCpy’ function. Then, the flag is set to be inside

a transaction (‘inTx’) and persisted in host PM. After the undo

log is persisted, the kernel is launched. Next, after the kernel

completes and persists its results using the l2wb instruction,

the flag is set to ‘complete’ and persisted in host PM. With

this transaction-style execution, the recovery code at the host

side checks the flag. If it is ‘inTx’, the potentially corrupted

data (i.e., output) is restored using the undo log.

The kernel ‘histo kernel 2’ in Figure 6 computes a his-

togram of the input and does not change the input. Also,

there are no side effects during kernel execution. Therefore,

the kernel is idempotent, meaning that it can be executed

multiple time without changing the result. We propose to

leverage re-execution to recover from failure rather than using

the undo log. As a result, we can completely eliminate the

code for undo logging (i.e., ‘cudaMemCpy’ and the first

‘cudaDeviceSyncronize’) in Figure 6.

In some kernel functions, the input and the output may be

altered. In this case, the undo log needs to include the input as

well. If we use the non-unified memory model, i.e., the host

code explicitly copies the data to the device memory, a copy

of the input should already exist in host memory. Therefore,

we do not need to make a redundant copy of the input data

in device memory. On the other hand, if the unified memory

model is used, we need to explicitly make a copy of the input,

either in host or device PM.

B. CTA-Level Durable Transactions

With a CTA as a transaction, undo logging is implemented

at the device side. Using the benchmark lbm as an example, the

kernel function with undo logging at the CTA level is shown in

Figure 7(a). We first create an undo log for the output elements

that are to be updated by the CTA. Here, we use the store.wt
option as an alternative to the regular store instruction followed

by clwb since the log has no reuse in failure-free execution.

After ensuring that all the threads persist their log using the

sfence followed by the ‘syncthreads()’ function, we set the

flag to be ‘inTx’ and make it durable. Then at the end of the

CTA, we ensure that all the outputs have been persisted using

another syncthreads() and set the flag to be ‘complete’.

When a CTA is idempotent, i.e., the kernel function has no

anti data dependency and is re-executable, the undo log can

1 __device__ int log[N_CTA][N_BINS][N_HISTS];
2 __device__ int flag[N_CTA];
3 __device__ int last_iter[CTA]; // last persisted iteration
4 __device__ int last_log_iter[N_CTA]; // last logged iteration
5 tpacf_kernel_loop_log(g_hists, data) {
6 __shared__ int s_hists[N_BINS][N_THD];
7 ... // Initiation
8 // Long nested loop
9 for (i = 0; i < N_ELEMS; i += CTA_SIZE) {

10 // Create the log
11 for (b = 0; b < N_BINS; b++)
12 st.wt &log[cta_id][b][tid], shadow[cta_id][b][tid];
13 st.wt &last_log_iter[cta_id], last_iter[cta_id];
14 {sfence; pcommit;} sfence;
15 __syncthreads(); // log is durable for the CTA
16 if (tid == 0)
17 st.wt &flag[cta_id], inTx; // inside Tx
18 {sfence; pcommit;} sfence;
19 for (k = 0; k < CTA_SIZE; k++) {
20 bin_idx = calculate(data[k]);
21 s_hists[bin_idx][tid] += 1;
22 shadow[cta_id][bin_idx][tid] = s_hist[bin_idx][tid];
23 } //end of the inner loop
24 ...
25 __syncthreads();
26 if(tid == 0) l2wb;
27 st.wt &last_iter[cta_id], i;
28 {sfence; pcommit;} sfence;
29 __syncthreads(); // the results are durable
30 if (tid == 0) st.wt &flag[cta_id], complete;
31 {sfence; pcommit;} sfence; // committed
32 } //end of the outer loop
33 ...}

Fig. 8: A code example for loop-level durable transaction.

be eliminated. 1 We only need to set the flag of each CTA as

shown in Figure 7(b). In this case, the recovery code simply

re-executes those CTAs with their flag being ‘inTx’ and does

not need to undo the changes using the undo log. Note that

in Figure 7(b), when we set the flag to ‘inTx’ (i.e., 1), all

the threads in a CTA will execute the code instead of using

only thread 0 as in Figure 7(a). The reason is that there is

no syncthreads() function right before it. As a result, if only

thread 0 updates this flag, there may be a chance that some

threads/warps in the CTA change the output before thread 0

sets the flag, violating the transaction semantics. By allowing

all the threads to set the flag, it ensures that the flag is set

before any thread can change the output. Since all the threads

set the same value to the flag, this data race is benign.

C. Loop-Level Durable Transactions

To achieve loop-level durable transactions, we need to

analyze the long-running loops in a kernel. The simplified

kernel code of the benchmark tpacf is used a case study.

The long-running outer loop uses scratchpad memory for

data communication among threads within a CTA and is not

1Even when a CTA is not idempotent, idempotency analysis shows which
stores can be safely repeated, hence we still apply it in order to reduce the
size of undo logs.

316

idempotent. As discussed in Section III-Bc, we use a shadow

copy of shared memory variables in global memory and this

shadow copy is updated in each iteration. Therefore, we need

to create an undo log for this shadow copy. Moreover, besides

the flag, we need to record the meta data such as the loop

iterator value to indicate which iteration is being executed.

The resulting code is shown in Figure 8. As the loop is not

idempotent, the log cannot be eliminated and its overhead due

to the increased memory traffic can be significant.

In comparison, for the kernels without data communication

among threads in a CTA, i.e., each thread works on its private

data, loop-level undo logging is relatively simple. Each thread

backs up & persists its private data to be changed at the

beginning of the loop iteration and sets the flag to be ‘inTx’.

Then, at the end of the loop iteration, the updated data are

persisted and the flag is set to be ‘complete’. As there is no

shared data, there is also no need for the syncthreads() barrier.

V. EXPERIMENTAL METHODOLOGY

We evaluate our proposed schemes on both an NVIDIA

GTX1080 GPU and the GPGPU-Sim [27], a cycle-accurate

GPU microarchitecture simulator. The GTX1080 GPU is

hosted on a Red Hat 7.4 Linux machine and we use the

CUDA 9.0 in our experiments. The simulation configurations

of GPGPU-Sim are shown in Table II.

Our experiments use all the benchmarks in the Parboil GPU

benchmark suite [28]. The kernels are listed in Table III. As

each benchmark may have multiple kernels, a number followed

by a benchmark name is used to denote the order of the kernel

in the benchmark. For each kernel, we also report whether

the kernel function is idempotent in Table III. We classify all

the kernels into one of the three categories according to their

execution time. If a kernel’s execution time is less than 100us,

it is categorized as a short-running kernel and is labelled ‘S’.

The long-running kernels with short-running CTAs are labelled

‘LS’ and they have the kernel execution time longer than

100us while the average execution time of their CTAs is less

than 100us. When a kernel has CTAs that have an average

execution time longer than 100us, it is categorized as a long-

running kernel with long running CTAs or ‘LL’. Note that this

classification is ad hoc and should take MTTF and the recovery

cost into consideration. We use this setting for two reasons.

The first is that it enables us to examine the performance

impacts of different persistency models on a variety of kernels

and evaluate the effects of our proposed optimizations. With

a more realistic setting (e.g., in the order of seconds or

minutes), all the kernels would be classified as short-running

ones. Second, the 100us threshold used in our classification

criteria implies an unreliable system as we need to achieve

durable transactions with similar latency. Considering such

an unreliable system with volatile memory, in order to make

forward progress, we may resort to periodical checkpointing

and recovery. A checkpoint would consist of the GPU context

and the memory content, and would need to be persisted in

host memory to ensure reliability, for which the latency would

be much higher than 100us considering the PCIe bandwidth

TABLE II: Baseline architecture configuration.
of SMs 20, SIMD width=32, 1.8GHz
Per-SM warp sched-
ulers

4 Greedy-Then-Oldest schedulers

Per-SM limit 2048 threads, 64 warps, 32 CTAs
Per-SM L1D-cache 24KB, 128B line, 6-way associativity, 256

MSHRs
Per-SM SMEM 96KB, 32 banks
Unified L2 cache 2048 KB, 128KB/partition, 128B line, 16-

way associativity, 256 MSHRs
L1D/L2 policies xor-indexing, allocate-on-miss, LRU,

L1D:WEWN, L2: WBWA
Interconnect 16*16 crossbar, 32B flit size, 1.4GHz
Memory Controller 8 channels, 2 L2 banks/channel, FR-FCFS

scheduler, 1.2GHz, BW: 307GB/s
NVMM latency Read: 160ns, write: 480ns
DRAM Latency Read: 160ns, write: 160 ns

TABLE III: Benchmarks
Kernel Type Idempotent Kernel Type Idempotent

bfs-1 S No sad-1 LS Yes
bfs-2 LL No sad-2 S Yes
cutcp LS Yes stencil LS Yes
grid-1 LS No tpacf LL No
grid-2 LS Yes histo-1 S No
grid-3 LS No histo-2 S Yes
grid-4 LS Yes histo-3 LS No
grid-5 S No histo-4 S Yes
gird-6 S No lbm LS Yes
mriq-1 S Yes spmv LS Yes
mriq-2 LS No sgemm LS No

and the cost of GPU context switching. In other words, while

volatile memory would not be able to support such fine-grain

checkpoints, a GPU with PM along our proposed architectural

support can achieve such level of durable transactions with

relatively low performance overhead. With a coarser-grain

epoch/durable transaction, the performance overhead would

be further reduced. In our experiments, for kernel- and loop-

level epoch persistency models and durable transactions, the

scope option is set to the largest number which satisfies the

condition that the execution time of an epoch is smaller than

100us.

In our implementation, our compiler uses inline assembly

to insert the new instructions including clwb, pcommit, and

l2wb, into the kernel code. We also modify GPGPUsim

to support the semantics of these instructions. The sfence
instruction is implemented using the membar instruction.

In modeling the clwb or l2wb instruction in GPGPUsim,

the instruction is sent through the interconnect network to

the L2 cache. The l2wb instruction is implemented with the

controllers in multiple partitions, which go through every

cache line and write back the dirty ones. It blocks subsequent

L2 accesses until all the cache lines are checked, resulting

in high performance overhead. In our work, we assume non-

atomic l2wb instruction, which means a failure could happen

during the l2wb execution. With undo logging, if a failure

happens during l2wb, the undo log holds a clean copy of

the original data. Therefore, the recoverability is not affected.

The clwb instruction writes the specific dirty line in the L2

cache to a WPQ. If the target line is not dirty, no action

317

Fig. 9: Normalized execution time of short-running kernels

with different persistency models on a GTX 1080 GPU (the

lower, the better).

Fig. 10: Normalized execution time for short-running kernels

with different persistency models on GPGPUsim.

will be taken except sending back an acknowledgement. If

the target is dirty, an acknowledgement is sent back from a

memory controller when the dirty cache line reaches the WPQ.

The pcommit instruction needs acknowledgements from all the

memory controllers when their WPQs are completely drained.

For store.wt, our simulator models that its acknowledgment

is sent by the memory controller once the data is written to

device memory. Therefore, store.wt has higher latency than a

clwb instruction in our simulation and uses volatile WPQs by

default.

On the GTX1080 GPU, we use store.wt to enforce the store

data to be written to memory and the membar.gl instruction as

the sfence instruction. As the instructions l2wb and pcommit
are not supported on the real GPU, we do not include them

in the benchmark code, i.e., ignoring their overheads. Also, as

DRAM is used as device memory, the read and write speeds

do not reflect the characteristics of NVM. Nevertheless, we

run our benchmarks on real GPUs to verify the functional

correctness of our compiler generated code and compare the

performance trend with our simulation results.

VI. EXPERIMENTAL RESULTS

In our evaluation, we use the following the naming con-

vention. In the results on a GTX 1080 GPU, ‘Base’ denotes

the baseline execution. We use ‘NVM base’/‘DRAM base’

to denote the baseline using NVM/DRAM without persistency

support in the simulation results. Among the persistency mod-

els, ‘SP’ denotes strict persistency while ‘EP scope’ denotes

epoch persistency with a particular scope, which can be ‘K’

(kernel level), ‘C’ (CTA-level), or ‘L’ (loop level). Among the

durable transaction models, ‘Undo scope’ denotes the undo

logging with a particular scope, which adopts the same scope

Fig. 11: Normalized execution time of long-running kernels

with short-running CTAs using different persistency models

on a GTX1080 GPU.

notation as in epoch persistency. We use ‘+idem’ following by

‘Undo scope’ to indicate that idempotency analysis is used to

optimize undo logging. On the real GPU, store.wt is the only

option to persist the memory stores. In the simulation results,

we include the ‘wt’, ‘clwb’ and ‘l2wb’ options to denote that

the store.wt, clwb and l2wb instructions are used to persist the

data, respectively. The label ‘pct’ is included when pcommit
instructions are used for volatile WPQs.

A. Short-Running Kernels

We first report the performance results of the short-running

kernels on the GTX1080 GPU in Figure 9. For each kernel,

we show the normalized execution time to the baseline. The

performance of kernel-level epoch persistency is the same as

the baseline as we cannot include the overhead of l2wb on

the real GPU. Several observations can be made from the

figure. First, the performance impact of the WT operator and

the membar instruction is rather limited, 1.5% on average.

Second, undo logging has high overhead although we use the

high bandwidth device memory rather than host-side system

memory. Third, idempotency analysis eliminates the undo

logging overhead if a kernel is idempotent. Fourth, even if

a kernel is not completely idempotent, idempotency analysis

may still reduce the logging overhead. For example, the kernel

bfs-1 shows the high logging overhead, which is due to its

short kernel execution time compared to the memory copy

time (which in turn indicates that the scope of this kernel is too

small as an epoch). Although the kernel is not idempotent, it

does not change all its inputs. Idempotency analysis discovers

the opportunity and reduces the size of the undo log, thereby

reducing the overhead.

The performance results of the short-running kernels on the

simulator are shown in Figure 10. The following observations

can be made. First, the results correlate well those obtained

from the real GPU, thereby confirming the observations made

from Figure 9. Second, there is very little performance differ-

ence (2.8% on average) between the baseline with DRAM

and the baseline with NVM, meaning that the additional

write latency has small performance impact in the baseline.

Third, when clwb instructions are used to send cache lines

to WPQs, durable WPQs show significant performance im-

provement on average due to the reduced latency and the

318

Fig. 12: Normalized execution time of long-running kernels with short-running CTAs using various persistency models on

GPGPUsim.

Fig. 13: Normalized execution time of long-running kernels

with short-running CTAs using various durable transaction

models on GPGPUsim.

removal of pcommit+sfence instructions. Fourth, SP wt has

close performance to SP clwb, meaning that SP wt achieves

good performance without durable WPQs. The reason is that

the clwb instructions introduce additional traffic through the

interconnect network whereas the wt operator is part of the

store instruction and does not incur additional traffic. Fifth, the

kernel-level epoch persistency models have high parallelism

due to the l2wb instruction. Therefore, the overhead of the

kernel-level epoch persistency model over the baseline is

low, 5.5% and 11.6% on average for EP K (epoch model

with durable WPQs) and EP K pct (with volatile WPQs),

respectively. With undo logging, the performance overhead

becomes 25.4% with idempotency analysis.

B. Long-Running Kernels with Short-Running CTAs

We first report the performance of long-running kernels

with short-running CTAs on the GTX 1080 GPU in Figure

11. Among the kernels, histo-3 and grid-1 make use of

atomic operations on global memory variables. As a result,

the CTA-level durable transaction model is not feasible for

these two kernels. Therefore, we resort to kernel-level durable

transactions for them. From the figure, we can observe: (a)

minor overhead of the strict persistency and CTA-level epoch

persistency models, (b) relatively high overhead due to undo

logging, and (c) significant reduction in the undo-log sizes

and performance overhead (from 35.2% to 17.0%) through

idempotency analysis.

The simulation results of the persistency models and durable

transaction models are shown in Figure 12 and Figure 13,

respectively. Compared to the GTX1080 results, Figure 12

and 13 confirms that strict persistency can be supported with

relatively low overhead using either the in-place store.wt with

volatile WPQs or clwb with durable WPQs. Also, the idempo-

tency analysis effectively reduces the performance overhead of

logging as observed on both the real GPUs and the simulator.

Figure 12 also shows that the CTA-level epoch persis-

tency models have lower performance overhead than strict

persistency models, especially when clwb instructions are

used with volatile WPQs. The reason is that overlapping

multiple memory writes as in the CTA-level epoch models

saves more clock cycles than the sequential updates as in

the strict persistency models. Due to such overlapping, the

performance impact of the durable WPQs is also limited in

the CTA-level epoch persistency models (i.e., EP C clwb vs.

EP C clwb pct).

Between the epoch models, EP C clwb pct and EP C wt,

some kernels show interesting behavior although both models

use volatile WPQs. The kernel sad-1 shows better perfor-

mance with EP C clwb pct while the kernel stencil shows

better performance with EP C wt. The reason is that sad-

1 has streaming-like memory updates but has poor memory

coalescing. As a result, write-back caches can leverage spatial

locality to reduce the number of memory updates, thereby

achieving better performance using EP C clwb pct. On the

other hand, the stencil kernel only has one store at the end of

the kernel. Therefore, the CTA-level epoch persistency model

is the same as the strict persistency model. As the store always

misses the L2 cache, the write-not-allocate policy used with

store.wt has lower latency than the write-back write-allocate

policy. The overhead of the clwb & pcommit instructions also

contributes to the lower performance in EP C clwb pct than

EP C wt.

C. Long-Running Kernels with Long-Running CTAs

Using our criterion in Section V, 2 kernels, tpacf and bfs-

2, are classified in the category of long-running kernels with

long-running CTAs. The kernel bfs-2 uses atomic operations

on global memory variables. So, we choose to use the kernel-

level durable transaction model rather than the loop-level

model for bfs-2. The performance results on the GTX1080

GPU is shown in Figure 14. As both kernels use shared mem-

ory variables, persisting their shadow copies incurs relatively

319

Fig. 14: Normalized execution time of long-running kernels

with long-running CTAs using different persistency models

on a GTX1080 GPU.

Fig. 15: Normalized execution time of long-running kernels

with long-running CTAs using various persistency models on

GPGPUsim.

high performance overhead. The loop-level epoch persistency

model reduces the overhead for bfs-2 as it enables parallel

updates with a single fence at the end of each iteration. For

the tpacf kernel, which has higher shared memory usage, such

benefit is not clear on GTX1080 but more visible on our

simulator (see Figure 15). As the shadow copy of the shared

memory variables also serves the role of the undo log, the

loop-level durable transaction model for tpacf has the similar

performance to the loop-level epoch persistency model. The

kernel-level durable transaction model for bfs-2 has small

overhead as we do not need to back up shared memory at the

kernel level. Since neither kernel is idempotent, the impact of

idempotency analysis is limited.

The performance results of the two kernels on the simulator

are shown in Figure 15.We can see that the loop-level epoch

persistency models have better performance than the strict

persistency models. As tpacf uses a high amount of shared

memory data, the l2wb instruction at the end of the loop

(i.e., EP L l2wb pct) achieves better performance than in-

place store.wt instructions (i.e., EP L wt) as it enables more

overlapping among the updates. The bfs-2 kernel, however,

shows the opposite behavior due to its few shared memory

updates.

D. Recommended Models

With the kernel classification criteria in Section V, we list

in Table IV the recommended memory persistency model

and durable transaction model for each kernel as well as the

performance overheads. The average performance overhead to

support the memory persistency models is 6.6%. To enable

TABLE IV: Recommended persistency and durable transaction

models and their performance overheads.

Bench PM Model PM Ohd DT Model DT Ohd.

bfs-1 EP K 0.8% Undo K 131.2%
histo-1 EP K 3.7% Undo K 16.0%
histo-2 EP K 3.7% Undo K 4.0%
histo-4 SP+wt 0.2% Undo K 26.5%
sad-2 SP+clwb 0.3% Undo K 4.8%

mriq-1 EP K 5.6% Undo K 16.5%
grid-5 EP K 3.2% Undo K 23.2%
grid-6 EP K 3.0% Undo K 15.2%
histo-3 EP C+l2wb 16.2% Undo K 153.4%
grid-1 EP C+clwb 67.6% Undo C clwb 77.6%
cutcp EP C+wt 0.1% Undo C clwb 0.5%
lbm SP+wt -0.6% Undo C wt 3.9%

sad-1 EP C+clwb 20.6% Undo C clwb 22.7%
spmv EP C+wt -1.6% Undo C wt -0.3%

sgemm EP C+wt 0.8% Undo C wt 3.3%
stencil EP C+wt -1.2% Undo C clwb 6.6%
mriq-2 EP C+clwb 0.0% Undo C wt 0.3%
grid-2 EP C+clwb 0.0% Undo C clwb 0.0%
grid-3 EP C+clwb 16.1% Undo C clwb 71.0%
grid-4 EP C+wt 1.6% Undo C wt -1.6%
tpacf EP L+l2wb 3.1% Undo L clwb 4.4%
bfs-2 EP L+wt 20.4% Undo K 21.0%
Avg. 6.6% 22.2%

durable transaction with undo-logging, the average perfor-

mance overhead is 22.2%. Note that the performance overhead

is based on the kernel classification criteria in Section V to

explore the performance impacts of persistency models and

our architecture supports.

In our experiments, we also explore the performance impact

of coarser epochs/durable transactions. When we adjust the cri-

teria to 200us, 400us, and 800us, the performance overhead of

supporting duration transactions with undo-logging is reduced

to 17.9%, 13.5%, and 10.9%, respectively.

E. Impact on Write Endurance

Different memory persistency models lead to different num-

bers of writes to PM, which may affect its write endurance.

Here, we use the long-running kernels with short running

CTAs to examine this effect. Figure 16 shows the number

of writes for each kernel using different persistency models

normalized to the strict persistency model implemented with

store.wt instructions. It can be seen that the write-back policy

is effective in reducing the write traffic and the CTA-level

epoch persistency model further reduces the number of writes

by delaying the write backs at the end of the CTAs, which

enables more opportunities to combine the updates.

F. Summary

The key results from our experiments include (1) the strict

persistency model incurs higher performance overhead than

the epoch persistency models; (2) among the epoch persistency

models, epochs with coarser granularities have lower perfor-

mance overheads and more opportunities to reduce the number

of writes; (3) write-through is a good fit for strict persistency

while the epoch persistency models work better with clwb; (4)

undo logging may introduce significant performance overhead,

especially when the execution time of a transaction/epoch

320

Fig. 16: Normalized numbers of writes in different mem-

ory persistency models for long-running kernels with short-

running CTAs.

is low; and (5) idempotency analysis effectively reduces the

overhead of undo logging for various scopes of epochs/durable

transactions.

VII. CONCLUSIONS

In this paper, we adapt, re-architect, and optimize CPU

persistency models for GPUs. Besides the architectural support

for different persistency models, we highlight that the thread

hierarchy in the GPU programming model offers intuitive

ways to define the scope of an epoch in epoch persistency.

Furthermore, these epochs can serve as boundaries of durable

transactions, which are supported through undo logging. We

propose idempotency analysis to eliminate unnecessary undo

logs, and reduce the size of undo logs when the epoch is not

idempotent.

We design a pragma-based compiler approach to facilitate

programmers to express the persistent models. Our experi-

ments show that with our proposed architectural support and

optimizations, different memory persistency models can be

effectively achieved for GPUs to provide various granularities

of recoverability at low performance overhead. Our analysis

also reveals interesting difference in supporting memory per-

sistency models in GPUs vs. CPUs.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their

insightful comments to improve our paper. This work is

supported by NSF grants 1717550, 1908406, 1908079, an

AMD gift fund, and UCF.

REFERENCES

[1] L. Spelman, “Reimagining the data center memory and
storage hierarchy,” Online: https://newsroom.intel.com/editorials/re-
architecting-data-center-memory-storage-hierarchy/, May 2018. [On-
line]. Available: https://newsroom.intel.com/editorials/re-architecting-
data-center-memory-storage-hierarchy/

[2] Intel, “Intel octane technology.” [Online]. Avail-
able: Online: https://www.intel.com/content/www/us/en/architecture-
and-technology/intel-optane-technology.html

[3] H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin, “Efficient check-
pointing of loop-based codes for non-volatile main memory,” in 2017
26th International Conference on Parallel Architectures and Compila-
tion Techniques (PACT), Sept 2017, pp. 318–329.

[4] J. T. Mohammad Alshboul and Y. Solihin, “Lazy persistency: a high-
performing and write-efficient software persistency technique,” in Pro-
ceeding of the 45st Annual International Symposium on Computer
Architecuture, ser. ISCA ’18, 2018.

[5] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency:
Semantics for byte-addressable nonvolatile memory technologies,” IEEE
Micro, vol. 35, no. 3, pp. 125–131, May 2015.

[6] NVM Library Team at Intel, “Persistent memory programming,”
http://pmem.io.

[7] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” in Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’16.
New York, NY, USA: ACM, 2016, pp. 399–411. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872381

[8] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:
Lightweight persistent memory,” in Proceedings of the Sixteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVI. New
York, NY, USA: ACM, 2011, pp. 91–104. [Online]. Available:
http://doi.acm.org/10.1145/1950365.1950379

[9] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-kv:
A case for gpus to maximize the throughput of in-memory key-value
stores,” Proc. VLDB Endow., vol. 8, no. 11, pp. 1226–1237, Jul. 2015.
[Online]. Available: https://doi.org/10.14778/2809974.2809984

[10] M. A. Awad, S. Ashkiani, R. Johnson, M. Farach-Colton,
and J. D. Owens, “Engineering a high-performance gpu b-
tree,” in Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’19. New
York, NY, USA: ACM, 2019, pp. 145–157. [Online]. Available:
http://doi.acm.org/10.1145/3293883.3295706

[11] kinetica. [Online]. Available: Online: https://www.kinetica.com

[12] N. Sakharnykh, “Beyond gpu memory limits with unified memory on
pascal,” https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-
memory-pascal/, 2016.

[13] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,”
in Proceeding of the 41st Annual International Symposium
on Computer Architecuture, ser. ISCA ’14. Piscataway, NJ,
USA: IEEE Press, 2014, pp. 265–276. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2665671.2665712

[14] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” SIGOPS Oper.
Syst. Rev., vol. 51, no. 2, pp. 135–148, Apr. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3093315.3037730

[15] J. Menon, M. de Kruijf, and K. Sankaralingam, “igpu: Exception support
and speculative execution on gpus,” in 2012 39th Annual International
Symposium on Computer Architecture (ISCA), June 2012, pp. 72–83.

[16] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung,
“ido: Compiler-directed failure atomicity for nonvolatile memory,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Oct 2018, pp. 258–270.

[17] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic dura-
bility in non-volatile memory through hardware logging,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2017, pp. 361–372.

[18] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A
flexible and fast software supported hardware logging approach for
nvm,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 ’17. New
York, NY, USA: ACM, 2017, pp. 178–190. [Online]. Available:
http://doi.acm.org/10.1145/3123939.3124539

[19] A. Singh, S. Aga, and S. Narayanasamy, “Efficiently enforcing strong
memory ordering in gpus,” in 2015 48th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), Dec 2015, pp. 699–
712.

[20] HSA Foundation, “Hsa programmer’s reference manual: Hsail virtual
isa and programming model, compiler writer, and object format (brig),”
2015.

[21] A. Munshi, “The opencl specification (version 2.0),” Khronos OpenCL
Working Group, Nov. 2013.

[22] J. Alsop, M. S. Orr, B. M. Beckmann, and D. A. Wood, “Lazy release
consistency for gpus,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct 2016, pp. 1–14.

[23] X. Ren and M. Lis, “Efficient sequential consistency in gpus via
relativistic cache coherence,” in 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA), Feb 2017, pp.
625–636.

321

[24] D. Gope, A. Basu, S. Puthoor, and M. Meswani, “A case for
scoped persist barriers in gpus,” in Proceedings of the 11th
Workshop on General Purpose GPUs, ser. GPGPU-11. New
York, NY, USA: ACM, 2018, pp. 2–12. [Online]. Available:
http://doi.acm.org/10.1145/3180270.3180275

[25] S. Kannan, N. Farooqui, A. Gavrilovska, and K. Schwan, “Hete-
rocheckpoint: Efficient checkpointing for accelerator-based systems,” in
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, June 2014, pp. 738–743.

[26] “Nvidia ptx isa,” http://docs.nvidia.com/cuda/parallel-thread-
execution/index.html.

[27] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009
IEEE International Symposium on Performance Analysis of Systems and
Software, April 2009, pp. 163–174.

[28] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, vLi Wen Chang,
N. Anssari, G. D. Liu, and W. mei W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
IMPACT Technical Report, 2012.

322

