
MOSAIC: Heterogeneity-, Communication-, and Constraint-Aware Model Slicing
and Execution for Accurate and Efficient Inference

Myeonggyun Han

UNIST
hmg0228@unist.ac.kr

Jihoon Hyun

UNIST
jhyun0812@unist.ac.kr

Seongbeom Park

UNIST
amita90@unist.ac.kr

Jinsu Park

UNIST
jinsupark@unist.ac.kr

Woongki Baek

UNIST
wbaek@unist.ac.kr

Abstract—Heterogeneous embedded systems have surfaced
as a promising solution for accurate and efficient deep-learning
inference on mobile devices. Despite extensive prior works, it
still remains unexplored to investigate the system-software sup-
port that efficiently executes inference workloads by judiciously
considering their performance and energy heterogeneity, com-
munication overheads, and constraints.

To bridge this gap, we propose MOSAIC, heterogeneity-,
communication-, and constraint-aware model slicing and exe-
cution for accurate and efficient inference on heterogeneous
embedded systems. MOSAIC generates the efficient model
slicing and execution plan for the target inference workload
through dynamic programming. MOSAIC significantly reduces
inference latency and energy, exhibits high estimation accuracy,
and incurs small overheads.

Keywords-Model Slicing and Execution; Inference; Hetero-
geneous Embedded Systems;

I. INTRODUCTION

The need for accurate and efficient deep-learning infer-

ence on mobile systems is ever increasing to enable intelli-

gent and interactive services such as augmented reality and

personal mobility. For a wide range of mobile applications

such as security- and privacy-sensitive applications, it is

highly crucial to execute inference workloads within mobile

systems without relying on cloud services, which may leak

sensitive information through various security attacks.

Heterogeneous embedded systems are rapidly emerging

as a promising solution to enable accurate and efficient

inference on mobile systems [1, 2, 3, 4, 5]. Heterogeneous

embedded systems comprise various computing devices

(e.g., big core cluster, little core cluster, GPU, and neu-

ral processing unit (NPU)), which exhibit widely-different

characteristics in terms of performance, energy consumption,

functionality (e.g., supported operations), memory capacity,

and communication overheads.

Inference workloads also exhibit widely-different charac-

teristics in terms of heterogeneity in performance, energy

efficiency, communication overheads, and constraints across

computing devices on heterogeneous embedded systems.

Despite extensive prior works, it still remains unexplored

to investigate the system-software support that efficiently

executes inference workloads on heterogeneous embedded

systems by judiciously considering their characteristics.

To bridge this gap, this work proposes MOSAIC, het-

erogeneity-, communication-, and constraint-aware model

slicing and execution for accurate and efficient inference

on heterogeneous embedded systems. MOSAIC builds on

the accurate models for estimating the execution and com-

munication costs, generates the efficient model slicing and

execution plan with low time complexity, and executes

the target inference workload to significantly improve its

efficiency based on the user-specified metric such as latency

and energy.

Specifically, this paper makes the following contributions:

• We propose MOSAIC, a software-based system for

heterogeneity-, communication-, and constraint-aware

model slicing and execution for accurate and efficient

inference on heterogeneous embedded systems. MO-

SAIC employs the accurate models for estimating the

execution and communication costs of the target infer-

ence workload. MOSAIC generates the efficient model

slicing and execution plan for the target workload using

an algorithm based on dynamic programming.

• We design and implement the prototype of MOSAIC

as a user-level runtime system using the TensorFlow

Lite programming framework [47] for deep-learning

inference on the Android OS. MOSAIC achieves high

efficiency by executing the slices of the target inference

workload across computing devices on the underlying

heterogeneous embedded system in a heterogeneity-,

communication-, and constraint-aware manner.

• We quantify the effectiveness of MOSAIC with widely-

used inference workloads on a full heterogeneous

embedded system that comprises state-of-the-art big

core cluster, little core cluster, GPU, and NPU. Our

experimental results demonstrate the effectiveness of

MOSAIC as it significantly improves the efficiency of

inference (e.g., 29.2% lower inference latency than an

NPU-preferred version (i.e., TF-NPU-P) with the per-

formance governor and large models and 36.6% lower

energy consumption than an NPU-preferred version

(i.e., TF-NPU-O) with the on-demand governor and

large models), achieves high estimation accuracy, and

incurs small overheads.

165

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00021

Figure 1: Hardware and software stacks for deep-learning

inference on heterogeneous embedded systems.

The rest of this paper is organized as follows. Section II

provides the background information for this work. Sec-

tion III describes the experimental methodology. Section IV

motivates the need for heterogeneity-, communication-, and

constraint-aware inference. Section V discusses the design

and implementation of MOSAIC. Section VI quantifies the

effectiveness of MOSAIC. Section VII summarizes related

work. Section VIII concludes the paper.

II. BACKGROUND: INFERENCE ON HETEROGENEOUS

EMBEDDED SYSTEMS

Heterogeneous embedded systems comprise various com-

puting devices (e.g., big core cluster, little core cluster,

GPU, NPU), which exhibit widely-different characteristics

in terms of functionality, performance, energy efficiency,

communication overheads, and memory capacity [1, 2, 3,

4, 5]. Representative programming frameworks for deep-

learning inference on mobile systems such as TensorFlow

Lite [47] provide simple abstraction for heterogeneous em-

bedded systems in that computations can be offloaded to

one of the devices by simply invoking their API functions

without the need for writing device-specific code.

Figure 1 shows the hardware and software stacks for deep-

learning inference on heterogeneous embedded systems. The

grey component in Figure 1 is the system (i.e., MOSAIC)

proposed in this work.

Deep-learning inference workloads consist of layers. Each

layer comprises a set of associated mathematical operations

(e.g., convolution, rectifier, and softmax). Each layer takes

a set of input tensors (i.e., multidimensional arrays), per-

forms computations that are specified by its operations, and

generates a set of output tensors.

We refer a model slice as a set of consecutive layers

that are executed on the same computing device on the

underlying heterogeneous embedded system. There exist

communication overheads between consecutive slices as

they need to communicate through input and output tensors.

Model slices impose different memory and/or functional-

ity constraints. Some of the computing devices on the under-

lying heterogeneous embedded system may be incapable of

executing certain slices due to such constraints. For instance,

if the size of a model slice exceeds the memory capacity of

a computing device or a model slice includes mathematical

operations that are unsupported by a computing device, the

slice cannot be executed on the device.

III. EXPERIMENTAL METHODOLOGY

To investigate the characteristics of deep-learning infer-

ence workloads and the effectiveness of MOSAIC, we use a

heterogeneous embedded system, the HiKey 970 embedded

development board [6]. The evaluated system is equipped

with the Kirin 970 mobile processor [1] that comprises a

CPU including four Cortex-A73 (big) cores, four Cortex-

A53 (little) cores, a Mali-G72 GPU, and a NPU. The big

core cluster, little core cluster, and GPU support DVFS. The

available frequency ranges of the big core cluster, little core

cluster, and GPU are 682–2362MHz, 509–1844MHz, and

104–767MHz, respectively. The NPU lacks DVFS support.

The NPU has a memory constraint in that it cannot

execute a model slice whose size exceeds 100MB [6]. While

the exact memory constraints of the big core cluster, little

core cluster and GPU for executing inference workloads on

the evaluated system are undocumented, they are sufficiently

large for the evaluated inference workloads.

As for the system software stack, the evaluated hetero-

geneous embedded system is installed with Android 8.1. In

addition, all the evaluated inference workloads and MOSAIC

are implemented using the TensorFlow Lite 1.11.0 [47].

Table I shows the inference workloads (i.e., Inception

V4 (IN) [45], MnasNet with the model width parameters

(pW) of 1.0 (MN-1.0) and 1.3 (MN-1.3) [46], MobileNet

V2 with pW = 1.3 (MO-1.3) and pW = 1.4 (MO-1.4) [40],

ResNet V2 (RN) [19], VGG (VGG) [42]) with large models.

They exhibit high accuracy (i.e., the Top-1 accuracy with

the ImageNet [39] dataset) and widely-different character-

istics such as the model size (i.e., the memory used by

the model, which is reported by TensorFlow Lite), layer

count, and inference latency (on the evaluated GPU). The

evaluated workload set includes the state-of-the-art inference

workloads (e.g., MobileNet V2 [40], MnasNet [46]), which

are highly optimized for mobile systems. MobileNet V2

and MnasNet provide a mechanism to exploit the tradeoff

between inference accuracy and latency through hyperpa-

rameters. Specifically, the model width parameter (i.e., pW)

determines the number of channels, which generally results

in higher accuracy and longer latency when it is set to a

larger value.

As shown in Table I, we use MnasNet with pW = 0.5
(MN-0.5), MobileNet V2 with pW = 1.0 (MO-1.0), and

SqueezeNet (SN) [23] to investigate the impact of MOSAIC

with smaller models. Due to the use of smaller models, they

tend to exhibit lower accuracy.

To measure the latency of inference workloads, we use the

high_resolution_clock function in the C++ standard

library. To measure the energy consumption of inference

workloads, we use an external power monitor [20], which

166

Table I: Evaluated deep-learning inference workloads

Workload Accuracy Input Size1 Model Size Layers Latency
Inception V4 (IN) [45] 80.1% (1, 299, 299, 3) 183.7MB 20 430.0ms

MnasNet with pW = 1.0 (MN-1.0) [46] 74.1% (1, 224, 224, 3) 321.9MB 20 66.8ms

MnasNet with pW = 1.3 (MN-1.3) [46] 75.2% (1, 224, 224, 3) 511.6MB 20 81.3ms

MobileNet V2 with pW = 1.3 (MO-1.3) [40] 74.4% (1, 224, 224, 3) 187.8MB 18 49.1ms

MobileNet V2 with pW = 1.4 (MO-1.4) [40] 75.0% (1, 224, 224, 3) 214.7MB 18 55.4ms

ResNet V2 (RN) [19] 77.8% (1, 224, 224, 3) 260.4MB 53 603.8ms

VGG (VGG) [42] 71.5% (1, 224, 224, 3) 407.4MB 16 218.7ms

MnasNet with pW = 0.5 (MN-0.5) [46] 68.0% (1, 224, 224, 3) 98.3MB 20 42.7ms

MobileNet V2 with pW = 1.0 (MO-1.0) [40] 71.8% (1, 224, 224, 3) 94.5MB 18 36.6ms

SqueezeNet (SN) [23] 49.0% (1, 224, 224, 3) 34.8MB 10 32.5ms

Figure 2: Evaluated heterogeneous embedded system and

power monitor

collects the voltage and current applied to the evaluated

heterogeneous embedded system at the data sampling rate of

5000 samples per second. Figure 2 shows the power monitor

connected to the evaluated heterogeneous embedded system.

IV. NEED FOR HETEROGENEITY-, COMMUNICATION-,

AND CONSTRAINT-AWARE INFERENCE

We investigate the characteristics of widely-used deep-

learning inference workloads in terms of the model size,

performance and energy heterogeneity, and communication

overheads on the evaluated heterogeneous embedded system.

For conciseness, we mainly report the data with MN-1.0
and MO-1.4, which represent accurate and highly-optimized

inference workloads on mobile systems.

As shown in Table I, accurate inference workloads in-

cluding the ones (e.g., MN-1.3, MO-1.4) highly optimized

for mobile systems employ large models, which exceed the

memory constraint of the NPU (i.e., 100MB) on the eval-

uated heterogeneous embedded systems. Further, the eval-

uated inference workloads exhibit widely-different model

sizes, which indicates that different numbers of slices are

required to execute them using the NPU.
1The first, second, third, and fourth elements in the tuples denote the

batch size, height, width, and number of channels, respectively.

(a) MnasNet 1.0

(b) MobileNet V2 1.4

Figure 3: Performance heterogeneity of inference workloads

Figure 3 shows the execution time of each layer of MN-
1.0 and MO-1.4 when it is executed on the big core cluster,

little core cluster, GPU, and NPU. We observe that layers of

MN-1.0 and MO-1.4 exhibit widely different performance

characteristics across the devices. For instance, the GPU

achieves significantly higher performance than the NPU

when executing the layers 12–17 of MO-1.4. In contrast,

the NPU significantly outperforms the GPU when executing

the layers 2–9 of MN-1.0.

Figure 4 shows the energy consumption of each layer

of MN-1.0 and MO-1.4 when it is executed on the big

core cluster, little core cluster, GPU, and NPU. Similarly

to performance heterogeneity, we also observe that layers

of MN-1.0 and MO-1.4 exhibit widely different energy

consumption characteristics across the devices. For example,

the little core cluster consumes significantly lower energy

than the NPU when executing the layers 9–17 of MN-1.0.

The little core cluster tends to achieve higher efficiency

167

(a) MnasNet 1.0

(b) MobileNet V2 1.4

Figure 4: Energy heterogeneity of inference workloads

Figure 5: Communication overheads

when executing layers with lower computational intensity.

In contrast, the NPU significantly outperforms the little core

cluster in terms of energy efficiency when executing the

layers 1–7 of MO-1.4.

Figure 5 shows the inference latency of MO-1.4 when

they are decomposed into three slices with various slicing

plans and the preferred computing device of each slice is set

to the NPU. We observe that their inference latency is highly

sensitive to the slicing plan. For instance, the performance

difference of the best and worst slicing plans is 34.1%, which

is significant. This data trend indicates that communication

overheads have a significant impact on the efficiency of the

target inference workload.

Overall, our experimental results show that the evalu-

ated inference workloads exhibit widely-different character-

istics in terms of the model size, performance and energy

heterogeneity, and communication overheads. Therefore, it

is crucial to investigate the system-software support for

heterogeneity-, communication-, and constraint-aware model

slicing and execution to achieve the best possible efficiency

Figure 6: Overall architecture of MOSAIC

of inference workloads on heterogeneous embedded sys-

tems.

V. DESIGN AND IMPLEMENTATION

MOSAIC is a software-based system that determines the

efficient model slicing and execution plan for the target

deep-learning inference workload based on the user-defined

metrics such as latency and energy consumption. Figure 6

shows the overall architecture of MOSAIC, which mainly

consists of the inference workload profiler, the execution

and communication cost estimators, the model slicer and

scheduler, and the inference workload executor.

A. Inference Workload Profiler
The inference workload profiler of MOSAIC executes

each of the layers in the target inference workload and

profiles the total costs (e.g., latency, energy consumption) for

executing each layer on computing devices in the underlying

heterogeneous embedded system. If a computing device

supports DVFS, the total costs for executing the layer

are collected at two frequencies (i.e., the maximum and

minimum frequencies available on the computing device).

If the layer cannot be executed on a certain computing

device due to a constraint (e.g., memory constraint), the total

cost for executing the layer on the device is set to an infinite

value. It also collects the sizes of the input and output tensors

of the layer, which are used to estimate the communication

costs of the layer.

B. Execution and Communication Cost Estimators
The total cost of each layer measured by the inference

workload profiler includes both the execution and commu-

nication costs associated with the layer. Based on the total

cost and the input and output tensor sizes of each layer, the

execution and communication cost estimators of MOSAIC

estimate the execution and communication costs of the layer

on each computing device in the heterogeneous embedded

system.
1) Communication Cost Estimator
To investigate the relationship between the communica-

tion cost and the tensor size, we developed a microbench-

mark that consists of layers with various tensor sizes.

Figure 7 shows the communication time with various tensor

sizes on the GPU (at its maximum frequency) and NPU. The

communication time data with the CPU are omitted as our

168

Figure 7: Communication time with various tensor sizes

experimental results show that they are insignificant due to

no or small data copy and format transformation overheads.

We observe the following data trends.

First, on both the GPU and NPU, the communication time

is linearly proportional to the size of the tensors associated

with the layer. Second, the NPU incurs significantly larger

communication overheads than the GPU. While the imple-

mentation details of the evaluated NPU are undisclosed [1],

we conjecture that the data copy and/or format transforma-

tion overheads for the NPU are significantly larger than those

for the GPU.

Guided by the aforementioned observations, we design

and implement the communication cost estimator based on

the linear regression technique. Specifically, the communica-

tion cost estimator employs Equations 1 and 2 to estimate the

communication costs associated with the input and output

tensors of the layer l, where Tin,l, Tout,l, αd,fd , and βd,fd

denote the total sizes of the input and output tensors of the

layer l and the regression coefficients for a computing device

d (i.e., the GPU or NPU) at frequency fd.

cin,l,d,fd = αd,fd · Tin,l + βd,fd (1)

cout,l,d,fd = αd,fd · Tout,l + βd,fd (2)

2) Execution Cost Estimator
The execution cost estimator estimates the cost for execut-

ing each layer without including the communication costs.

Specifically, the execution cost estimator first estimates the

total execution cost of each layer on a computing device

d running at fd based on the profile data collected at the

maximum and minimum frequencies of d. The execution

cost estimator then simply subtracts the communication costs

of the layer estimated by the communication cost estimator

from the estimated total cost of the layer. The execution cost

estimator consists of the performance and power estimators.

Performance Estimator: The performance estimator of

the execution cost estimator estimates the latency for ex-

ecuting a layer l on a computing device d, which runs

at frequency fd. The performance estimator builds on a

linear model, which is shown in Equation 3, where tl,d,fd ,

γl,d, and εl,d denote the estimated latency and coefficients.

The coefficients (i.e., γl,d, εl,d) are computed based on the

profile data collected by the inference workload profiler at

Table II: Voltage and frequency levels of the evaluated

computing devices

Device Voltage and frequency levels
Big cores (0.7V, 682MHz), (0.8V, 1018MHz),

(0.8V, 1210MHz), (0.8V, 1364MHz),

(0.9V, 1498MHz), (0.9V, 1652MHz),

(0.9V, 1863MHz), (1.0V, 2093MHz),

(1.1V, 2362MHz)

Little cores (0.7V, 509MHz), (0.8V, 1018MHz),

(0.9V, 1210MHz), (0.9V, 1402MHz),

(1.0V, 1556MHz), (1.0V, 1690MHz),

(1.1V, 1844MHz)

GPU (0.6V, 104MHz), (0.7V, 151MHz),

(0.7V, 237MHz), (0.7V, 332MHz),

(0.8V, 415MHz), (0.8V, 550MHz),

(0.9V, 667MHz), (1.0V, 767MHz)

the maximum and minimum frequencies of d.

tl,d,fd =
γl,d

fd
+ εl,d (3)

Power Estimator: The power estimator of the execu-

tion cost estimator estimates the power consumption for

executing a layer l on a computing device d running at

frequency fd. As shown in Equation 4, the power estimator

decomposes the total power consumption into the dynamic

(i.e., Pdynamic,l,d,fd) and static (i.e., Pstatic,d,fd) power con-

sumption. Since static power consumption is the inherent

property of a computing device and independent of the

characteristics of the target inference workload, we only

profile it once for each computing device (i.e., no need for

per-workload profiling).

Pl,d,fd = Pdynamic,l,d,fd + Pstatic,d,fd (4)

Since dynamic power consumption is dependent on not

only the characteristics of the computing device (and its

frequency) but also the characteristics of the layer, the power

estimator estimates dynamic power consumption to elimi-

nate the need for extensive offline profiling. Specifically, the

power estimator employs Equation 5 to estimate the dynamic

power consumption (i.e., Pdynamic,l,d,fd) of layer l running on

computing device d at frequency fd (and the corresponding

voltage level Vfd), where fd,max, Vfd,max
, and Pdynamic,l,d,fd,max

denote the maximum frequency of d, the corresponding

voltage level, and the dynamic power consumption at the

maximum frequency collected by the inference workload

profiler.

Pdynamic,l,d,fd =
V 2
fd

·fd
V 2
fd,max

·fd,max
· Pdynamic,l,d,fd,max

(5)

The voltage and frequency levels of computing devices are

readily available through their specifications or direct mea-

surements. Table II shows the voltage and frequency levels

of each computing device on the evaluated heterogeneous

embedded system, which are publicly available their device

tree source (DTS) files. Dynamic power consumption can

169

be estimated by plugging in specific values of fd and Vfd

in Equation 5.

C. Model Slicer and Scheduler
The main goal of the model slicer and scheduler (MSS) of

MOSAIC is to generate the efficient model slicing and exe-

cution plan for the target deep-learning inference workload

on the heterogeneous embedded system. Specifically, MSS

determines the number of slices, the layers that belong to

each slice, and the computing device that executes each slice

in order to maximize the efficiency of the target inference

workload on the heterogeneous embedded system based on

the user-defined metric (e.g., latency, energy consumption).

We formulate the model slicing and execution problem

as a dynamic-programming problem [11]. Without loss of

generality, we assume that the target inference workload em-

ploys a deep-learning model that consists of Λ layers. Cm,n,δ

denotes the total cost for executing the n−m+1 consecutive

layers from the m-th layer to the n-th layer of the model

on the computing device δ, where 1 ≤ m ≤ n ≤ Λ, δ ∈ D.

Note that we consider same physical computing devices run-

ning at different frequencies as different computing devices

to simplify the problem formulation of energy optimization.

In case of performance optimization, D is defined as

Equation 6, where BfB,max
, LfL,max

, GfG,max
, N denote the

big core cluster at its maximum frequency, the little core

cluster at its maximum frequency, the GPU at its maximum

frequency, and the NPU, respectively. Note that the NPU

on the evaluated heterogeneous embedded system lacks the

support for DVFS. On the evaluated system, |D| is 4 for

performance optimization.

D = {BfB,max
, LfL,max

, GfG,max
, N} (6)

In case of energy optimization, D is defined as Equation 7,

where BfB,min
, BfB,min+1

, · · · , BfB,max
denote the big core

cluster at its minimum, second minimum, · · · , and maximum

frequencies, LfL,min
, LfL,min+1

, · · · , LfL,max
indicate the little

core cluster at its minimum, second minimum, · · · , and max-

imum frequencies, GfG,min
, GfG,min+1

, · · · , GfG,max
denote the

GPU at its minimum, second minimum, · · · , and maximum

frequencies, and N indicates the NPU. On the evaluated

system, |D| is 25 for energy optimization (see Table II).

D = {BfB,min
, BfB,min+1

, · · · , BfB,max
,

LfL,min
, LfL,min+1

, · · · , LfL,max
,

GfG,min
, GfG,min+1

, · · · , GfG,max
,

N} (7)

Cm,n,δ is computed using Equation 8, where ek,δ , cin,m,δ ,

and cout,n,δ denote the execution cost of the k-th layer

(m ≤ k ≤ n) and the communication cost associated with

the input tensors of the m-th layer, and the communication

cost associated with the output tensors of the n-th layer,

respectively. MSS employs the execution and communica-

tion cost estimators to estimate ek,δ , cin,m,δ , and cout,n,δ .

If there is any layer that cannot be executed on δ due to a

constraint, Cm,n,δ is set to an infinite value to avoid selecting

the corresponding model slicing and execution plan.

Cm,n,δ=

⎧⎨
⎩

n∑
k=m

ek,δ+cin,m,δ+cout,n,δ if δ can execute

∞ otherwise

(8)

Ctot,l denotes the total cost to execute the consecutive

layers from the first layer to the l-th layer. To formulate

the model slicing and execution problem as a dynamic-

programming problem, Ctot,l must exhibit the optimal sub-

structure and overlapping subproblem properties [11] in that

Ctot,l can be efficiently computed if Ctot,0, Ctot,1, · · · ,
Ctot,l−1 are known. We consider all the possible cases, in

each of which the l-th layer belongs to a unique slice. Since

each layer belongs to only one slice and each slice comprises

consecutive layers, there are l cases in total, where the l-th
layer belongs to unique slices. Specifically, the slice that

contains the l-th layer may comprise only a single layer

(i.e., the l-th layer), two layers (i.e., the l-th layer and the

(l − 1)-th layer), · · · , or l layers (i.e., the l-th layer, the

(l − 1)-th layer, · · · , and the first layer).

Without loss of generality, we assume that the slice that

contains the l-th layer comprises l − k layers (i.e., the l-th,

(l−1)-th, · · · , and (k+1)-th layers). In this case, the lowest

cost for executing the consecutive layers from the first layer

to the l-th layer is computed by summing Ctot,k and the

total cost for executing the last l − k layers on the device

that incurs the minimum total cost among all the computing

devices on the heterogeneous embedded system.

As shown in Equation 9, Ctot,l can be then computed by

finding the minimum total cost among all the l aforemen-

tioned cases. Since the model slicing and execution problem

has the optimal substructure and overlapping subproblem

properties, its optimal solution can be determined based on

dynamic programming.

Ctot,l =

⎧⎨
⎩

0 if l = 0

min
0≤k<l,∀δ∈D

(Ctot,k + Ck+1,l,δ) otherwise
(9)

Algorithm 1 shows the pseudocode for the findEffi-
cientSlicingAndExecutionPlan function that de-

termines the efficient model slicing and execution plan based

on dynamic programming. In the outer loop (Lines 4–19),

MSS iterates the layer count from 1 to Λ. MSS uses the

solutions found in previous iterations to find the solution

for the current iteration in the outer loop.

In the inner loop (Lines 8–17), MSS iterates all the cases,

in each of which the last layer belongs to a unique slice.

MSS determines the set of slices that minimizes the total

cost for executing the consecutive layers and memoizes its

cost and slicing and execution plan to reuse them in the next

iteration in the outer loop.

The proposed algorithm has low time complexity (i.e.,

O(Λ2 · |D|), where Λ and |D| denote the number of layers in

the inference workload and the number of computing devices

on the heterogeneous embedded system, respectively). As

170

Algorithm 1 The findEfficientSlicingAndExecutionPlan function

1: procedure FINDEFFICIENTSLICINGANDEXECUTIONPLAN(layers, devices)

2: sliceSets[0] ← ∅
3: sliceSets[0].cost ← 0

4: for l ← 1 to layers.length do � layers.length = Λ
5: sliceSet ← ∅
6: sliceSet.cost ← ∞
7: slice ← createNewSlice()

8: for k ← 0 to (l − 1) do
9: slice.layers ← getConsecutiveLayers(layers, k + 1, l)

10: for δ in devices do � devices = D

11: if δ.canExecute(slice) = true then
12: slice.device ← δ
13: cost ← sliceSets[k].cost + estimateTotalCost(slice)

14: if cost < sliceSet.cost then
15: sliceSet ← sliceSets[k]

16: sliceSet.insert(slice)

17: sliceSet.cost ← cost

18: sliceSets[l] ← sliceSet

19: sliceSets[l].cost ← sliceSet.cost

20: return sliceSets[layers.length]

quantified in Section VI, MOSAIC achieves high inference

efficiency with small overheads due to the use of an efficient

algorithm.

D. Inference Workload Executor
The inference workload executor of MOSAIC is a user-

level runtime system that executes the model slices of the

target inference workload across the computing devices on

the heterogeneous embedded system based on the efficient

model slicing and execution plan generated by MSS. The

current version of the inference workload executor is im-

plemented in the C++ programming language based on

the TensorFlow Lite framework [47] on the Android OS.

However, we believe that MOSAIC is readily applicable to

other widely-used deep-learning frameworks as it builds on

a framework-agnostic approach for slicing and executing the

target inference workload.

VI. EVALUATION

A. Overview
This section quantifies the effectiveness of MOSAIC.

Specifically, we aim to investigate (1) inference latency, (2)

inference energy, (3) impact of the MOSAIC components,

(4) efficiency with smaller models, (5) estimation accuracy,

and (6) overheads for generating the model slicing and

execution plan.

For each inference workload, we evaluate ten versions

– the big core cluster-preferred (TF-BIG-P), little core

cluster-preferred (TF-LITTLE-P), GPU-preferred (TF-
GPU-P), NPU-preferred (TF-NPU-P) with the performance

governor of the Android OS, the big core cluster-preferred

(TF-BIG-O), little core cluster-preferred (TF-LITTLE-O),

GPU-preferred (TF-GPU-O), NPU-preferred (TF-NPU-O)

with the on-demand governor of the Android OS, exhaustive,

and MOSAIC versions.

The big core cluster-, little core cluster-, GPU-, and

NPU-preferred versions execute the slices of each inference

workload on the corresponding preferred computing device.

For the big core cluster-, little core cluster-, GPU-, and NPU-

preferred versions, we include as many consecutive layers as

possible in each slice if they satisfy all the constraints such

as memory and functionality constraints. If a layer cannot be

included in the slice that contains its previous layer due to

a memory constraint, the layer is included in the next slice

that is executed on the preferred device. If a layer cannot

be executed on the preferred device due to a memory or

functionality constraint, the layer is executed in a separate

slice on the NPU (if feasible), GPU (if feasible), or big core

cluster (as the final fallback execution path).

As quantified by our experimental results, the perfor-

mance governor tends to achieve higher performance than

the on-demand governor as the performance governor always

executes the target inference workload at the maximum

frequency of the underlying computing device. In contrast,

the on-demand governor, which is the default governor of

the Android OS, tends to exhibit lower energy consumption

than the performance governor as the on-demand governor

performs DVFS based on the dynamic load of the target

inference workload.

The exhaustive version uses the model slicing and exe-

cution plan with the highest inference efficiency (e.g., the

lowest latency), which is empirically determined through

exhaustive search. Note that it takes excessive computing

time and resources to determine the model slicing and exe-

171

Table III: Model slicing and execution plans for performance

optimization

Workload Model slicing and execution plan
IN N1, N11, B20

MN-1.0 N1, B10, G18, B20

MN-1.3 N1, B9, G12, B20

MO-1.3 N1, G9, N18

MO-1.4 N1, G8, N18

RN B1, N2, B4, N5, B12, N13, N31, B48,

N49, B52

VGG N1, G14, B16

cution plan for the exhaustive version, which is impractical.

For instance, it is estimated to take 1335 days to empirically

determine the best model slicing and execution plan for MN-
1.3 through exhaustive search using the evaluated system.

Due to limited computing time and resources, we deter-

mine the model slicing and execution plan for the exhaus-

tive version of each inference workload by executing the

workload with the 1000 unique model slicing and execution

plans that are randomly selected and choosing the best plan

among the randomly selected plans and the plans used by

the other versions including the MOSAIC version. We report

the results with the exhaustive version as the efficiency that

can be potentially achieved by any competitive model slicing

and execution technique.

Finally, the MOSAIC version uses MOSAIC to generate

the efficient model slicing and execution plan.

B. Inference Latency
We investigate the effectiveness of MOSAIC in terms of

inference latency. Figure 8 shows the inference latency of

each version of the inference workloads with large models,

normalized to the TF-GPU-O version that is the default

setting of the Android OS. The rightmost bars show the

average (i.e., geometric mean) inference latency of each

version across the workloads. In addition, Table III shows the

model slicing and execution plans generated by MOSAIC to

minimize the latency of each workload. Each letter (i.e., big

core cluster (B), little core cluster (L), GPU (G), and NPU

(N)) indicates a slice and the device used to execute the

slice. The subscript to each letter denotes the ID of the first

layer of the slice.

First, MOSAIC significantly outperforms the big core

cluster-, little core cluster-, GPU-, and NPU-preferred ver-

sions. Specifically, MOSAIC exhibits 70.3%, 86.1%, 39.1%,

and 29.2% lower inference latency than the TF-BIG-
P, TF-LITTLE-P, TF-GPU-P, and TF-NPU-P versions,

respectively. MOSAIC significantly reduces inference la-

tency by slicing and executing the model of the target

inference workload in a heterogeneity-, communication-, and

constraint-aware manner. For instance, as shown in Table III,

MOSAIC effectively utilizes various computing devices (i.e.,

Table IV: Model slicing and execution plans for energy

optimization

Workload Model slicing and execution plan
IN N960

1 , N960
11 , L509

20

MN-1.0 G767
1 , L509

7 , G667
12 , L509

15 , G667
18 , L509

20

MN-1.3 G767
1 , L509

7 , G667
12 , L509

14 , G667
18 , L509

20

MO-1.3 N960
1 , L509

5 , B682
7 , L1018

10 , L509
11 , L1018

14 ,

L509
15 , N960

18

MO-1.4 N960
1 , L1018

5 , L509
6 , L1018

10 , L509
11 , L1402

13 ,

G767
14 , N960

18

RN B682
1 , N960

2 , B682
4 , N960

5 , L1018
12 , N960

13 ,

N960
29 , L1210

48 , N960
49 , L509

52 , B682
53

VGG N960
1 , G550

14 , G667
15 , B682

16

big core cluster, GPU, and NPU) when executing MN-1.3
and significantly reduces its inference latency.

MOSAIC exhibits the inference latency similar to that of

the TF-NPU-P version with IN and RN. This is mainly

because the NPU exhibits the highest performance among

the computing devices and the model slicing plan used for

the TF-NPU-P version happens to incur small communi-

cation overheads when executing IN and RN. Neverthe-

less, the NPU-preferred versions provide no guarantee for

maximizing the efficiency across a wide range of inference

workloads as they execute the target inference workload in

a heterogeneity- and communication-oblivious manner.

Second, MOSAIC achieves the performance similar to

that of the exhaustive version, which empirically determines

the efficient model slicing and execution plan for the target

inference workload through exhaustive search. Specifically,

the average performance difference between the exhaustive

and MOSAIC versions is 0.67% across the workloads, which

is small. Note that the exhaustive version is guaranteed to

exhibit (at least) the same efficiency as MOSAIC because

we always include the model slicing and execution plan

determined by MOSAIC in the plans that are explored

by the exhaustive version. Our experimental results clearly

demonstrate the effectiveness of MOSAIC in that it achieves

high inference efficiency without the need for the exhaustive

search process, which requires excessive computing time and

resources.

C. Inference Energy
We investigate the effectiveness of MOSAIC in terms of

inference energy. Figure 9 shows the energy consumption of

each version of the inference workloads with large models,

normalized to the TF-GPU-O version. The rightmost bars

show the average (i.e., geometric mean) energy consumption

across the workloads. In addition, Table IV shows the

model slicing and execution plans generated by MOSAIC for

energy optimization. The superscript to each letter denotes

the frequency of the computing device in MHz.

First, MOSAIC significantly outperforms the big core

cluster-, little core cluster-, GPU-, and NPU-preferred ver-

172

Figure 8: Inference latency

Figure 9: Inference energy

sions across the workloads in terms of energy efficiency.

For instance, MOSAIC consumes 91.0%, 80.5%, 83.4%, and

36.6% lower energy than the TF-BIG-O, TF-LITTLE-
O, TF-GPU-O, and TF-NPU-O versions, respectively. As

shown in Table IV, MOSAIC effectively utilizes various

computing devices at various frequencies, significantly re-

ducing the energy consumption of the inference workloads.

Second, MOSAIC exhibits the energy consumption simi-

lar (i.e., the average difference of 0.53%) to the exhaustive

version, which requires excessive computing time and re-

sources. Our experimental results demonstrate that MOSAIC

can be effectively used for both inference latency and energy

optimizations on heterogeneous embedded systems.

D. Impact of the MOSAIC Components
We investigate the impact of the MOSAIC components

in terms of inference latency and energy. To this end, we

synthesize the heterogeneity- and constraint-aware (HCA)

version, which is an intermediate version that generates the

model slicing and execution plan by only considering the

efficiency heterogeneity and constraints of each layer (i.e.,

in a communication-oblivious manner). We report the results

with the HCA version to investigate the efficiency impact

of heterogeneity- and constraint-aware model slicing and

execution. Note that the efficiency difference between the

HCA and MOSAIC versions shows the efficiency impact of

communication-aware model slicing and execution.

Figure 10 shows the latency impact of the MOSAIC com-

ponents. We observe that the HCA version considerably out-

performs the TF-GPU-O version, which demonstrates the

effectiveness of heterogeneity- and constraint-aware model

Figure 10: Latency impact of the MOSAIC components

Figure 11: Energy impact of the MOSAIC components

slicing and execution. Further, MOSAIC considerably out-

performs the HCA version, which demonstrates the impact

of communication-aware model slicing and execution. The

HCA version incurs higher inference latency than MOSAIC

as it slices and executes the target inference workload in a

communication-oblivious manner.

We quantify the energy impact of the MOSAIC compo-

nents. To this end, we synthesize an additional intermediate

173

Figure 12: Inference latency with smaller models

Figure 13: Inference energy with smaller models

version called the HCCA version, which generates the model

slicing and execution plan by considering the heterogeneity

of the physical computing devices, constraints of each layer,

and communication overheads between devices in a DVFS-

oblivious manner. Figure 11 shows the energy impact of the

MOSAIC components.

The HCA version exhibits considerably lower energy con-

sumption than the TF-GPU-O version, demonstrating the

impact of heterogeneity- and constraint-aware model slicing

and execution. In addition, the HCCA version consumes

considerably lower energy than the HCA version, showing

the effectiveness of communication-aware model slicing

and execution. Finally, the MOSAIC version significantly

exhibits significantly lower energy consumption than the

HCCA version, which demonstrates the effectiveness of

DVFS. In summary, our quantitative evaluation demonstrates

that the individual components of MOSAIC compose in a

constructive manner, providing additional performance and

energy-efficiency gains.

E. Discussion
Smaller models: Figures 12 and 13 show the inference la-

tency and energy consumption with smaller models. Our ex-

perimental results show that MOSAIC continues to achieve

high efficiency with inference workloads with smaller mod-

els (i.e., MN-0.5, MO-1.0, SN). For instance, MOSAIC

exhibits 58.8%, 80.4%, 29.5%, and 9.2% lower inference

latency than the TF-BIG-P, TF-LITTLE-P, TF-GPU-
P, and TF-NPU-P versions and performs similarly (i.e.,

the average difference of 0.89%) to the exhaustive version.

Further, MOSAIC consumes 87.6%, 74.5%, 78.2%, and

22.9% lower energy than the TF-BIG-O, TF-LITTLE-O,

Figure 14: Latency estimation accuracy

Figure 15: Energy estimation accuracy

TF-GPU-O, and TF-NPU-O versions and achieves similar

energy efficiency (i.e., the average difference of 0.32%) to

the exhaustive version. The efficiency gains of MOSAIC

with smaller models decrease as fewer slices are generated,

which reduces optimization opportunities.

Estimation Accuracy: Figures 14 and 15 show the latency

and energy consumption estimation accuracy of MOSAIC.

Our experimental results show that the latency and en-

ergy consumption estimation accuracy of MOSAIC is high.

Specifically, the average latency and energy estimation errors

are 3.0% and 4.3%, which are small.

Overheads: Figures 16 and 17 shows the overheads for

performance and energy optimization. Our experimental

results show that MOSAIC incurs small overheads for

generating model slicing and execution plans. Specifically,

the average times spent for generating the model slicing

and execution plans across the workloads for performance

and energy optimization are 0.15ms and 0.82ms, which

are short. Since MOSAIC produces the model slicing and

execution plan based on the efficient algorithm with low

time complexity (i.e., O(Λ2 · |D|)), it incurs insignificant

overheads. Further, note that MOSAIC generates the model

slicing and execution plan only once for each inference

workload and incurs no overheads during the execution of

the workload.

MOSAIC incurs larger overheads for energy optimization

than performance optimization. This is mainly because the

number of computing devices (i.e., |D|) increases (from 4

(i.e., performance optimization) to 25 (i.e., energy optimiza-

tion)) as MOSAIC considers each computing device at its

maximum frequency for performance optimization but each

174

Figure 16: Overheads for performance optimization

Figure 17: Overheads for energy optimization

computing device at all its available frequencies for energy

optimization.

Overall, our quantitative evaluation shows the effective-

ness of MOSAIC in that it significantly improves the effi-

ciency of inference workloads in terms of latency and energy

consumption, achieves high estimation accuracy, and incurs

small overheads on the evaluated heterogeneous embedded

system.

VII. RELATED WORK

Prior works have investigated model analysis and/or opti-

mization techniques to improve inference efficiency [7, 10,

21, 24, 26, 29, 37, 44] and address the memory constraints

of deep-learning workloads [13, 38, 49]. While insightful,

none of the prior works considers the efficiency heterogene-

ity, communication overheads, and constraints of inference

workloads and emerging computing devices in an integrated

manner.

The prior works proposed in [7, 10, 21, 24, 26, 29, 37,

44] lack the consideration of the efficiency heterogeneity and

memory and functionality constraints of inference workloads

and emerging computing devices (e.g., NPU), which are

crucial factors to achieve the best possible efficiency on het-

erogeneous embedded systems. The works proposed in [13,

38, 49] lack the consideration of the efficiency heterogene-

ity, communication overheads, and functionality constraints

of computing devices and deep-learning workloads. Our

work significantly differs in the sense that it analyzes the

characteristics of inference workloads on a state-of-the-art

heterogeneous embedded system that includes a highly-

optimized NPU, proposes an efficient algorithm to solve the

model slicing and execution problem in a heterogeneity-,

communication-, and constraint-aware manner, and designs,

implements, and evaluates the proposed system using full

hardware and software stacks.

Prior works have presented runtime techniques to

efficiently execute training workloads for deep learn-

ing [15, 22, 30, 52]. The prior works lack heterogeneity-,

communication-, and constraint-aware model slicing and ex-

ecution in the presence of computing devices with functional

and architectural heterogeneity. Our work differs in that it

investigates the model slicing and execution technique to

significantly improve the efficiency of inference workloads

on heterogeneous embedded systems in a heterogeneity-,

communication-, and constraint-aware manner.

Prior works have presented the design and implementation

of hardware accelerators for deep learning [8, 9, 12, 14, 16,

18, 25, 32, 43, 50]. As quantified in this work based on

a heterogeneous embedded system equipped with a deep-

learning hardware accelerator (i.e., NPU), MOSAIC can be

robustly used to effectively utilize the hardware accelerators

along with general-purpose computing devices (e.g., CPU,

GPU) by executing the slices of inference workloads in a

heterogeneity-, communication-, and constraint-aware man-

ner.

Prior works have investigated the architectural and system

software techniques to improve the efficiency of heteroge-

neous computing systems [17, 27, 28, 31, 33, 34, 35, 36, 41,

48, 51]. Our work differs as it investigates the characteristics

of various inference workloads on heterogeneous comput-

ing devices including a state-of-the-art NPU and presents

a system that efficiently executes inference workloads on

heterogeneous embedded systems.

VIII. CONCLUSIONS

This paper presents MOSAIC, heterogeneity-, communi-

cation-, and constraint-aware model slicing and execution

for accurate and efficient inference on heterogeneous em-

bedded systems. MOSAIC uses the accurate models for

estimating the execution and communication costs of the

target inference workload and generates the efficient model

slicing and execution plan with low time complexity. Our

quantitative evaluation with the state-of-the-art inference

workloads and heterogeneous embedded system shows that

MOSAIC significantly reduces inference latency and energy

(e.g., 29.2% lower inference latency than an NPU-preferred

version (i.e., TF-NPU-P) with the performance governor

and large models and 36.6% lower energy than an NPU-

preferred version (i.e., TF-NPU-O) with the on-demand

governor and large models), achieves high estimation ac-

curacy, and incurs small overheads.

ACKNOWLEDGEMENTS

This research was partly supported by NRF (NRF-

2016M3C4A7952587, NRF-2018R1C1B6005961) and IITP

(No. 1711080972). Woongki Baek is the corresponding

author.

175

REFERENCES

[1] http://www.hisilicon.com/en/Products/ProductList/Kirin.
[2] http://www.nvidia.com/object/embedded-systems-dev-kits-modules.

html.
[3] https://www.samsung.com/semiconductor/minisite/exynos/products/

mobileprocessor/exynos-9-series-9820/.
[4] https : / / www. qualcomm . com / products / snapdragon - 855 - mobile -

platform.
[5] https://www.apple.com/iphone-xs/a12-bionic/.
[6] https://www.96boards.org/product/hikey970/.
[7] A. Anderson and D. Gregg. “Optimal DNN Primitive Selection

with Partitioned Boolean Quadratic Programming”. In: Proceedings
of the 2018 International Symposium on Code Generation and
Optimization. 2018.

[8] S. Angizi, Z. He, and D. Fan. “DIMA: A Depthwise CNN In-
Memory Accelerator”. In: Proceedings of the International Con-
ference on Computer-Aided Design. 2018.

[9] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin,
R. S. Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K.
Roy, and D. S. Milojicic. “PUMA: A Programmable Ultra-efficient
Memristor-based Accelerator for Machine Learning Inference”. In:
Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems. 2019.

[10] S. Bateni, H. Zhou, Y. Zhu, and C. Liu. “PredJoule: A Timing-
Predictable Energy Optimization Framework for Deep Neural Net-
works”. In: 2018 IEEE Real-Time Systems Symposium (RTSS). 2018.

[11] R. E. Bellman. Dynamic Programming. 2003.
[12] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam.

“DianNao: A Small-footprint High-throughput Accelerator for Ubiq-
uitous Machine-learning”. In: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages
and Operating Systems. 2014.

[13] X. Chen, D. Z. Chen, and X. S. Hu. “moDNN: Memory optimal
DNN training on GPUs”. In: 2018 Design, Automation Test in
Europe Conference Exhibition (DATE). 2018.

[14] Y.-H. Chen, J. Emer, and V. Sze. “Eyeriss: A Spatial Architecture
for Energy-efficient Dataflow for Convolutional Neural Networks”.
In: Proceedings of the 43rd International Symposium on Computer
Architecture. 2016.

[15] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. “Project
Adam: Building an Efficient and Scalable Deep Learning Training
System”. In: Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation. 2014.

[16] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang. “DrAcc:
A DRAM Based Accelerator for Accurate CNN Inference”. In:
Proceedings of the 55th Annual Design Automation Conference.
2018.

[17] M. Han, J. Park, and W. Baek. “CHRT: A Criticality- and
Heterogeneity-aware Runtime System for Task-parallel Applica-
tions”. In: Proceedings of the Conference on Design, Automation
& Test in Europe. 2017.

[18] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally. “EIE: Efficient Inference Engine on Compressed Deep Neural
Network”. In: Proceedings of the 43rd International Symposium on
Computer Architecture. 2016.

[19] K. He, X. Zhang, S. Ren, and J. Sun. “Identity Mappings in Deep
Residual Networks”. In: Computer Vision – ECCV 2016. 2016.

[20] High Voltage Power Monitor. https://www.msoon.com/.
[21] L. N. Huynh, Y. Lee, and R. K. Balan. “DeepMon: Mobile GPU-

based Deep Learning Framework for Continuous Vision Applica-
tions”. In: Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services. 2017.

[22] J. Hyun, J. Park, K. Y. Kim, S. Yu, and W. Baek. “CEML: a
Coordinated Runtime System for Efficient Machine Learning on
Heterogeneous Computing Systems”. In: Euro-Par 2018: Parallel
Processing. 2018.

[23] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and
K. Keutzer. “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size”. In: CoRR (2016).

[24] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon. “IONN: Incre-
mental Offloading of Neural Network Computations from Mobile
Devices to Edge Servers”. In: Proceedings of the ACM Symposium
on Cloud Computing. 2018.

[25] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A.
Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu,
K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T.
Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J.
Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
and D. H. Yoon. “In-Datacenter Performance Analysis of a Tensor
Processing Unit”. In: Proceedings of the 44th Annual International
Symposium on Computer Architecture. 2017.

[26] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang. “Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge”. In: Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems. 2017.

[27] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen. “Single-ISA Heterogeneous Multi-Core Architectures: The
Potential for Processor Power Reduction”. In: Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchi-
tecture. 2003.

[28] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin. “Hierarchical Power Management for Asymmetric Multi-
core in Dark Silicon Era”. In: Proceedings of the 50th Annual Design
Automation Conference. 2013.

[29] Y. H. Oh, Q. Quan, D. Kim, S. Kim, J. Heo, S. Jung, J. Jang, and
J. W. Lee. “A Portable, Automatic Data Qantizer for Deep Neural
Networks”. In: Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques. 2018.

[30] Y. Oyama, T. Ben-Nun, T. Hoefler, and S. Matsuoka. “Accelerating
Deep Learning Frameworks with Micro-Batches”. In: 2018 IEEE
International Conference on Cluster Computing (CLUSTER). 2018.

[31] P. Pandit and R. Govindarajan. “Fluidic Kernels: Cooperative Exe-
cution of OpenCL Programs on Multiple Heterogeneous Devices”.
In: Proceedings of Annual IEEE/ACM International Symposium on
Code Generation and Optimization. 2014.

[32] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally. “SCNN:
An Accelerator for Compressed-sparse Convolutional Neural Net-
works”. In: Proceedings of the 44th Annual International Symposium
on Computer Architecture. 2017.

[33] J. Park and W. Baek. “RCHC: A Holistic Runtime System for
Concurrent Heterogeneous Computing”. In: 2016 45th International
Conference on Parallel Processing (ICPP). 2016.

[34] J. Park and W. Baek. “HAP: A Heterogeneity-Conscious Runtime
System for Adaptive Pipeline Parallelism”. In: Proceedings of the
22Nd International Conference on Euro-Par 2016: Parallel Process-
ing - Volume 9833. 2016.

[35] A. Pathania, A. E. Irimiea, A. Prakash, and T. Mitra. “Power-
Performance Modelling of Mobile Gaming Workloads on Hetero-
geneous MPSoCs”. In: Proceedings of the 52Nd Annual Design
Automation Conference. 2015.

[36] A. Prakash, S. Wang, A. Irimiea, and T. Mitra. “Energy-efficient
execution of data-parallel applications on heterogeneous mobile plat-
forms”. In: Computer Design (ICCD), 2015 33rd IEEE International
Conference on. 2015.

[37] H. Qi, E. R. Sparks, and A. Talwalkar. “Paleo: A Performance Model
for Deep Neural Networks”. In: ICLR. 2017.

[38] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler.
“vDNN: Virtualized Deep Neural Networks for Scalable, Memory-
efficient Neural Network Design”. In: The 49th Annual IEEE/ACM
International Symposium on Microarchitecture. 2016.

176

[39] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei. “ImageNet Large Scale Visual Recognition Challenge”.
In: Int. J. Comput. Vision (2015).

[40] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen.
“MobileNetV2: Inverted Residuals and Linear Bottlenecks”. In: The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2018.

[41] A. Sethia and S. Mahlke. “Equalizer: Dynamic Tuning of GPU
Resources for Efficient Execution”. In: Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture.
2014.

[42] K. Simonyan and A. Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: CoRR (2014).

[43] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li. “C-brain:
A Deep Learning Accelerator That Tames the Diversity of CNNs
Through Adaptive Data-level Parallelization”. In: Proceedings of the
53rd Annual Design Automation Conference. 2016.

[44] M. Song, Y. Hu, H. Chen, and T. Li. “Towards Pervasive and
User Satisfactory CNN across GPU Microarchitectures”. In: 2017
IEEE International Symposium on High Performance Computer
Architecture (HPCA). 2017.

[45] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. “Inception-
v4, Inception-ResNet and the Impact of Residual Connections on
Learning”. In: AAAI. 2017.

[46] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le. “MnasNet:
Platform-Aware Neural Architecture Search for Mobile”. In: ArXiv
e-prints (2018).

[47] TensorFlow Lite. https://www.tensorflow.org/lite/.
[48] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer.

“Scheduling Heterogeneous Multi-cores Through Performance Im-
pact Estimation (PIE)”. In: Proceedings of the 39th Annual Interna-
tional Symposium on Computer Architecture. 2012.

[49] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and
T. Kraska. “Superneurons: Dynamic GPU Memory Management
for Training Deep Neural Networks”. In: Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 2018.

[50] X. Wang, J. Yu, C. Augustine, R. Iyer, and R. Das. “Bit Prudent
In-Cache Acceleration of Deep Convolutional Neural Networks”.
In: 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 2019.

[51] J. Yun, J. Park, and W. Baek. “HARS: A Heterogeneity-aware
Runtime System for Self-adaptive Multithreaded Applications”. In:
Proceedings of the 52Nd Annual Design Automation Conference.
2015.

[52] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing. “Poseidon: An Efficient Communication
Architecture for Distributed Deep Learning on GPU Clusters”. In:
2017 USENIX Annual Technical Conference (USENIX ATC 17).
2017.

13

177

