
Enforcing Crash Consistency of Evolving Network
Analytics in Non-Volatile Main Memory Systems

Soklong Lim† Zaixin Lu† Bin Ren∗ Xuechen Zhang†

†School of Engineering and Computer Science ∗ Department of Computer Science

Washington State University Vancouver College of William and Mary

{soklong.lim, zaixin.lu, and xuechen.zhang}@wsu.edu bren@cs.wm.edu

Abstract—Evolving graph processing has enabled the modeling
of many complex network systems, e.g., online social networks
and gene networks. Existing in-memory graph data structures
cannot effectively exploit the current and ongoing adoption of
emerging non-volatile main memory (NVMM) for two reasons.
(1) Ephemeral graph data structures are not crash-consistent
nor durable for NVMM. Corruption is likely when updating
its correlated application-defined data and runtime states in
the face of hardware or software failures. (2) NVMM writes
and reads may incur higher latency than DRAM. Placing the
data structures in NVMM may result in a significant loss of
performance.

In this paper, we propose a novel persistent evolving graph
data structure, named NVGRAPH, for both computing and
in-memory storage of evolving graphs in NVMM. We devise
NVGRAPH as a multi-version data structure, wherein a minimum
of one version of its data is stored in NVMM to provide the
desired durability at runtime for failure recovery, and another
version is stored in both DRAM and NVMM to reduce the
NVMM-induced memory latency. We dynamically transform the
layout of NVGRAPH including changing the size of its partition in
DRAM and the position of its base snapshot exploiting network
properties and data access patterns of workloads. For the evalua-
tion of NVGRAPH, we implement four representative real-world
graph applications: pagerank, BFS, influence maximization, and
rumor source detection. The experimental results show that the
performance of NVGRAPH is comparable to other in-memory
data structure (e.g., CSR and LLAMA) while using 70% less
DRAM. It scales well up to 10 billion edges and 201 snapshots
and supports crash consistency. It offers up to the 21X speedup
of execution time compared to the scale-up graph computation
approaches (e.g., GraphChi and X-stream).

Index Terms—Evolving Graphs, Crash Consistency, Non-
Volatile Main Memory, Graph Layout Transformation

I. INTRODUCTION

Evolving graphs consist of multiple snapshots of graphs

corresponding to different points in time. Evolving graph

processing has enabled modeling of many complex network

systems consisting of millions if not billions of nodes, e.g.,

online social networks [1], gene networks [2], and power flow

networks [3], among many others. Applications designed using

the evolving graph model have irregular access patterns for

traversing a single snapshot or traveling multiple snapshots.

Consequently, there is a strong desire to use in-memory graph

data structures (e.g., compressed sparse row representation

P
e

r
s
is

t_
b

a
r
r
ie

r

Application-defined 
Data Runtime States

Inconsistent

(a)

P
e

r
s
is

t_
b

a
r
r
ie

r

Application-defined 
Data Runtime States

Inconsistent

(b)

Fig. 1. Inconsistent graph caused by (a) application-defined data write fails
and (b) runtime-state write fails.

(CSR) [4], LLAMA [5], or Hybrid Graph [6]) to achieve high

performance, scalability, as well as high memory efficiency.

The in-memory graph data structures mainly consist of three

parts: topology data (i.e., node tables and edge tables), runtime

states (e.g., activeness/inactiveness of nodes), and application-

defined data (e.g., page ranks of nodes). Memory requirements

for storing these data can be much larger than DRAM size.

At the same time, it is difficult to scale the DRAM to higher

capacities that can match the memory requirements of evolving

graph applications because of the associated capital costs and

power consumption. Either scale-out or scale-up approaches

may be used to overcome this limitation. The existing graph

analytics frameworks (e.g., PowerGraph [7], GraphLab [8],

and RAMCloud [9]) scale out through partitioning and hosting

the graph data in distributed DRAMs of multiple servers

in a cluster. The downside of such approaches is that their

performance is constrained by networking latency. For scaling

up, graph data are stored on secondary storage devices (e.g.,

solid-state disks [10] or hard disks [11]). Their performance is

dramatically limited by I/O capacity of the underlying storage

systems.

This paper explores Non-Volatile Main Memory (NVMM)

(e.g., Memristor [12] and Intel Optane DIMMs [13], [14]) to

extend memory capacity for serving large-scale evolving graph

applications. However, we found that no existing in-memory

graph data structures can take full advantage of NVMM

because they do not provide crash consistency in NVMM

systems and their memory layout is not aware of the induced-

latency of NVMM.

First, crash consistency is the recoverability of persistent

data from memory in a consistent state after system failures.

Graph data structures are not crash-consistent for the following

two reasons. (1) Inconsistent updates of correlated data: for a

124

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00018



DRAM NVMM Flash
Read Latency(ns) 60 100 25,000
Write Latency(ns) 60 150 200,000

Endurance(writes/bit) > 1016 106 − 108 104 − 105

TABLE I
CHARACTERISTICS OF DRAM AND NVMM. NOTE: THE TABLE

CONTENTS ARE BASED MAINLY ON [14], [17]–[19].

large body of graph applications, every write access to a node

in NVMM consists of at least two separate write requests to

NVMM. For example, in page ranking, each write access to

a node requires one write (WA) to update its rank score and

the other one (WB) to update its activeness for determining

the termination of the application. If a system failure occurs

after WA and before the completion of WB , the memory

controller would observe a stale activeness value upon system

recovery, introducing data inconsistency in NVMM. Figure 1

demonstrates that a system failure can result in inconsistent

application-defined data and runtime states. Similarly, in ru-

mor source detection, each write access to a node requires

one NVMM write (WC) to update the flag which indicates

whether the node was infected and another write (WD) to store

the path of infected nodes. Failures may happen between WC

and WD. (2) Partial updates of array elements: many graph

applications use large arrays to store application-defined data

and runtime states. If a failure happens before a CPU cache

flush writes array elements in NVMM, the array data after

failure may not match the normal output without failures. This

will cause data inconsistency in NVMM. With the inconsistent

data, graph applications cannot directly recover memory states

even they are stored in NVMM.

To provide crash consistency, existing graph software saves

the checkpoints of application-defined data and runtime states

on slow storage devices via I/O bus [5], [15]. The incurred

I/O operations can cause severe performance bottleneck and a

waste of CPU cycles. Simply storing the data on NVMM-

based file systems seems a straightforward approach and

requires minimal changes to the applications. However, it can

significantly waste the performance benefits of NVMM: (1) it

under-utilizes memory resources as essentially two duplicated

copies of the application-defined data and runtime states have

to be stored in DRAM and NVMM, separately; and (2)

it prevents us from using byte-addressability of NVMM to

extend memory capacity because the persistent graph data

in NVMM are only accessed for failure recovery, not for a

program at its normal execution. Applications can also use

transaction models (e.g., redo or undo logging mechanisms)

to provide crash consistency. However, they may degrade the

applications’ performance by up to 102% [16].

Second, the layout of existing in-memory data structures is

suboptimal for evolving graph computing using both DRAM

and NVMM. In the existing systems, graph data were either

directly placed in DRAM [5] or stored in the memory cache

of slow storage medium (e.g., hard disks [6]). But none has

been optimized to leverage NVMM, which has its unique

characteristics (as shown in Table I). Ignoring the differ-

ences between NVMM and DRAM will have a detrimental

impact on the performance of evolving graph applications.

(1) The write latency of NVMM is 2.5X greater than that

of DRAM [17]–[19]. At the same time, evolving graph

applications can be write-intensive for updating application-

defined data and runtime states. For the applications related

to our research (e.g., rumor source detection in online social

networks), memory writes account for at least 50% of the

total number of memory accesses to application-defined data

and runtime states. Furthermore, as the graph evolves, we can

observe that different sets of nodes in networks become more

frequently accessed than others while the network property of

nodes (e.g., centrality and betweenness) changes over time

for changing graph topology. (2) The evolving graph data

structures typically consist of a base snapshot and multiple

delta snapshots for reducing its memory footprint [5], [6]. The

position of the base snapshot determines the number of pointer

chasing (memory read) operations that are required to recover

a particular graph snapshot. All the existing approaches were

proposed to minimize the size of the data structures. However,

none of them considered varied memory access cost incurred

by the enormous amount of pointer chasing operations in

NVMM.

In this paper, we propose a novel data structure, named

NVGRAPH, for both graph computing and in-memory storage

of evolving graphs. It stores graphs as time series of continu-

ous snapshots. The structure is designed for applications that

receive a steady stream of new graph data periodically. To pro-

vide crash consistency, NVGRAPH is designed to use multi-

version data structures to store application-defined data and

runtime states. It enforces crash consistency using NVMM

on memory bus, while the existing graph systems rely on

accessing slow storage devices on I/O bus. Specifically, the

topology data of NVGRAPH consists of one base snapshot and

multiple delta snapshots. The first snapshot is created when the

first graph is loaded; then each following load creates the other

delta snapshots. It stores at least two versions of the correlated

application-defined data and runtime states. Its persistent ver-

sion is immutable and stored in NVMM and can be used

for failure recovery upon failures leveraging its non-volatility.

In addition, its ephemeral version is stored in both NVMM

and DRAM and used for in-memory computing leveraging

its byte-addressability of NVMM. To reduce the memory

usage of storing multi-version data, NVGRAPH supports data

sharing between the two data versions. Consequently, it can

guarantee that at least one version of the data is consistent

while updating the other one without transactional logging and

using special PMEM instructions (e.g., clwb and sfence) [20]

for enforcing the ordering of memory writes. NVGRAPH

dynamically transforms the layout of its ephemeral version,

including the nodes to store in DRAM, the size of in-memory

data structures, and the position of its base snapshot to improve

DRAM efficiency and hide NVMM-induced memory latency.

In summary, we made the following contributions.

125



• We propose a novel evolving graph data structure NV-

GRAPH which effectively extends memory capacity using

NVMM for large-scale graph computing and provides

crash-consistency exploring multi-version data structures.

• We design algorithms using network property (e.g., cen-

trality) and data access patterns of evolving graphs to

dynamically transform the layout of NVGRAPH for re-

ducing NVMM-induced latency.

• NVGRAPH provides an easy-to-program interface with

which users are freed from error-prone and tedious tasks

of persistent pointer management. It explores the non-

volatility of NVMM for providing near-instantaneous

failure recovery.

• We implemented a software prototype of graph analytics

framework using NVGRAPH and its algorithms. Our

evaluation results with real-world graph applications (e.g.,

rumor source detection in social networks) validate the

correctness of the algorithms and show that NVGRAPH

scales up to 10 billion edges and 201 snapshots, provides

crash consistency, and achieves similar scalability as the

existing in-memory data structures.

II. RELATED WORK

As NVMM promises a significant benefit, a wide range

of applications and libraries have been developed to address

performance and consistency issues caused by NVMM. Some

effort closely related to NVGRAPH is discussed below.

A. Multi-Versioned Graph Computation

DeltaGraph built a distributed hierarchical index structure

for efficient retrieval of graph snapshots [21]. The index

structure is mainly optimized for disks. It can cause extra

latency when being directly used for in-memory graph data

analysis. Chronos was designed to exploit temporal locality

by placing different versions of data of the same nodes

together [22]. It uses data arrays and edge arrays as in-

memory representation of graphs. It has two main issues: (1)

it can achieve suboptimal performance when the data stored

in a multi-versioned node cannot fit in the cache line and

(2) the graph structure cannot effectively handle graphs with

incremental ingest. Vora et al. proposed to use a structure-

of-arrays layout to store evolving graphs to exploit temporal

locality [23]. The layout may achieve suboptimal performance

because it cannot hide the induced-latency of NVMM. In

LLAMA, Macko et al. proposed to use a multi-versioned array

as the in-memory representation of evolving graphs [5]. It can

effectively handle a large number of incremental ingest using

the delta snapshots. Most recently, Ju et al. designed Version

Traveler to effectively handle version switching [6]. It caches

delta snapshots in memory and stores the base snapshots on

disks or SSDs. None of them were proposed for NVMM,

whose characteristics are significantly different than DRAM

or SSDs using flash as shown in Table I. The differences

will suffice a new design of the in-memory representations

of evolving graphs and special considerations for incurred

write/read latency and crash consistency.

B. Scale-Up Graph Computation using Persistent Storage
Devices

For general graph computation, many popular systems have

been proposed for scaling up on stand-alone machines. For

example, GraphChi [11] was one of the first analytic sys-

tem designed for hard disks. X-Stream was also designed

for hard disks, aiming at eliminating random data access

from disks [15]. As flash disks become popular, TurboGraph

was designed to exploit the parallelism of flash disks [24].

PrefEdge implemented a prefetching scheme to provide high-

throughput I/O accesses to flash [25]. FlashGraph is a semi-

external memory graph engine with its vertex stored in mem-

ory and edge lists stored on SSDs [10]. It aims at achieving

performance comparable to in-memory graph engines. Mosaic

was designed to explore flash storage and massively parallel

coprocessors (e.g., Xeon Phi) for large-scale graph compu-

tation [26]. Malicevis et al. studied the placement of graph

data in a hybrid memory system with NVMM and DRAM

and showed that performance degradation is of great concern

when NVMM is directly used in the memory system in a

brutal-force manner [27]. GridGraph uses fine-grained level

partitioning algorithms to reduce the I/O amount required for

computation. NVGRAPH is a new graph engine specifically

designed for NVMM on memory bus. Our design goal is

to achieve a performance comparable to in-memory graph

engines, but also maintain crash consistency, which has never

been studied before. No I/O is required for providing a

guarantee of crash consistency with NVGRAPH.

C. Durable and Consistent In-Memory Data Structures

Ordinary in-memory graph data structures are ephemeral
because the old version can be destroyed when a change

is made to the graph, leaving only the new one. When an

application fails, it is not possible to access the previous

versions for recovery using an ephemeral graph. In general,

applications designed with ephemeral data structure may use

three techniques to ensure data reliability: journaling [28]

and leveraging persistent data structure [29] for transactional-

oriented applications and checkpointing for non-transactional-

oriented applications [30].

Journaling (write-ahead logging) is mostly used by database

systems for updating B/B+-Tree or graph data structures. The

updates are written to log files sequentially before writing at

its primary location. The logs are used to access an old version

of a record when transactions fail. The main disadvantage of

this technique is high I/O overhead because it requires two

disk writes for every update. Leveraging multi-version data

structures/shadow paging [31], [32], applications use copy-on-

write to perform all updates so that the original version of the

data is not mutated until the newer version of data becomes

persistent. However, its overhead can be high [32], [33],

overshadowing its benefit, especially when data structures

mainly reside on slow persistent storage devices, e.g., hard

disks. Chen et al. reduced logging overhead when GPUs is

used [34]. iDO leverages idempotent instructions to eliminate

126



the need to log each persistent store while enforcing failure

atomicity in logging [35].

As NVMM is emerging with many attractive features, novel

persistent data structures have been proposed to explore its

byte-addressability and non-volatility. For example, CDDS B-

Tree [17] was designed to provide both durability and con-

sistency and used for implementation of persistent key-value

stores. CDDS B-Tree was derived from a multi-version B-Tree

data structure [31]. Other researchers have been rethinking

the design of B/B+-Tree to embrace NVMM technology

when it resides in NVMM. As an example, persistent B+-

Tree [18], [36] and NV-tree [37] were proposed to reduce

pointer mutations, which are prone to data corruption.

Non-transactional applications: Non-transactional applica-

tions include scientific applications and many graph data

analytics frameworks (e.g., LLAMA [5] and Chronos [22]). To

ensure data durability, they need to periodically save updates

to main data structures (e.g., graphs [5], octrees [38], and

arrays [39]) to on-disk representations of the data structures.

These files can then be used for failure recovery. Most of

these on-disk representations are nearly identical to their corre-

sponding in-memory representations. For large-scale scientific

applications, parallel I/Os of writing snapshots can easily

overload a disk-based storage system and cause a severe

performance bottleneck [30], [40], [41]. Simply replacing

disks with NVMM cannot explore its byte-addressability [42].

Caulfield et al. [43] studied the impact of non-volatile memory

on scientific applications. However, they did not address any

NVMM-specific issues, e.g., data consistency. PM-octree and

DPM-octree were implemented to leverage NVMM for large-

scale adaptive mesh simulations [44], [45]. NVMM-aware

memory management approaches have been designed to ex-

tend memory capacity for non-transactional applications [46],

[47]. In this paper, NVGRAPH is designed to serve two pur-

poses: (1) storing persistent versions of graph data structures

in NVMM and (2) extending memory capacity for non-

transactional evolving graph computation. It is inspired by

the previous work on persistent octree and B-Tree. However,

our focus on hiding NVMM-induced read and write latency

exploring network properties will require significant changes

to the design and impact our implementation of NVGRAPH.

III. DESIGN OF NVGRAPH

The main problem with providing crash consistency for

evolving graphs is that each write access to a node consists

of at least two separate writes to NVMM: one write to

application-defined data A and one write to runtime state

R of graphs. But this relationship is not exposed to crash

consistency mechanisms. There is no guarantee that the two

separate writes to [A, R] will reach the NVMM simulta-

neously. We propose to use multi-version data structures to

replace ephemeral data structures to store A and R. The new

data structure is persistent because at least one version of [A,

R] will be stored in NVMM and immutable until a newer

version becomes persistent. The runtime system will handle

how to persistent [A, R] in both DRAM and NVMM. The

DRAM

NVMM

App-defined Data & 
Runtime States 

[A2
n-1, R2

n-1][A2
n, R2

n]N

[A2
n, R2

n]D

Topology 
Data

S1 (Base)S0 …S2 Si

Snapshot 
Cache

Fig. 2. Overview of the NVGRAPH data structure. NVGRAPH G is
partitioned. Its topology data is stored in NVMM and consists of one base
snapshot (e.g., S1) and multiple delta snapshots (e.g., S0 and S2). The
snapshot cache is used to store the most-frequently accessed snapshots. The
correlated application-defined data (e.g., page ranks) and runtime states (e.g.,
activeness of nodes) for snapshot 2, denoted as [An−1

2 , Rn−1
2 ] and [An

2 , R
n
2 ],

are generated at step n−1 and n respectively. [An
2 , R

n
2 ] is further partitioned

to [An
2 , R

n
2 ]

D stored in DRAM and [An
2 , R

n
2 ]

N stored in NVMM.

new data structure is called NVGRAPH. We will discuss its

design and basic operations in the following sections.

A. In-Memory Representation of NVGRAPH

Different from most of the previous work focusing on the

layout of topology data [5], [6], [22], NVGRAPH manages the

layout of topology data, application-defined data, and runtime

states. Figure 2 demonstrates the overview of NVGRAPH

data structure in DRAM and NVMM. The topology data
of NVGRAPH G consists of multiple snapshots. They are

read-only. Each snapshot consists of an index table and an

edge table, which are stored as large arrays in NVMM. Thus,

the existing topology data are not subject to crash-consistency

issues during the execution of graph applications. NVGRAPH

manages a snapshot cache in DRAM to hide read-latency of

accessing the topology data in NVMM.

The correlated application-defined data A and runtime
states R are formed as a tuple [A,R]. Their in-memory rep-

resentations are multi-version large arrays. They will have at

least two versions: [An−1, Rn−1] and [An, Rn]. [An−1, Rn−1]
is a persistent version of the data saved at the end of the

computational step1 n − 1. [An, Rn] is an ephemeral version

of the graph being actively accessed at step n. [An, Rn]
and [An−1, Rn−1] share the corresponding data that are not

mutated at step n. No logging or special instructions for

enforcing ordering of memory accesses to A and R is needed

because our algorithms will guarantee [An−1, Rn−1] is con-

sistent while updating [An, Rn]. We will develop the basic

operations of NVGRAPH in Section III-B.

A graph snapshot Si in NVGRAPH G consists of topology

data Ti, application-defined data Ai, and runtime state Ri. Ti

includes a node index table and an edge table in NVMM as

demonstrated in Figure 3. One of the snapshots is specified

as the base snapshot SBase according to snapshot access

frequency. All the nodes and edges in SBase are stored in

a variant of compressed sparse row (CSR) representation in

NVMM. To reduce memory footprint, other snapshots store

only the difference between Si and Si−1 if Base < i or

1We assume graph applications consist of a sequence of execution steps,
e.g., iterations in calculating the page rank of each node.

127



Snapshot 1

Snapshot 2

Snapshot 0

(a) Modified graph structure

0,0

S2 SBase

2,P 0,0 0,11,P 0,0

S1

0,1 1,P 0,2

2,N 0,D0,N CO: 0,22,D CO: 0,1 1,N

Topology 
Data

App-defined 
Data & 

Runtime States 

(b) NVGraph Representation

Index Tables

Edge Tables

[A2
n-1, R2

n-1][A2
n, R2

n ]D [ A2
n, R2

n ]N

Delta 
Pointers

Virtual Offset 
Pointers

Edge 
Pointers

1 2

3

Fig. 3. NVGRAPH representations. (a) An illustration of three snapshots of a graph. A circle represents a node (node id inside) and an arrow represents an
edge (edge id omitted). Snapshot 0 consists of solid-arrow edges. Snapshot 1 has one more edge (illustrated by a dashed red arrow). Snapshot 2 has one more
edge than Snapshot 1 (illustrated by a dashed blue arrow). (b) An illustration of the evolving graph using NVGRAPH representation. We use pagerank as an
example. Its topology data consists of index tables and edge tables. In the edge table, D and N are flags which denote DRAM and NVMM respectively.
(CO : 0, 1) denotes that node 1 has a new edge 1→ 2 in S2 and the remaining edges of node 1 (e.g., 1→ 0) are shared with SBase. [An

2 , R
n
2 ]

C is shared

with [An−1
2 , Rn−1

2 ] and not shown in the figure.

between Si and Si+1 if Base > i. Each entry in the index

table has two fields: Snapshot ID indicating the edge table that

stores the adjacency list given a node and Offset/P indicating

the index into the edge table of the given snapshot or a pointer

to the added/deleted nodes in the snapshot. For example, in

Figure 3, the first entry (0, 0) in S1 indicates its first node 0 is

shared with SBase and the offset of its adjacency list fragments

is 0 in the edge table of SBase. The third entry (1, P ) in S1

indicates that it is a pointer to a new edge 2→0 in the edge

table of S1.

Each entry in the edge table also has two fields: Node ID
and Flag indicating whether the property and runtime states

of this edge starting from the node is in DRAM (D) or in

NVMM (N). The edge table of SBase is a fixed length array

that contains adjacency list fragments stored consecutively.

The edge table of non-base snapshot Si contains only added

or deleted nodes in the given snapshot. Each added node in

the edge table of Si ends with a continuation pointer CO :
that points to its adjacency list fragment in its neighboring

snapshot Sj .

Application-defined data Ai and runtime states Ri for

the snapshot Si are represented as a multi-version table in

memory. A simple two-version NVGRAPH is described in the

paper. [An−1
i , Rn−1

i ] were actively accessed at step n − 1
and became persistent at the end of the step. At step n,

every update to [An−1
i , Rn−1

i ] results in mutating [An
i , R

n
i ]. No

special instructions for enforcing crash consistency is needed

because our algorithm can guarantee that [An−1
i , Rn−1

i ] is

consistent while updating [An
i , R

n
i ]. While [An−1

i , Rn−1
i ] is

entirely stored in NVMM, [An
i , R

n
i ] includes three compo-

nents: [An
i , R

n
i ]

D, [An
i , R

n
i ]

N , and [An
i , R

n
i ]

C , where D, N, C

denotes DRAM, NVMM, and common nodes respectively.

[An
i , R

n
i ]

D consists of frequently accessed data and is stored

in DRAM. [An
i , R

n
i ]

N consists of less frequently accessed

data and is stored in NVMM. [An
i , R

n
i ]

C is also stored in

NVMM and consists of read-only data that can be shared with

[An−1
i , Rn−1

i ]. For applications that have a significant amount

of overlapping data between [An−1
i , Rn−1

i ] and [An
i , R

n
i ], such

as when a majority of nodes become inactive, this compact

layout of multi-version A and R will reduce their memory

usage by up to 83% while providing the guarantee of crash

consistency for graph applications used in the paper.

NVGRAPH manages a snapshot cache in DRAM to hide

NVMM read latency. The data stored in the cache is delta

snapshots. If the cache is full, it must destage the least valuable

delta snapshot in the cache to make room for the new snapshot.

We will use LRU (Least Recently Used) replacement policy

to select the least valuable snapshots.

Figure 3(a) shows a simple 3-version graph. Figure 3(b)

shows its NVGRAPH representation in memory. To further

reduce the memory footprint of storing the index tables of

multiple snapshots, NVGRAPH merges them into a single

index table and shares it among the three snapshots, while each

snapshot has its own edge table. There are three types of point-

ers in NVGRAPH. Delta pointers point to the added/deleted

nodes in the edge tables of delta snapshots. Virtual offset
pointers are array index that points to the first node in the

adjacency list of a given node. And edge pointers connect

an edge to its associated application-defined data and runtime

states. For example, in Figure 3, NVGRAPH uses the delta

pointer � to connect node 1 to its added edge 1 → 2 in

S2. It uses the virtual offset pointer � to indicate that node

1 is the first node that is adjacent to node 2 in the edge

table of SBase. Finally, it uses the edge pointer � to connect

the edge 1 → 2 to its edge properties stored in [An
2 , R

n
2 ] of

snapshot 2. The application-defined data and runtime states are

stored in either NVMM or DRAM. For example, for SBase,

the application-defined data corresponding to edge 0 → 2
(denoted as (2, N) in the edge table) is stored in NVMM,

while the data corresponding to edge 1 → 0 (denoted as

(0, D)) is stored in DRAM because node 1 might be more

frequently-accessed than node 0. The layout optimization of

128



[An, Rn] is described in Section III-C.

B. Major Operations of NVGRAPH

Insertion and deletion of nodes: NVGRAPH adds nodes

to a snapshot by creating a new index table and an edge table.

Because most of the nodes will be shared between the new

snapshot and the base snapshot, we only need to change the

index table where node mutations happen. To delete a node,

we mark the node as “deleted” in the index table. It does

not require deleting any data because deletion can cause a

long write latency just as an insertion for NVMM. The real

deletion is handled by garbage collection.

Graph loading and flattening: NVGRAPH can load graph

data in edge-list formats. It sorts the input edges before

loading and builds index tables and edge tables. When the

previous snapshots are no longer needed, users can use the

flattening operations of NVGRAPH to create a single and

merged snapshot and use it as the base snapshot for further

data ingest.

Garbage collection (GC): As the size of NVGRAPH grows

and deleted nodes are not freed in NVMM, GC is required

to be executed periodically to ensure memory efficiency.

Furthermore, we track the percentage of available NVMM

space, when it is smaller than a threshold, GC will also be

executed on demand.

Data merging and persistence: When step n is completed

and a persistent point of the graph needs to be saved. NV-

GRAPH will merge [An
i , R

n
i ]

D and [An
i , R

n
i ]

C with [An
i , R

n
i ]

N

and then mark all the data in [An−1
i , Rn−1

i ] as “deleted”. The

GC routines executed later will delete the data. In the end, we

need to swap [An−1
i , Rn−1

i ] and [An
i , R

n
i ]

N . Only after this

point, the new persistent [An−1
i , Rn−1

i ] becomes available and

the next step begins. If the applications fail during merging,

the data marked as “deleted” will be recovered and used to

restart the program. To ensure data consistency, GC is disabled

during data merging.

Wear leveling: NVMM has much higher write endurance

than flash disks. However, if there are hot data being frequently

accessed, it may still wear out after a large number of writes

to a single cell. We will use both application-level and system-

level approaches to address this issue. At the application level,

we periodically re-layout the NVGRAPH data structure so

that hot data which are frequently read/written are stored in

DRAM. We will discuss it in Section III-C. In addition, we

plan to leverage existing system approaches [33], [48], [49] to

protect NVMM.

Changing the base snapshot: NVGRAPH uses the most-

frequently access (hot) snapshot as the base snapshot to reduce

the pointer-chasing operations in NVMM. For this purpose,

it tracks the access frequency of the snapshots. If the access

frequency of a snapshot Si is significantly and consistently

higher than the current base snapshot, it will choose Si as

the new base snapshot and trigger the operation of changing

the base snapshot by merging the snapshot from S0 to Si and

producing the new delta data for all the non-base snapshots.

NVGRAPH will execute the base changing operations when

Fig. 4. The relationship of the access frequency of nodes and its eigenvector
centrality value. The nodes are sorted based on their memory access frequency
and separated into 10 percentage groups.

the system is in a light load and in the background, thus

minimizing the interference to its front-end workloads. In

the experiments, NVGRAPH monitors the system load and

executes system maintenance operations (e.g., base changing

and GC) when CPU usage is lower than 30%.

Data recovery: After rebooting the crashed compute nodes,

NVGRAPH checks the sanity of the pointers to [An−1
i , Rn−1

i ]
and [An

i , R
n
i ]

N at the pre-defined NVMM addresses. Then it

marks the data in [An
i , R

n
i ]

N as “deleted” for recycling. Fi-

nally, it uses [An−1
i , Rn−1

i ] to restore [An
i , R

n
i ]

D, [An
i , R

n
i ]

N ,

and [An
i , R

n
i ]

C incrementally and on demand.

C. Data Partitioning using Network Properties

NVMM has longer read/write latency than DRAM. We

dynamically change the layout of NVGRAPH to hide the

latency. Specifically, we study how to partition the application-

defined data and runtime states [A,R] according to network

properties and how to allocate DRAM between [Ai, Ri]
D and

snapshot cache for memory efficiency in this section.

For snapshot SBase, NVGRAPH partitions its

[ABase, RBase] into [ABase, RBase]
D in DRAM to store

frequently accessed data and [ABase, RBase]
N in NVMM

to store less frequently accessed data given the constraint

that the size of [A,R]D should be smaller than the DRAM

usage threshold SizeDRAM . For non-base snapshots, we

only incrementally update the partition considering incoming

ingest. We use the following steps to select the hot data to

store in DRAM.

Step 1: Node selection. We select a subset of nodes that are

more influential than others. To this end, we need to design

metrics to measure the importance of a node. We use a simple

heuristic based on network centrality [50] because it is strongly

correlated to the memory access frequency of a node in graph

computation. For example, in the Twitter network [51], we

profiled the memory access frequency of nodes and computed

their eigenvalue centrality when executing rumor-source de-

tection algorithm [1]. We grouped the nodes according to

their memory access frequency. We found that the top 10% of

mostly-visited nodes also have a consistently larger value of

eigenvalue centrality than the nodes in other percentile groups

(e.g., 20% and 30%), as shown in Figure 4. Consequently,

we can use the eigenvalue centrality to identify frequently

accessed nodes in graphs.

Step 2: Edge selection. We randomly choose a few influ-

ential edges from the adjacency list of the selected nodes that

129



have a significantly large value of eigenvalue centrality. The

weighted random sampling approach is used to produce higher

accuracy. Furthermore, we observe that a large number of

common neighbors indicate that the edge could be frequently

accessed by the nodes in a community. Therefore, we use the

reverse of Jaccard co-efficient of neighborhoods as a metric to

quantify the importance of an edge i → j. NVGRAPH only

selects the edges whose value of the reverse of Jaccard co-

efficient is significantly larger than an empirical threshold.

Step 3: Incremental updates. We run the node and edge

selection algorithms only when a new base snapshot is created.

We save the results (e.g., centrality values of nodes and

Jaccard co-efficient of edges) on persistent storage devices.

With incoming ingest, we update the values considering the

added/deleted nodes and edges incrementally to reduce the

overhead of computing the values of network properties [52].

D. Determining the Size of Snapshot Cache

Because NVGRAPH stores both [An
i , R

n
i ]

D and snapshot

cache in DRAM, we need to determine the sizes of the two

data structures so that topology data in snapshot cache and the

application-defined data and runtime states in [An
i , R

n
i ]

D can

all be accessed efficiently. In this paper, we build a memory

access model considering the cache hit ratio and memory

access latency and use the model to determine the size of

snapshot cache and [An
i , R

n
i ]

D at runtime.

Costtotal = CostAR + CostT (1)

Let’s assume the DRAM size is SDRAM, the snapshot cache

size is Scache, and the size of [An
i , R

n
i ]

D is SAR. We also use

α to denote the DRAM allocation factor. Then Scache = α ∗
SDRAM and SAR = (1−α) ∗SDRAM. The total cost Costtotal
of memory access can be modeled using Equation 1, where

CostAR is the cost of accessing A and R and CostT is the cost

of accessing the topology data. We then assume the snapshot

cache hit ratio is Hitcache(α) and the hit ratio in [An
i , R

n
i ]

D

for reading [A,R] is HitAR(β) (β = 1− α) given a DRAM

allocation factor α.

CostT =
1

p− q + 1
∗

q∑

i=p

NumRead
Si

∗ [Hitcache(α) ∗ LatRead
D +

(1−Hitcache(α)) ∗ (LatRead
N + LatWrite

D )]
(2)

CostAR = NumWrite
AR ∗ LatWrite

D +NumRead
AR ∗

[HitAR(β) ∗ LatRead
D + (1−HitAR(β)) ∗ LatRead

N ]
(3)

We then model CostT using Equation 2 where NumRead
Si

is the total number of reads for a snapshot. An application

can access multiple of them (i.e., from snapshot p to q).

LatRead
D is the average DRAM read latency, LatRead

N is the

average NVMM read latency, and LatWrite
D is the average

DRAM write latency. The value of these latency parameters

can be found in Table I. We model CostAR using Equation 3

Fig. 5. The relationship between the total cost and the memory allocation
factor α.

where NumWrite
AR and NumRead

AR are the total number of

writes to [An
i , R

n
i ], respectively. As a result, when we increase

α, Hitcache(α) is increased. Thus, Costcache is decreased.

However, HitAR(β) = HitAR(1 − α) will be decreased

accordingly, therefore, increasing CostAR. Our goal is to find

α that result in a minimum CostT .

We instrument the data structure and the cache to provide

NumRead
Si

, NumWrite
AR , and NumRead

AR at runtime. To estimate

the cost, we also need to know Hitcache(α) and HitAR(1−α).
We build cache hit ratio curve offline using the four repre-

sentative graph applications discussed in Section IV. As an

example, assuming that we have an access cost graph as shown

in Figure 5 we can determine that when α is equal to 0.6,

NVGRAPH obtains the minimum cost of accessing the het-

erogeneous memory devices. As a result, it will allocate 60%

of DRAM to the snapshot cache and the rest to [An
i , R

n
i ]

D.

IV. EVALUATION

We implemented NVGRAPH in C++ as a library. Users need

to create an NVGRAPH object using nvgraph create() and call

nvgraph persistent() to create a persistent version of graph in

NVMM at the end of an execution step. Users have the control

of the granularity/frequency of creating a persistent snapshot.

NVGRAPH supports a general-purpose programming model

as LLAMA. Users can iterate over all nodes or a set of nodes

in the node table. Given a node, users can access its edges

in the adjacency list. We implemented four graph applications

using a vertex-centric model for evaluation. We plan to add

edge-centric implementation of the applications in our future

work.

We conduct an extensive performance study for NVGRAPH

to experimentally answer the following questions.

• What is the performance of NVGRAPH compared to

existing in-memory and out-of-core graph systems?

• Is NVGRAPH scalable for real-world evolving graph

applications and is it effective to reduce failure-recovery

time?

• What are the performance implication of NVGRAPH

when the parameters (e.g., the size of [An
i , R

n
i ]

D and

number of snapshots) change? And how quickly can

NVGRAPH move across snapshots and change base snap-

shots?

• What is the impact of dynamic transformation of NV-

GRAPH on the reduction of NVMM write latency?

130



A. Experimental Setup

Computer server for NVMM emulation: we evaluated

NVGRAPH on a computer server, which is configured with

Intel Xeon E5-2650 3.16GHz CPU (24 cores) and 256 GB

DRAM. The server runs Ubuntu Linux operating system 18.04

with kernel-4.15.0. Each node is configured with one hard

disk (Western Digital Blue 1 TB) for hosting OS and one

SSD (Samsung SSD 850 PRO 256 GB) for hosting the input

datasets. We model NVMM using DRAM on the server

using an emulation based approach. Our emulator is similar

to those used in other projects [53]–[56]. Specifically, our

NVMM emulator introduces extra latency for NVMM write

and read in routines that write to or read from DRAM. The

delay is determined using the worse-case read/write latency

in published data in [14], [17]–[19]. We summarized the

parameters in Table I. We create delays using a software spin

loop [54], [56] that uses the x86 RDTSP instruction to read

the processor timestamp counter and spins until the counter

reaches the intended delay. For sequential access, we also

model NVMM bandwidth by inserting a proper delay after the

request sequence completes to limit the effective bandwidth.

Specifically, the bandwidth is limited to 10GB/s for write and

35GB/s for read in the experiments. A similar approach was

used in Mnemosyne [53]. We use up to 150 GB DRAM to

emulate NVMM.

Graph datasets: We use three graph datasets in the exper-

iments. (1) The LiveJournal dataset has 4.8 million nodes and

69 million edges [57]. In the graph, each journal page is a

node and an edge u→ v represents a hyperlink from page u
to page v. (2) The Twitter dataset has 41.7 million nodes and

1.37 billion edges [51], [58]. In the graph, a user is a node.

An edge u→ v means that user u mentioned v in a tweet. (3)

The R-MAT dataset is a synthetic graph which uses a recursive

matrix model to generate realistic graph datasets [59]. We use

it to evaluate the scalability of NVGRAPH with different graph

size (i.e., number of nodes and degrees of nodes).

Each evolving graph used in the following experiments has

21 snapshots unless otherwise specified. We used the three

graph datasets to generate its corresponding evolving graphs.

Given a graph dataset, we first randomly loaded 80% of its

edges to build the base snapshot. Then we randomly selected

1% of its remaining edges and assigned them to each delta

snapshot until the remaining 20 snapshots were initialized.

Applications: We implemented four graph applications for

benchmarking NVGRAPH. (1) PageRank: The application

outputs a probability distribution which represents the relative

importance of web pages in networks [60]. It executes a

random walk which jumps to a random node with a certain

probability α, and follows a randomly chosen outgoing edge

of a node with probability 1 − α from the current node.

(2) Breadth-first search (BFS): The benchmark traverses a

graph from an arbitrary node of the graph. It explores all

of the neighbor nodes at the present level before moving

on to nodes at the next level. (3) Influence maximization
(Influence): The application selects a set of most influential

users in social networks [61]. It uses the independent cascade

model for information propagation. In the model, when a

node u first becomes active, it is considered contagious. It

has one chance of influencing each inactive neighbor v with

probability fu,v , independently of the history. If the tentative

succeeds, v becomes active. We manually assign fu,v as the

weight of edge u → v in the networks. (4) Rumor source
detection (Rumor): The diffusion of malicious rumors makes

us vulnerable to various risks. The application is designed

to find a set of rumor candidates using k-Minimum Distance

Rumor Source Detection (k-MDRSD) algorithm [1] in online

social networks. The output of the application can then be

used for final investigation of rumor sources.

Graph systems used in the experiments: The four graph

applications are implemented using 5 different graph systems,

respectively, for a comprehensive evaluation. Specifically,

LLAMA [5], NVGRAPH, and Green-Marl [62] are designed

for in-memory computing. GraphChi [11] and X-Stream [15]

are designed for out-of-core computing using disks or SSDs.

In the experiments, we replace disks and SSDs with NVMM

to study their performance in a computing environment config-

ured with NVMM. GreenMarl and X-Stream were designed

for computation using static graphs. They do not support multi-

snapshots of graphs.

Fig. 6. Performance of NVGRAPH compared to LLAMA, GreenMarl,
GraphChi, and X-Stream for (a) LiveJournal and (b) Twitter datasets.

Systems and its storage options: (1) LLAMA (DRAM): it

uses large multiversioned array (LAMA) and edge tables to

store data in DRAM. (2) NVGRAPH: it is the multi-version

persistent data structure which stores data in both DRAM and

NVMM as described in the paper. (3) LLAMA (NVMM): It

uses the LAMA data structure, which is the same as LLAMA

(DRAM). We modified the LLAMA library to use emulated

131



(a) PageRank (b) BFS (c) Influence Maximization (d) Rumor Source Detection

Fig. 7. The execution time of benchmarks as we increased the number of cores from 1 to 24 for the LiveJournal graph.

(a) PageRank (b) BFS (c) Influence Maximization (d) Rumor Source Detection

Fig. 8. The execution time of benchmarks as we increased the number of cores from 1 to 24 for the Twitter graph.

NVMM instead of DRAM. (4) GraphChi: it was designed

to store graph data in on-disk shards, which store all the

edges that have destination in disjoint intervals. We used the

data structure as the original implementation described in the

GraphChi paper. We use NVMM-based tmpfs file system

instead of disks as the storage backend of GraphChi. As a

result, the graph data is stored in NVMM and read to DRAM

for computing using file-system interface. (5) Green-Marl: it

uses CSR as the in-memory data structure to store graph data

in NVMM. (6) X-Stream: it uses stream buffers as the in-

memory data structure to store pre-processed edge data in

DRAM. Its graph data is stored in NVMM-based tmpfs.

B. Comparison to Other Systems

We compare the performance of NVGRAPH to other graph

systems. In the experiments, we used 24 cores if the systems

support multi-threading using OpenMP or pthreads library.

The applications accessed a single snapshot. When NVGRAPH

is used, the size of [An
i , R

n
i ]

D is set to 180 MB and 3.6

GB for LiveJournal and Twitter graphs respectively. The

rest is used for the snapshot cache. LLAMA (DRAM) and

GreenMarl store all the graph data in DRAM. Their maximum

memory usage is 14.7 GB and 15.4 GB, respectively. LLAMA

(NVMM) stores the 14.7 GB data in NVMM. For the Twitter

graph, the out-of-core systems GraphChi and X-Stream used

up to 13.8 GB and 18.2 GB DRAM and 23.0 GB and 17.6 GB

NVMM respectively. The results are summarized in Figure 6.

Compared to in-memory graph systems, we have three

observations. (1) The execution time of NVGRAPH is 47%

smaller than that of LLAMA (NVMM) on average because

it stores [An
i , R

n
i ] and snapshot cache in DRAM to hide

NVMM-induced latency. For example, for the LiveJournal

datasets, it reduces the number of writes by 30%, 30%, 17%,

and 55% for PageRank, BFS, Influence Maximization, and

Rumor Source Detection, respectively. (2) Its performance is

71.3% slower than that of LLAMA (DRAM), which stores

the whole graph data in DRAM. However, for Influence
and Rumor, nodes with larger centrality values tend to have

higher memory access frequency. When NVGRAPH uses this

network property to explore the locality of memory accesses,

its execution time is reduced by up to 43% and 45% for

Influence Maximization and Rumor Source Detection respec-

tively and the results are very close to those systems using

DRAM only. (3) GreenMarl outperforms LLAMA (DRAM)

and NVGRAPH. It also uses CSR as the in-memory data

structure. Because LLAMA (DRAM) and NVGRAPH use

index tables and continuation pointers for the management

of multiple snapshots, their memory access latency is longer

for pointer chasing to access delta snapshots and application-

defined data in NVMM.

Compared to out-of-core graph systems, we have the fol-

lowing observations. NVGRAPH outperforms both GraphChi

and X-Stream even though the latter two systems accessed

graph data in an NVMM-based file system. For example, it

can reduce the execution time of Influence Maximization and

Rumor Source Detection by up to 78% and 37% respectively.

The reason is that NVGRAPH uses a variant of CSR as

the in-memory data structure, which is more compact and

byte-addressable. As a comparison, the basic I/O unit is a

shard in GraphChi. It needs to repeatedly read a single

shard multiple times for random walking operations, which

are used extensively in Influence Maximization and Rumor

Source Detection. As an example with the Twitter dataset,

GraphChi read 34.5 GB and wrote 11.5 GB for Influence

Maximization. It read 36.8 GB and wrote 13.8 GB for Rumor

Source Detection. Consequently, I/O operations of reading

shards slowed down the applications. Another reason is that

the I/Os through tmpfs file systems were slow due to higher

132



(a) PageRank (b) BFS (c) Influence Maximization (d) Rumor Source Detection

Fig. 9. The execution time of benchmarks as we increase the number of nodes for the R-MAT graph.

(a) PageRank (b) BFS (c) Influence Maximization (d) Rumor Source Detection

Fig. 10. The execution time of benchmarks as we increase the number of node degree for the R-MAT graph.

kernel overhead than direct memory access used in in-memory

graph systems, e.g., NVGRAPH and LLAMA.

C. Scalability of NVGRAPH

In this section, we first study the scalability of NVGRAPH as

we increase the number of cores from 1 to 24. The applications

accessed a single snapshot. Figure 7 and Figure 8 show the

execution time for the LiveJournal and Twitter graph. Because

the performance trend of GreenMarl is similar to LLAMA

(DRAM) and X-Stream is similar to GraphChi, we did not

show their scalability here. We can observe that NVGRAPH

scales well compared to LLAMA (DRAM) and LLAMA

(NVMM) for both of the graphs. For NVGRAPH, when the

number of cores is increased from 1 to 24, its execution

speedup of PageRank, BFS, Influence Maximization, and

Rumor Source Detection is on average 21X, 3.6X, 15X, and

2.5X respectively. We observe that the cache miss ratio of the

applications using NVGRAPH and LLAMA are 45.4% and

45.5%, respectively, while the cache miss ratio with the out-

of-core approaches is 61.7% on average.

The performance of BFS and Rumor Source Detection is

not sensitive to the number of cores because (1) the time

ratio of atomic operations (e.g., ATOMIC ADD) with regard

to the total execution time of the applications is increased

from 8% with one core to 35% with 24 cores, making it less

scalable; (2) the size of parallelizable code is small. GraphChi

scales well with a small number of cores for PageRank and

Rumor Source Detection. Its curve levels off when the number

of cores is larger than 8. The reason is that GraphChi uses

the Linux buffer cache to alleviate I/O overhead. However,

the buffer cache is shown to have limited scalability with

multi-core CPUs [63]. Another observation is NVGRAPH

outperforms LLAMA(DRAM) with the LiveJournal graph,

i.e., for Influence Maximization. It is because of the overhead

of maintaining data pages in LLAMA.

In the second experiment, we study the scalability of NV-

GRAPH as we increase the number of nodes and the average

node degree of the graph respectively. Figure 9 shows the

execution time of applications as we increase the number

of nodes in the graph from 225 to 229 and fix the average

degree of the nodes to 16. Figure 10 shows the execution

time of applications as we increase the number of degree

of nodes from 20 to 60 and fix the total number of nodes

to 225. We used R-MAT to generate the synthetic graphs

using probabilities a = 0.57, b = 0.19, c = 0.19. These

parameters are recommended by Graph500 [64] to produce

graphs with the scale-free property found in real-world graphs.

In this experiment, the largest graph has 100 million nodes and

10 billion edges. The results show that NVGRAPH scales as

well as other in-memory graph systems as we increase the

number of nodes and node degrees. In contrast, the execu-

tion time of applications using GraphChi is increased super-

linearly, showing its poor scalability even using NVMM-

based file systems as storage backends. Another observation

is that the performance of NVGRAPH is very close to that

of LLAMA (DRAM) for Influence Maximization and Rumor

Source Detection. This is because the layout transformation

using centrality reduces the execution time of the applications

by 36% on average.

D. Effectiveness of Dynamic Transformation
NVGRAPH uses dynamic transformation to move frequently

accessed nodes from NVMM to DRAM, therefore, reducing

NVMM-induced memory latency. In this section, we evaluate

the effectiveness of dynamic transformation of NVGRAPH

with two approaches. In the first approach, we randomly

select the nodes from input graphs and store them in DRAM

(random). In the second approach, we select the nodes

according to their eigenvalue centrality (centrality). In the

experiments, we increased the ratio of nodes in DRAM

from 10% to 30% to show the impact of DRAM size. The

133



Fig. 11. Execution time speedup of graph applications using dynamic
transformation with randomly selected nodes and selection using network
centrality. The number in the parentheses indicates the ratio of nodes stored
in DRAM.

application accessed a single snapshot. Figure 11 shows the

execution time speedup compared to the system that stores

100% of nodes in NVMM.

We have three observations. (1) Dynamic transformation

according to node’s centrality outperforms that using random

selection. For example, for Influence Maximization, its exe-

cution time using centrality is reduced by up to 44% because

the total number of writes and reads in NVMM is reduced by

2.2X and 30% respectively. (2) The execution time of graph

applications is reduced by 25% on average as we increased

the DRAM size of [An
i , R

n
i ]

D from 10% to 50%. This is

because it reduces the number of merging operations and the

number of NVMM accesses with more nodes being stored

in DRAM. (3) The improvement ratio of the speedup varies

across applications. As an example, the maximum speedup

of Influence Maximization is 3.8X while that of PageRank is

only 2.1X on average. After profiling, we found that Influence

Maximization has higher temporal locality than PageRank. Its

average access frequency of nodes in DRAM is 36 compared

to 13 for PageRank.

E. Performance of Multi-Snapshot Access

NVGRAPH stores evolving graphs as one base snapshots

and multiple delta snapshots. We evaluate its multi-snapshot

support in this section. In the experiments, we used the Twitter

dataset to generate N snapshots where N= 1, 2, 6, 11, 51, 101,

and 201. We first randomly selected 80% of the edges to create

the base snapshot and then assigned the remaining 20% of the

edges to the remaining N − 1 snapshots. Using this approach,

we simulate the small ingests after an initial large ingest to a

store of evolving graphs. Because GraphChi has consistently

worse performance than both LLAMA and NVGRAPH as

shown in Section IV-C, we exclude its measurements in the

following results.

We show the execution time of major operations of NV-

GRAPH including loading, flattening, changing base snapshot

(rebasing), as well as the total memory (DRAM + NVMM)

usage in Figure 12. NVGRAPH has a smaller memory usage

than LLAMA because the latter uses two-level node indexing

table based on data pages to reduce I/O cost. We are able

to greatly simplify the design of index tables in NVGRAPH

to take advantage of the non-volatility and byte-addressability

of NVMM, thus reducing its memory usage for maintaining

the data pages. The loading, flattening, and rebasing time of

NVGRAPH is 61.8% longer than LLAMA (DRAM) for the

induced-latency of NVMM.

We show the execution time of the graph applications

across multiple snapshots in Figure 13. The execution time

of NVGRAPH was increased by 0.38 sec/snapshot when the

number of snapshots was increased from 1 to 11. Its time was

increased by 0.04 sec/snapshot when the number of snapshots

was increased from 11 to 201. This is because the size of delta

snapshots became much smaller and the time of accessing the

delta data is reduced accordingly.

F. Failure Recovery

System
Setting

LLAMA
(DRAM)

NVGRAPH

(1 core)
NVGRAPH

(24 cores)
GraphChi

Time (sec) 356.3 43.8 2.1 1105.6
TABLE II

TIME SPENT ON THE RECOVERY OF GRAPH STATES.

In this section, we compare the time to restart the graph

applications after failures using LLAMA, GraphChi, and

NVGRAPH. In the experiments, we run PageRank with the

Twitter dataset. We sent a SIGTERM signal at t=10 sec to the

application and forced it to execute failure recovery handlers in

the programs. Specifically, for LLAMA (DRAM), the handler

loads the Twitter dataset to produce the evolving graph in

memory. For GraphChi, it pre-processes the dataset to generate

shards. And for NVGRAPH, it marks the data in [An−1
i , Rn−1

i ]
as “deleted”. Then it uses [An−1

i , Rn−1
i ] to restore [An

i , R
n
i ]

C

and [An
i , R

n
i ]

N on demand. Table II shows the execution

time spent on the recovery of graph states. Compared to

LLAMA (DRAM), the recovery time with NVGRAPH is

reduced from 356.3 sec to 2.1 sec (99%). The speedup of using

NVGRAPH is 8X and 25X compared to LLAMA (DRAM)

and GraphChi respectively because NVGRAPH operates at

memory bandwidth speed while the other two need to read

the graph data stored in NVMM based file system. We also

observe that NVGRAPH (24 cores) outperforms NVGRAPH (1

core) because with the support of multi-threading NVGRAPH

can further speed up the operations (e.g., marking “deletion”)

in failure recovery with excellent scalability using threading.

V. CONCLUSION

In this paper, we describe the design and implementation

of NVGRAPH, a novel crash-consistent evolving graph data

structure, for both computing and in-memory storage of evolv-

ing graphs in NVMM. NVGRAPH uses a multi-version graph

data structure, wherein a minimum of one version of its data is

stored in NVMM to provide the desired durability at runtime

for failure recovery, and another version is stored in both

DRAM and NVMM to reduce the NVMM-induced memory

latency. To make the system truly effective, the layout of

NVGRAPH is dynamically transformed according to network

properties and data access patterns of workloads. A software

134



(a) Total Memory Usage (b) Loading (c) Flatten (d) Rebasing

Fig. 12. The time of loading, flattening, and rebasing multiple snapshots of the Twitter graph. Because LLAMA does not support rebasing, we did not present
its results in (d).

(a) PageRank (b) Rumor Source Detection

Fig. 13. Execution time across multiple snapshots for the Twitter graph. We
did not present the results of BFS and Influence Maximization as they show
similar trends.

prototype of NVGRAPH is developed and used to implement

four representative real-world graph applications. Our exper-

imental results show that the performance of NVGRAPH is

comparable to other in-memory data structures (e.g., CSR and

LLAMA) but with 70% less DRAM usage in its execution.

Compared to the out-of-core graph system (e.g., GraphChi,

X-stream), it offers up to the 21X speedup of execution

time. Furthermore, it scales well up to 10 billion edges, 201

snapshots, and 24 cores on a single server. Finally, it provides

crash consistency and reduces the failure recovery time of

graph applications by up to 99% when NVGRAPH is used

and multi-threading support is enabled.

Our future work includes extending NVGRAPH to a dis-

tributed version to serve computation-intensive graph applica-

tions and studying the enforcement of crash consistency for

computing with temporal graphs.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

helpful comments and feedback. This research was supported

in part by NSF CNS-1906541 and WSUV Research Grant.

REFERENCES

[1] S. Lim, J. Hao, Z. Lu, X. Zhang, and Z. Zhang, “Approximating the k-
minimum distance rumor source detection in online social networks,” in
2018 27th International Conference on Computer Communication and
Networks (ICCCN), 2018.

[2] X. Zhang, U. Khanal, X. Zhao, and S. Ficklin, “Making sense of
performance in in-memory computing frameworks for scientific data
analysis: A case study of the spark system,” JPDC, vol. 120, 2018.

[3] G. Liu, X. Chen, Z. Wang, R. Dai, J. Wu, C. Yuan, and J. Tan, “Evolving
graph based power system ems real time analysis framework,” in 2018
IEEE International Symposium on Circuits and Systems (ISCAS), May
2018, pp. 1–5.

[4] R. Pearce, M. Gokhale, and N. M. Amato, “Multithreaded asynchronous
graph traversal for in-memory and semi-external memory,” in
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11.
[Online]. Available: https://doi.org/10.1109/SC.2010.34

[5] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, “Llama:
Efficient graph analytics using large multiversioned arrays,” in 2015
IEEE 31st International Conference on Data Engineering, ser. ICDE’15,
2015.

[6] X. Ju, D. Williams, H. Jamjoom, and K. G. Shin, “Version traveler: Fast
and memory-efficient version switching in graph processing systems,” in
2016 USENIX Annual Technical Conference (USENIX ATC 16), 2016.

[7] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Presented as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), 2012.

[8] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed graphlab: A framework for machine
learning and data mining in the cloud,” Proc. VLDB Endow.,
vol. 5, no. 8, pp. 716–727, Apr. 2012. [Online]. Available:
https://doi.org/10.14778/2212351.2212354

[9] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,
D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang, “The ramcloud storage system,” ACM Trans. Comput.
Syst., vol. 33, no. 3, pp. 7:1–7:55, Aug. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2806887

[10] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and
A. S. Szalay, “Flashgraph: Processing billion-node graphs on an array
of commodity ssds,” in Proceedings of the 13th USENIX Conference on
File and Storage Technologies, ser. FAST’15, 2015.

[11] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale
graph computation on just a PC,” in Presented as part of the 10th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12). Hollywood, CA: USENIX, 2012, pp. 31–46. [On-
line]. Available: https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/kyrola

[12] J. J. Yang and R. S. Williams, “Memristive devices in computing system:
Promises and challenges,” J. Emerg. Technol. Comput. Syst., vol. 9, no. 2,
May 2013.

[13] D. X. Memory, https://www.intel.com/content/www/us/en/architecture-
and-technology/intel-optane-technology.html.

[14] “Intel optane dimms,” https://blocksandfiles.com/2018/12/13/intel-
confirms-optane-dimm-and-ssd-speed/.

[15] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, ser.
SOSP ’13. New York, NY, USA: ACM, 2013, pp. 472–488. [Online].
Available: http://doi.acm.org/10.1145/2517349.2522740

[16] H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin, “Efficient check-
pointing of loop-based codes for non-volatile main memory,” in 2017
26th International Conference on Parallel Architectures and Compila-
tion Techniques (PACT), Sep. 2017, pp. 318–329.

[17] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-addressable
memory,” in Proceedings of the 9th USENIX Conference on File and
Stroage Technologies, ser. FAST’11, 2011.

[18] S. N. Shimin Chen, Phillip B. Gibbons, “Rethinking database algorithms

135



for phase change memory,” in CIDR’11: 5th Biennial Conference on
Innovative Data Systems Research, 2011.

[19] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proceedings of the 36th
Annual International Symposium on Computer Architecture, ser. ISCA
’09, 2009.

[20] “Persistent memory programming,” https://pmem.io/.

[21] U. Khurana and A. Deshpande, “Efficient snapshot retrieval over histor-
ical graph data,” in 2013 IEEE 29th International Conference on Data
Engineering (ICDE), ser. ICDE’13, 2013.

[22] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,
W. Chen, and E. Chen, “Chronos: A graph engine for temporal graph
analysis,” in Proceedings of the Ninth European Conference on Com-
puter Systems, ser. EuroSys’14, 2014.

[23] K. Vora, R. Gupta, and G. Xu, “Synergistic analysis of evolving graphs,”
ACM Trans. Archit. Code Optim., vol. 13, no. 4, pp. 32:1–32:27, Oct.
2016. [Online]. Available: http://doi.acm.org/10.1145/2992784

[24] S. Ko and W.-S. Han, “Turbograph++: A scalable and fast
graph analytics system,” in Proceedings of the 2018 International
Conference on Management of Data, ser. SIGMOD ’18. New
York, NY, USA: ACM, 2018, pp. 395–410. [Online]. Available:
http://doi.acm.org/10.1145/3183713.3196915

[25] K. Nilakant, V. Dalibard, A. Roy, and E. Yoneki, “Prefedge: Ssd
prefetcher for large-scale graph traversal,” in Proceedings of Interna-
tional Conference on Systems and Storage, ser. SYSTOR’14, 2014.

[26] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim,
“Mosaic: Processing a trillion-edge graph on a single machine,” in
Proceedings of the Twelfth European Conference on Computer Systems,
ser. EuroSys ’17. New York, NY, USA: ACM, 2017, pp. 527–543.
[Online]. Available: http://doi.acm.org/10.1145/3064176.3064191

[27] J. Malicevic, S. Dulloor, N. Sundaram, N. Satish, J. Jackson, and
W. Zwaenepoel, “Exploiting nvm in large-scale graph analytics,” in
Proceedings of the 3rd Workshop on Interactions of NVM/FLASH with
Operating Systems and Workloads, ser. INFLOW’15, 2015.

[28] R. Hagmann, “Reimplementing the cedar file system using logging and
group commit,” in Proceedings of the Eleventh ACM Symposium on
Operating Systems Principles, ser. SOSP ’87, 1987.

[29] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data
structures persistent,” J. Comput. Syst. Sci., vol. 38, no. 1, Feb. 1989.

[30] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, “Plfs: A checkpoint filesystem for parallel
applications,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09, 2009.

[31] P. J. Varman and R. M. Verma, “An efficient multiversion access
structure,” IEEE Transactions on Knowledge and Data Engineering,
vol. 9, no. 3, pp. 391–409, May 1997.

[32] C. Mohan, “Repeating history beyond aries,” in Proceedings of the 25th
International Conference on Very Large Data Bases, ser. VLDB ’99,
1999.

[33] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,”
in Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, ser. SOSP ’09, 2009, pp. 133–146.

[34] S. Chen, F. Zhang, L. Liu, and L. Peng, “Efficient gpu nvram
persistence with helper warps,” in Proceedings of the 56th Annual
Design Automation Conference 2019, ser. DAC ’19. New York,
NY, USA: ACM, 2019, pp. 155:1–155:6. [Online]. Available:
http://doi.acm.org/10.1145/3316781.3317810

[35] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung,
“ido: Compiler-directed failure atomicity for nonvolatile memory,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Oct 2018, pp. 258–270.

[36] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
Proc. VLDB Endow., vol. 8, no. 7, Feb. 2015.

[37] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-
tree: Reducing consistency cost for nvm-based single level systems,”
in Proceedings of the 13th USENIX Conference on File and Storage
Technologies, ser. FAST’15, 2015.

[38] “Gerris: a tree-based adaptive solver for the incompressible euler equa-
tions in complex geometries,” Journal of Computational Physics, vol.
190, no. 2, pp. 572 – 600, 2003.

[39] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V.
Lewandowski, G. Rewoldt, T. S. Hahm, and J. Manickam, “Gyro-

Kinetic simulation of global turbulent transport properties in tokamak
experiments,” vol. 13, no. 9, 2006, p. 092505.

[40] X. Zhang, K. Davis, and S. Jiang, “IOrchestrator: Improving the
performance of multi-node I/O systems via inter-server coordination,”
in Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC’10),
2010.

[41] X. Zhang, K. Davis, and S. Jiang, “Qos support for end users of
i/o-intensive applications using shared storage systems,” in SC ’11:
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov 2011, pp. 1–12.

[42] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, “Optimizing
checkpoints using nvm as virtual memory,” in Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International Symposium on, 2013,
pp. 29–40.

[43] A. M. Caulfield, J. Coburn, T. Mollov, A. De, A. Akel, J. He, A. Ja-
gatheesan, R. K. Gupta, A. Snavely, and S. Swanson, “Understanding
the impact of emerging non-volatile memories on high-performance,
io-intensive computing,” in Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10, 2010.

[44] B. Nguyen, H. Tan, and X. Zhang, “Large-scale adaptive mesh simu-
lations through non-volatile byte-addressable memory,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC’17, 2017.

[45] B. Nguyen, H. Tan, K. Davis, and X. Zhang, “Persistent octrees for par-
allel mesh refinement through non-volatile byte-addressable memory,”
IEEE Transactions on Parallel & Distributed Systems, p. 1. [Online].
Available: doi.ieeecomputersociety.org/10.1109/TPDS.2018.2867867

[46] L. Liu, S. Yang, L. Peng, and X. Li, “Hierarchical hybrid memory
management in os for tiered memory systems,” IEEE Transactions on
Parallel and Distributed Systems, pp. 1–1, 2019.

[47] L. Liu, Y. Li, C. Ding, H. Yang, and C. Wu, “Rethinking memory man-
agement in modern operating system: Horizontal, vertical or random?”
IEEE Transactions on Computers, vol. 65, no. 6, pp. 1921–1935, June
2016.

[48] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in Proceedings of the 36th Annual International Symposium on Com-
puter Architecture, ser. ISCA ’09, 2009.

[49] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in Proceedings
of the 36th Annual International Symposium on Computer Architecture,
ser. ISCA ’09, 2009.

[50] M. E. J. Newman, Networks : An introduction, 2010.

[51] “476 million twitter tweets,” https://snap.stanford.edu/data/twitter7.html.

[52] B. Bahmani, A. Chowdhury, and A. Goel, “Fast incremental
and personalized pagerank,” Proc. VLDB Endow., vol. 4,
no. 3, pp. 173–184, Dec. 2010. [Online]. Available:
http://dx.doi.org/10.14778/1929861.1929864

[53] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” SIGPLAN Not., vol. 47, no. 4, pp. 91–104, Mar.
2011.

[54] J. Ou, J. Shu, and Y. Lu, “A high performance file system for non-volatile
main memory,” in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16, 2016.

[55] J. Huang, K. Schwan, and M. K. Qureshi, “Nvram-aware logging in
transaction systems,” Proc. VLDB Endow., vol. 8, no. 4, Dec. 2014.

[56] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and
M. M. Swift, “Aerie: Flexible file-system interfaces to storage-class
memory,” in Proceedings of the Ninth European Conference on Com-
puter Systems, ser. EuroSys ’14, 2014.

[57] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: Membership, growth, and evolution,”
in Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’06. New
York, NY, USA: ACM, 2006, pp. 44–54. [Online]. Available:
http://doi.acm.org/10.1145/1150402.1150412

[58] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a
social network or a news media?” in Proceedings of the 19th
International Conference on World Wide Web, ser. WWW ’10. New
York, NY, USA: ACM, 2010, pp. 591–600. [Online]. Available:
http://doi.acm.org/10.1145/1772690.1772751

136



[59] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A Recursive
Model for Graph Mining, pp. 442–446. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611972740.43

[60] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999, previous number = SIDL-WP-1999-0120.
[Online]. Available: http://ilpubs.stanford.edu:8090/422/

[61] F. Bonchi, “Influence propagation in social networks: A data mining
perspective,” in 2011 IEEE/WIC/ACM International Conferences on Web
Intelligence and Intelligent Agent Technology, vol. 1, Aug 2011, pp. 2–2.

[62] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-marl: A
dsl for easy and efficient graph analysis,” in Proceedings of the
Seventeenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVII.
New York, NY, USA: ACM, 2012, pp. 349–362. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2151013

[63] D. Zheng, R. Burns, and A. S. Szalay, “A parallel page cache:
IOPS and caching for multicore systems,” in Presented as
part of the 4th USENIX Workshop on Hot Topics in Storage
and File Systems. Boston, MA: USENIX, 2012. [Online].
Available: https://www.usenix.org/conference/hotstorage12/workshop-
program/presentation/Zheng

[64] “Graph 500,” https://graph500.org/.

137


