
Unfair Scheduling Patterns in NUMA Architectures

Naama Ben-David*

Carnegie Mellon University
nbendavi@cs.cmu.edu

Ziv Scully*

Carnegie Mellon University
zscully@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Abstract—Lock-free algorithms are typically designed and
analyzed with adversarial scheduling in mind. However, on
real hardware, lock-free algorithms perform much better than
the adversarial assumption predicts, suggesting that adversarial
scheduling is unrealistic. In pursuit of more realistic analyses,
recent work has studied lock-free algorithms under gentler
scheduling models. This begs the question: what concurrent
scheduling models are realistic? This issue is complicated by
the intricacies of modern hardware, such as cache coherence
protocols and non-uniform memory access (NUMA).

In this paper, we thoroughly investigate concurrent scheduling
on real hardware. To do so, we introduce Severus, a new
benchmarking tool that allows the user to specify a lock-free
workload in terms of the locations accessed and the cores
participating. Severus measures the performance of the workload
and logs enough information to reconstruct an execution trace.

We demonstrate Severus’s capabilities by uncovering the
scheduling details of two NUMA machines with different microar-
chitectures: one AMD Opteron 6278 machine, and one Intel Xeon
CPU E7-8867 v4 machine. We show that the two architectures
yield very different schedules, but both exhibit unfair executions
that skew toward remote nodes in contended workloads.

I. INTRODUCTION

Creating pragmatic concurrent programs is essential for

making the best use of modern multicore systems. When

considering what constitutes a pragmatic program, designers

often aim for high throughput, but another important feature is

fairness among the cores participating in the algorithm. Fairness

is sometimes a goal in its own right, such as in multicore web

servers and other applications where each individual core’s

responsiveness is important. Even outside of such use cases,

fairness can be important as a prerequisite for performance.

Parallel programs in which work is statically assigned to cores,

as is routine when using POSIX Threads1 or OpenMP2, often

have synchronization barriers, at which point the last core to

complete its work is the performance bottleneck. Such programs

run faster if there is fairness among cores.

A large body of work has focused on designing algorithms

that are lock-free or have other fairness guarantees [1], [2],

[3], [4], [5]. However, lacking an understanding of memory

operation scheduling on modern hardware, lock-free algorithms

are typically designed with an adversarial scheduler in mind,

meaning memory operations can happen in any order consistent

with the memory model. While this guarantees correctness on

any hardware, it leads to overly pessimistic predictions of

*The first two authors contributed equally to the paper.
1https://ieeexplore.ieee.org/document/8277153/
2https://www.openmp.org

Algorithm 1 Generic lock-free algorithm (simplified)

1: loop
2: parallel work()
3: repeat
4: old← read(x)
5: new← atomic modify(old)
6: success← CAS(x, old, new)
7: until success
8: end loop

performance and fairness. This observation has been made

by practitioners and theoreticians alike, and has led to most

lock-free algorithms being evaluated exclusively through exper-

imentation [6], [7], [8], [9], [1]. While experimental analysis of

these algorithms is important, experiments can miss practical

use cases and yield misleading results [10]. Furthermore, holes

in our theoretical understanding can cause practical designs to

be overlooked [11], [12].

A recent line of work aims to relax adversarial scheduling

assumptions to better reflect reality [13], [14], [15], [16], [11],

[17]. It is well-known that if the hardware schedule guarantees

fairness properties, then algorithms can be faster, simpler, and

more powerful [18], [11], [19]. However, it is not clear if such

fairness properties or other assumptions are realistic. Thus, to

understand the performance of lock-free algorithms, we must

study the scheduling of memory operations in hardware.

Let us first consider the kinds of demands that most concur-

rent lock-free algorithms make on the scheduler. Many lock-free

algorithms have the structure shown in Algorithm 1 [14], [16].

All cores run parallel work (line 2), that they do independently,

and then synchronize in an atomic modify section (lines 3–7).

In this section, a core executes a modification of location x
that must not be interrupted by any other core’s modification

of x. Thus, the ordering, or schedule, of reads and CASes

of x has a large impact on the fairness and performance of the

algorithm. Intuitively, a good schedule has:

• Long-term fairness: we want each core to perform the

same number of read and successful CAS instructions

over any sufficiently long period of time.

• Short-term focus: for performance, whenever a core reads

x, we want it to execute its following CAS without other

cores performing any read or CAS instructions in between.

Having outlined what a good memory operation schedule

looks like, we ask: what do memory operation schedules look

205

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00024

like on modern hardware? Do practical schedules have the

fairness and focus properties we want for lock-free algorithms?

Unfortunately, this is a difficult question to answer be-

cause the complexity of modern memory hierarchies makes

scheduling patterns difficult to predict. Design decisions in

aspects such as the cache coherence protocol and non-uniform

memory access (NUMA) can have a drastic impact on the

schedule. However, exactly how different designs correspond

to scheduling patterns is unclear, especially when multiple

features interact with one another.

For example, it is well known that the latency of a local-

node cache hit is much lower than that of a remote-node

cache hit [20]. This encourages the design of NUMA-aware

algorithms [21], [22], [5], [23] that minimize remote-node

memory accesses. However, recent work on arbitration policies

in the processor-interconnect [24] shows that when most but not

all memory accesses are local—which is exactly the situation

for many NUMA-aware algorithms—hardware can unfairly

bias the schedule towards remote nodes. Thus we see that a

NUMA architecture can yield unexpected schedules.

A. Our Contributions

In this paper, we provide a way to test the schedules

produced by today’s machines and find patterns that can be

important for fairness and performance. To do so, we introduce

a benchmarking tool, called Severus, that allows the user to

specify a workload, and tracks the execution trace produced. We

show how to use Severus to understand the scheduling patterns

of two modern NUMA machines, and provide a plotting library

that helps visualize the results in an intuitive way.

Severus allows the user to play with several parameters of

the execution, including which threads participate in a run,

what locations are accessed, how much local work each thread

does, and how long each thread waits between two consecutive

operations. With this flexibility, Severus can simulate the

workloads that are most relevant to the user’s application.

We describe Severus and use it to demonstrate the following

takeaways:

• Operation schedules are not fair by default.

• Uniform random scheduling assumptions do not accurately

reflect real schedules.

• The amount of local work a thread does in a lock-free

algorithm, particularly the length of the atomic modify
section, has a large but hard-to-predict impact on the

algorithm’s performance.

• The details of these effects are different on each platform,

but these details can be revealed by tools such as Severus.

We believe that these new findings can guide both the design

of new pragmatic concurrent algorithms on existing machines

and the development of new memory architectures that enable

faster and more fair concurrent executions.

We reach the above takeaways by studying the memory

operation scheduling patterns of two NUMA machines: an

AMD Opteron 6278 and an Intel Xeon CPU E7-8867 v4.

These two machines exhibit different architectural designs:

the Intel has four equidistant nodes and uses a hierarchical

Memory

Cache

Memory

Cache

Memory

Cache

Memory

Cache

CPUs

CPUs

CPUs

CPUs

Interconnect

NUMA Node 2 NUMA Node 3

Fig. 1: NUMA architecture with 4 NUMA nodes.

cache coherence protocol, whereas the AMD is arranged in

eight nodes, with two different distances between them, and

employs a flat cache coherence mechanism. We show how

these design choices translate to differences in schedules. While

the scheduling patterns remain mostly round-robin on AMD

regardless of the cores participating in a run, on Intel, the

schedule changes drastically depending on whether cores from

more than one node are running. Interestingly, both machines

show higher throughput for cores that access remote contended

memory. We characterize workloads in which this phenomenon

is prominent, and show how this unfairness changes as certain

parameters of the program are varied.

II. BACKGROUND AND MACHINE DETAILS

A. NUMA Architectures

NUMA architectures are everywhere in modern machines.

Cores are organized into groups called nodes, and each node

has cache as well as main memory (see Figure 1). Within a

node, cores may have one or two levels of private cache, and

a shared last level cache. Each core can often be split into two

logical threads, called hyperthreads. All cores can access all

shared caches and memory, through an interconnect network

between the nodes. However, accesses to cache and memory

in a core’s own node (local acceses) are faster than accesses

to the cache or memory of a different node (remote accesses).

B. Lock-Free Algorithms and Scheduling

Lock-free algorithms guarantee that progress is made in the

algorithm regardless of the number of threads participating or

their relative speeds. The correctness of lock-free algorithms

is typically proved under an adversarial model, whereby

a powerful adversary determines the schedule of atomic

operations on each location, thus controlling who succeeds and

who fails at any time. The adversarial model produces robust

algorithms, but lacks predictive capabilities for performance.

Usually, the best performance guarantees that can be proven

under an adversarial scheduler are embarrassingly pessimistic.

Thus, recent work in lock-free algorithms proposes different

scheduling models, with the goal of being able to analytically

206

TABLE I: Machine details.

SPECS INTEL AMD

CPU family Xeon E7-8800 Operton 6200
Sockets 4 4
Nodes 4 8
Cores 72 32

Hyperthreading 2-way 2-way
Frequency 1200-3300 MHz 2400 MHz
L1i Cache 32k 16k
L1d Cache 32k 64k
L2 Cache 256k 2048K
L3 Cache 46080K 6144K

Coherence protocol MESIF MOESI

N0 N1 N2 N3 N4 N5 N6 N7

N0 0 1 1 2 1 2 1 2
N1 1 0 2 1 1 2 2 1
N2 1 2 0 1 1 1 1 1
N3 2 1 1 0 1 1 2 2
N4 1 1 1 1 0 1 1 2
N5 2 2 1 1 1 0 2 1
N6 1 2 1 2 1 2 0 1
N7 2 1 1 2 2 1 1 0

N1

N0 N4 N3

N5N2N6

N7

Fig. 2: AMD node layout and distance matrix.

predict performance. Common alternative models include that

the scheduler picks the next thread uniformly at random

[14], [17], or with some predetermined distribution [13].

The goal of our work is to test whether such assumptions

are reasonable, and to understand what factors of modern

architectures most affect the operation scheduling, and which

most affect performance.

C. Machines Used

We test our benchmark on two different NUMA architectures;

an Intel Xeon CPU E7-8867 v4 machine with 4 nodes and

72 cores with Quick Path Interconnect technology, and an

AMD Opteron 6278 machine with 8 nodes and 32 cores,

using HyperTransport. Throughout this paper, we refer to

these machines as simply Intel and AMD respectively. Both

machines have a per-core L1 and L2 cache (shared among a

pair of hyperthreads), and a shared L3 cache on each node.

The details of the two machines are shown in Table I. The

Intel machine’s interconnect layout is fully connected, and

therefore all nodes are at the same distance from one another.

However, this is not the case for the AMD machine, in which

there are two different distances among the nodes. The AMD

node layout and distance matrix is shown in Figure 2.

Both machines have an atomic compare-and-swap (CAS)

instruction and an atomic fetch-and-increment (F&I) or fetch-

and-add (F&A, also called xadd) instruction. A CAS instruction

takes in a memory word, an old value old, and a new value

new, and changes the word’s value to new if the previous value

was old. In this case, it returns true, and is said to succeed.

Otherwise, the CAS does not change the memory word. It

returns false and we say that it fails. The F&I instruction takes

in a memory word and increments its value. It always returns

the value of the word immediately before the increment. Both

the CAS and the F&I instructions fully sequentialize accesses.

III. THE BENCHMARK

Severus provides many settings to simulate the behavior of a

large range of applications. For clarity, we begin by describing

one simple setting, and then show ways to extend it.

At its core, Severus simply has all threads contend on

updating a single memory location, either with a read-modify-

CAS loop, or with an F&A. We measure throughput; how

many changes to the memory location were made. To retain

information about the execution, we also have a logging option,

in which we have each thread record the values it observed

on the shared location every time the thread accesses it. For

the F&A case, simply recording these numbers allows us to

reconstruct the order in which threads incremented the shared

variable. For a CAS-based benchmark, we can control what

values the threads write into the shared variable. To allow

reconstruction of the execution order, we have each thread

CAS in its own id and a timestamp. In this way, when threads

record the values they observed, they are in effect recording

which thread was the last one to modify the variable with

a successful CAS. From this information, we obtain a total

order of successful CASes, and a partial order on the reads

and unsuccessful CAS attempts.

Severus provides parameters to modify the basic benchmark

to reflect different workloads, including the following settings.

• The number of shared variables contended on.

• Which node each shared variable is allocated on.

• Which threads participate.

• For each thread, which shared variables it should access.

• Length of execution.

• Whether or not the threads should log execution informa-

tion. Turning this option off helps optimize space usage.

• For CAS-based tests, delays can be injected between a

read operation and the following CAS attempt of that

thread. This simulates the time it takes in real programs

to calculate the new value to be written.

• Delay can be injected between two consecutive modifi-

cations of the shared variable by the same thread. This

simulates programs in which threads have other work.

• Delay can also be injected between a failed CAS attempt

and the thread’s next read operation. This allows simula-

tion of backoff protocols.

A. Implementation Details

When evaluating the schedule of a concurrent application,

one must be very careful not to perturb the execution. Many

common instructions used for logging performance, including

accesses to timers, cycle counters, or memory allocated earlier

in the program, can greatly affect the concurrent execution,

leading to useless measurements. Thus, we take care in ensuring

that our logging mechanism minimizes such accesses.

207

1) NUMA memory and thread allocation: We use the

Linux NUMA policy library libnuma to allocate memory on a

specified node (both for contended locations and memory used

for logging), and to specify the threads used. We pin threads

to cores.

2) Logging: All information logged during the execution is

local. We allocate a lot of space per thread for logging, and

ensure that for each thread, this log space is in the memory of

the NUMA node on which that thread is pinned. No two threads

access the same log. This helps eliminate coherence cache

misses that are not directly caused by the tested access pattern.

Before beginning the real execution, we have each thread access

its preallocated log, to avoid compulsory cache misses when

it first accesses the log during its execution. Severus always

records the total number of operations executed by each thread,

and the total number of successful CASes per thread. This

simply involves incrementing two counters, and thus never

causes cache misses.

If the logging option is enabled, each thread also records

which values it observed on the shared location when it accessed

it. This logging takes much more space, since this information

cannot be aggregated into one counter, and thus we keep a

word per operation executed by each thread. Logging can also

perturb the execution; more (uncontended) writing is done, and

cache misses occur every once in while, when the size of the

log written exceeds the cache size. However, since the memory

of the log is accessed consecutively, prefetching helps mitigate

the effect of log-caused cache misses. With this local method

of logging, we process the results after the execution ends, and

reconstruct the global trace from the per-process ones.

3) Compiler Options: To eliminate as much overhead as

possible during the execution, many of the settings of a run

are determined at compile time. This includes machine details,

like the number of nodes and cores, and the ids of the cores

on each node. The type of execution (CAS, F&A, etc.) and

logging are also determined at compile time.

4) Delay: We implement atomic delay and parallel delay by

iteratively incrementing a local volatile counter. The amount

of delay given as a parameter for an execution translates to the

number of iterations that are run. In the rest of the paper, we

use ‘iterations’ as the unit of delay used in experiments. This

is done to avoid mechanisms of waiting that are too coarse

grained or can perturb the execution. Therefore, given the same

delay parameter, the actual amount of time that a thread waits

depends on the system on which the benchmark is run (in

particular, depending on the core frequency). A single unit

of delay corresponds to approximately 2.2 nanoseconds on

Intel and 3.5 nanoseconds on AMD (both averaged over 10

runs). We note that measuring delay in terms of iterations of

local cache accesses is reasonable for simulating algorithm

workloads, since it reflects the reality that different algorithms

take different amounts of time on different machines.

B. Experiments Shown

All tests shown in this paper can be broadly split into two

categories.

• Sequence Experiments. In these experiments, we take a

subset of the threads (possibly all of them), and have them

repeatedly increment a single location using atomic fetch-

and-increment (F&I). We call the contended location the

counter. All threads record the return value of their fetch-

and-add after each operation, using the logging option.

This allows us to recreate the order in which threads

incremented the counter.

• Competition Experiments. These experiments are similar

to the sequence experiments, but differ mainly in the

operation used. A subset of the threads repeatedly read

a location, locally modify its value, and then compare-

and-swap (CAS) their new value into the same location.

We call the contended location the target. In competition

experiments, we sometimes vary other parameters, like

the local modification time (which we call atomic delay),

and the time threads wait between a successful CAS and

that thread’s next operation (parallel delay).

The competition experiments cause different scheduling

patterns than the sequence ones; the read operations mean

that the cache line enters the shared coherence state in

addition to the modified state. Furthermore, compare-and-

swaps fail if another thread has changed the value. This

means that to successfully modify the location, a thread must

execute two operations in a row, possibly changing its cache

line’s coherence state in between. The schedules produced

by sequence experiments are more regular, and thus easier to

analyze to obtain a high level understanding of the scheduler.

Therefore, to learn about each machine’s scheduling patterns,

we use sequence experiments, with the logging option turned

on (Section IV). We show how the lessons we learn from these

experiments generalize to other workloads by running competi-

tion experiments (which better reflect real-world applications),

without logging, and comparing the results to the predictions

made based on our learned scheduling model (Section V). We

also provide a script that runs the experiments described in

this paper and produces the relevant plots.

IV. INFERRING SCHEDULING MODELS

In this section, we show experiments that help determine

scheduling models for the AMD and Intel machines. All the

experiments in this section are sequence experiments (see

Section III). To review, in a sequence experiment, multiple

cores atomically fetch-and-increment (F&I) a single memory

location called the counter. This yields a full execution trace,

namely a sequence of all the F&I operations executed by all

threads, which we analyze in several ways to determine a

scheduling model. Across different experiments, we vary the

number of threads participating, the placement of the threads,

and the NUMA node on which the counter is allocated.

A sequence experiment is a hardware stress test meant

to reveal details about how it schedules memory operations.

It is not meant to model a realistic lock-free algorithm. In

particular, throughput measurements of sequence experiments

should be not be interpreted as a proxy for performance of a

208

/

Fig. 3: Counter on Node 0

Fig. 4: AMD throughput of F&I operations with all nodes participating.
Counter allocated on Node 0.

lock-free algorithm. (In contrast, the competition experiments

in Section V are intended to model lock-free algorithms.)

A. AMD Scheduling Model

1) AMD Throughput Measurements: We begin with a basic

question: when all cores participate in a sequence experiment,

do they achieve the same throughput? As we will see, the

answer to this question is counterintuitive and will guide our

more detailed analysis of the machine’s scheduling model.

To answer this, we run a sequence experiment with the

counter on Node 0 and simply count the number of F&I

operations executed by each core. For each node, Figure 3

shows the distribution of throughputs among cores of that

node.3 We see that most cores within any given node have

similar throughput, but different nodes have very different

throughputs. We observe that the throughput is unfair:

• Node 0, which is where the counter is allocated, has the

lowest throughput;

• Node 1, Node 2, Node 4, and Node 6 have intermediate

throughput; and

• Node 3, Node 5, and Node 7 have the highest throughput.

What distinguishes Node 3, Node 5, and Node 7 from the

other nodes? The answer lies in Figure 2: they are the farthest
from the counter on Node 0. That is, a core’s throughput tends

to increase with its distance from the counter. Repeating the

experiment with the counter on each node confirms this.

So far, we have seen that with all cores from all nodes

participating, cores on nodes farther from the counter have a

throughput advantage. We now ask: does this trend still hold

when nodes participate one at a time? To answer this question,

we run experiments with the counter on Node 0 with cores on

just a single node participating. Figure 5 shows the distribution

of results for each of Node 0 (distance 0), Node 4 (distance 1),

and Node 7 (distance 2) participating. Unlike the previous plots,

each distribution in the plot represents a separate configuration

3Throughout this section, all throughput distribution plots show the
aggregate throughput distribution of 10 separate 10-second runs.

/

Fig. 5: AMD throughput of F&I operations with one node participating
at a time. Counter allocated on Node 0. Node participating is either
Node 0 (distance 0 from counter), Node 4 (distance 1), or Node 7
(distance 2).

in which only that node is participating. The overall throughput

is higher in these configurations because of reduced contention.

Remarkably, Figure 5 shows that even with only a single

node participating, throughput still increases with distance from

the counter. Results for other nodes at distances 1 and 2 are

similar to those for Node 4 and Node 7, respectively. Similar

results hold when cores from any subset of nodes participate.

We have firmly established that throughput is unfair and is

skewed toward cores that are farther from the counter, even

when the counter’s cache line remains cached on the same

node. This pattern reflects the directory coherence protocol on

AMD, which seems to use the interconnect even when a cache

line remains on one node, likely due to the need to update its

coherence state in the directory. To understand why increased

interconnect use increases throughput, we need a more detailed

analysis of the execution traces.

2) AMD Execution Trace Analysis: We now thoroughly

examine the execution trace of a single sequence experiment.

All cores participate, and the counter is on Node 0. We examine

an execution trace excerpt of 220 operations, taken from the

middle of the experiment to avoid edge effects. For space

reasons, we show results from just one run and focus on three

nodes Node 0 (distance 0 from counter), Node 4 (distance 1),

and Node 7 (distance 2). We have confirmed that the results

shown are robust across several trials and other nodes at

distances 1 and 2 behave similarly.

The result of a sequence experiment is an execution trace,

which is an ordered list of core IDs whose ith entry is the ID

of the core that executed the ith F&I operation on the counter.

We can think of the trace as describing how (modify-mode

access to) the counter’s cache line move from core to core.

To talk about the trace and its implications for throughput,

we use the following vocabulary:

• Core visit: a contiguous interval during which just one

core performs F&I operations.4

4When discussing core visits, we take “core” to specifically mean “physical
core” and group its two threads together.

209

TABLE II: AMD core visit length distributions.

LENGTH 1 LENGTH 2 LENGTH ≥ 3 MEAN

Cores on Node 0 88% 9% 3% 1.147
Cores on Node 4 93% 4% 3% 1.105
Cores on Node 7 55% 34% 11% 1.585

(a) Core 0 on Node 0, avg 51.6 (b) Core 16 on Node 4, avg 29.1

Fig. 6: AMD core visit distance distributions with all nodes partici-
pating. Counter allocated on Node 0. Showing distributions for (a) a
core on Node 0 (distance 0 from counter) and (b) a core on Node 4
(distance 1). Distributions for other distance 0 cores are similar to
(a), and likewise for distances 1 and 2 with (b).

• Core visit length: the number of F&I operations performed

during a given core visit.

• Core visit distance: the number of core visits to other

cores between two visits to a given core.

A core’s throughput is

• directly proportional to its average core visit length and

• inversely proportional to its average core visit distance.

For each of Node 0, Node 4, and Node 7, Table II shows the

distribution of visit lengths for cores on that node. Notably, the

average core visit lengths on Node 7 is roughly 40% higher than

each of Node 0 and Node 4. Recall that in Figure 3, Node 7

has roughly 40% higher throughput than Node 4, which in

turn has higher throughput than Node 0. It thus appears that

average core visit length explains the throughput difference

between Node 4 and Node 7, but explaining the even lower

throughput of Node 0 requires examining core visit distances.

We now turn to core visit distances. Figure 6 shows the CDF

of visit distances aggregated over all cores for Node 0 and

Node 4. Due to space limitations, we omit the plot for Node 7,

but it is almost identical to that of Node 4. Remarkably, nearly

all core visit distances are just below multiples of 31, which

is one less than the number of physical cores on the AMD

machine. This suggests that core visits occur in round-robin

fashion, visiting all 31 other cores between two visits to a given

core, except that cores are occasionally skipped, mainly on

Node 0. Given that average core visit lengths are roughly the

same for Node 0 and Node 4 (see Table II), their throughput

difference is due mainly to the skipping of cores on Node 0.

B. Intel Scheduling Model

1) Intel Throughput Measurements: We begin our analysis

of the Intel machine in the same way we did for AMD. We

want to know whether throughput is fair among different cores,

and in particular, whether the distance patterns we observed

for AMD hold for Intel as well. Recall that the Intel machine

/

Fig. 7: Intel throughput of F&I operations with with all nodes
participating. Counter allocated on Node 0.

has only 4 NUMA nodes, with a full interconnect that places

all nodes equidistantly from one another.

Figure 7 shows each node’s throughput distribution for a

sequence experiment with all cores participating with the

counter placed on Node 0. We see that, again, throughput

is unfair, and cores on Node 0 have lower throughput than

cores on the other three nodes. The results are analogous when

the counter is allocated on Node 1, Node 2, or Node 3.

We next test whether cores close to the counter still have

lower throughput when only one node participates at a time. To

answer this question, we run experiments with the counter on

Node 0 with cores on just a single node participating. Figure 8

shows the results for each of Node 0 and Node 3 participating,

Unlike in the experiment with all nodes participating, we see

that Node 0 and Node 3 have similar throughput distributions

when only one node participates at a time. The results for

Node 1 and Node 2 are similar.

We have seen that with all nodes participating, Intel and

AMD both exhibit core throughput increasing with distance

from the counter, but the machines differ when only one node

participates. This can be explained by considering the directory

coherence protocol. Each node on Intel has a shared L3 cache,

and the coherence protocol does not communicate updates to

other nodes so long as the cache line is not in any other node’s

L3 cache. This means single-node runs are virtually unaffected

by where the counter is allocated.
2) Intel Execution Trace Analysis: We now investigate the

Intel execution trace in detail. Figure 9 shows the execution

trace produced from a sequence experiment with the counter

allocated on Node 0. The y-axis shows the different thread

id’s color-coded by node. The x-axis shows “time”, measured

in number of F&I operations. The line shows the counter’s

migration pattern across the caches of the different cores.

To discuss the execution trace, we define the following terms:

• Core visit: a contiguous interval during which just one

core performs F&I operations (see Section IV-A2). The

length of a core visit is the number of F&I operations

performed in it.

• Node visit: a contiguous interval during which cores on

just one node perform F&I operations. The length of a

210

/

Fig. 8: Intel throughput of F&I operations with one node participating
at a time. Counter allocated on Node 0. Node participating is either
Node 0 (distance 0 from counter) or Node 3 (distance 1).

Fig. 9: Intel execution trace of F&I operations with all nodes
participating. Counter allocated on Node 0. Thread IDs are clustered
by node: 0–35 on Node 0 (yellow), 36–71 on Node 1 (purple), 72–107
on Node 2 (orange), and 108–143 on Node 3 (blue). Even-odd pairs
of threads (0-1, 2-3, etc.) run on the same physical core. Even thread
IDs are shaded darker.

node visit is the number of core visits it contains.

Figure 9 reveals unusual features of its core and node visits.

Round robin node visits: The nodes are visited in a fixed

repeating order throughout Figure 9: 0, 2, 3, 1, We

have confirmed that this pattern is consistent over the entire

trace, though the order occasionally changes and Node 0 is

occasionally skipped. We omit the detailed statistics for brevity.

Uneven core visit lengths: The first core visit of each node

visit is usually relatively long. Moreover, these long core visits

only occur as the first node visit: almost all other node visits

are very short, having just one or two F&I operations. To

confirm this observation, we show the CDF of the core visit

length distribution for Node 0 (distance 0 from the counter)

and Node 3 (distance 1) in Figure 10. For brevity, we omit

plots for Node 1 and Node 2, which are similar to that for

Node 3. The pattern is very clear for Node 3: about 70% of

core visits are of length 1 or 2, but visits of length greater

than 2 are likely to be at least length 10. The pattern is a

bit less prominent on Node 0, where longer visits only last

around 5 operations. This partially explains the difference in

(a) Cores on Node 0, avg 2.92 (b) Cores on Node 3, avg 4.42

Fig. 10: Intel core visit length distributions with all nodes participating.
Counter allocated on Node 0. Showing aggregate distributions for (a)
cores on Node 0 (distance 0 from counter) and (b) cores on Node 4
(distance 1). Distributions for Nodes 1 and 2 are similar to (b).

(a) Node 0 (b) Node 3

Fig. 11: Intel node visit length (measured in number of core visits)
distributions with all nodes participating. Counter allocated on Node 0.
Showing distributions for (a) Node 0 (distance 0 from counter) and
(b) Node 4 (distance 1). Distributions for Nodes 1 and 2 are similar
to (b).

throughput observed between Node 0 the other nodes.

Occasional bursts: In Figure 9, most node visits only contain

a few core visits: first a long core visit, followed by 0 to 2 more

core visits. However, every once in a while, a node visit ends

with many short core visits in a row. We call this occurrence

a “burst” of visits. A natural question is: are bursts simply the

result of noise, or they a separate phenomenon? To answer this

question, we plot CDF of the node visit length distribution in

Figure 11, again showing only Node 0 and Node 3 for brevity.

The distributions make clear that there are two distinct types

of node visits: those with 3 or fewer core visits, constituting

about 80% of all node visits; and those with significantly more,

usually at least 8, making up the other 20% of node visits. We

therefore define the following terms:

• Burst: a node visit of length 4 or greater. For example,

Figure 9 shows bursts for each of Nodes 1, 2, and 3.

• Cycle: the time between the end of one burst on a given

node and the end of the next burst on that node.

Interestingly, we find that in most cycles, each core is visited

exactly once. This is shown in Table III. This pattern, which

occurs on all nodes, suggests a possible mechanism for the

bursts: requests for the counter’s cache line build up in a queue

in each node, and each queue occasionally “flushes” if it is

too full for too long.

Finally, recall from Section IV-B1 that single-node execu-

tions produce different throughput distributions than executions

that cross node boundaries. We therefore also examine the

211

TABLE III: Intel number of times cores are visited per cycle.

0 VISITS 1 VISIT 2 VISITS ≥ 3 VISITS

Cores on Node 1 9% 85% 5% < 1%
Cores on Node 3 10% 85% 5% < 1%

Fig. 12: Intel core visit distance distributions with only Node 0
participating. Counter allocated on Node 0. Distribution is very close
to Geometric(1/18) (dashed blue line).

trace of a single-node execution with the counter on Node 0

and only cores on Node 0 participating. In contrast to the

multiple-node trace, the single-node trace is close to uniformly

random. To confirm this, we show the CDF of the core visit

distance distribution in Figure 12. The CDF is close to that

of a geometric distribution, which is what the CDF would be

for a truly uniformly random schedule. This means that for

analyzing algorithms for single-node executions on the Intel

machine, a uniformly random scheduling model is appropriate.

V. TAKEAWAYS FOR FAIRNESS AND FOCUS

Recall the desirable properties a schedule should have: in

the long run, we want it to be fair, letting each thread make

the same amount of progress, but in the short term, we want

the schedule to be focused, allowing each thread enough time

to read, locally modify, and then apply its modification on a

cache line before the cache line gets invalidated.

We now go back to our original question: do memory

operation schedules on modern hardware achieve long term

fairness and short term focus? In the previous section, we saw

some indications that the schedules might not be fair: initial

throughput experiments indicated the on both machines, the

node on which memory is allocated is unfairly treated, even in

long runs. We saw that short-term focus might be behind this:

cores on remote nodes get longer visits on average. However,

recall that these experiments were sequence experiments, which

were designed to uncover scheduling patterns but not to

represent the workloads of real lock-free algorithms.

In this section, we thus test whether these initial findings

carry over to more realistic workloads. More specifically, all

the experiments in this section are competition experiments (see

Section III). To review, in a competition experiment, multiple

cores attempt to read from and CAS a new value into a single

memory location called the target. Competition experiments

have two delay parameters.

• Between a read and the following CAS is the atomic delay.

This simulates work in the the atomic modify section of

a lock-free operation (Line 5 of Algorithm 1).

• Between each successful CAS and the following read

is the parallel delay. This simulates the parallel work
of a lock-free algorithm between synchronization blocks

(Line 2 of Algorithm 1).

We simulate different lock-free workloads by varying the atomic

and parallel delays. To highlight the effects of the atomic

delay, the experiments in this section are conducted with a

high parallel delay (set to 256 iterations in all experiments.

See Section III for details on how the delay is implemented).

This means that long streaks of successful read-modify-CAS

operations by one thread without interruption from another

thread are unlikely, even when the atomic delay is small.

All plots in this section show the results over 10 repeti-

tions of 10 second runs. Each plot point shows the median

total throughput of successful CAS instructions over the 10

repetitions, and error bars show the 75th and 25th percentile.

A. Fairness

To test long-term fairness on lock-free workloads, we run a

set of competition experiments in which all cores on all nodes

are participating. We vary the atomic delay to evaluate the

fairness for lock-free algorithms with differently sized atomic

modify sections. We measure the throughput of successful CAS

instructions exhibited by cores on each node, and compare

them to the throughput on other nodes. These tests answer the

following question: when all cores run the same code, how

skewed is their throughput with respect to each other?

1) AMD Fairness: The results for the fairness test on the

AMD machine are shown in Figure 13. It is clear that cores

on distance 2 nodes (represented by Node 7 here) perform

much better when atomic delay is low, outperforming other

nodes by up to 31×, but this drops very quickly.5 By the time

atomic delay reaches 16 iterations (around 56 ns), distance 1

nodes start outperforming distance 2 nodes. However, recall

that the throughput reported in Figure 13 shows successful
CAS instructions. Interestingly, if we consider the number of

attempted CAS instructions, rather than just the successful ones,

the difference is less stark, with distance 2 nodes reaching a

peak at an atomic delay of 5 iterations, at which point they

only outperform distance 1 nodes by a factor of 2.2.6 This

indicates that at low atomic delays, distance 2 nodes succeed

in a much larger fraction of their attempted CAS instructions.

The throughput reaches a steady state at around an atomic

delay of 30 iterations (roughly 70 ns), but is still highly unfair.

Notably, distance 1 nodes achieve the highest throughput at the

steady state, outperforming the other two groups by an order

of magnitude. Insight into this phenomenon can be gained by

5This part is truncated in the plot, to make other trends more visible.
6This data is not shown in the plot.

212

/

Fig. 13: AMD throughput of CAS operations for varying atomic delay
with all nodes participating. Target allocated on Node 0. Showing total
throughput of Node 0 (distance 0 from target), Node 4 (distance 1),
and Node 7 (distance 2).

looking at the success ratio, or the fraction of successful CAS

instructions out of the overall number attempted. For distance 1

nodes, the success ratio is around 0.04–0.05, whereas for cores

in the other two node categories, it lies at around 0.005. A failed

CAS is always caused by the success of another thread’s CAS.

In particular, a CAS by thread p will fail if p executed its read

of the target between the read and the CAS of thread whose

CAS was successful. Thus, the numbers indicate that most

threads align their read instructions with each other, causing

repeated failures for the same set of threads. The delays inherent

to the cache coherence protocol on the AMD machine thus

repeatedly favor these ‘mid latency’ (distance 1) threads over

their counterparts that are farther or closer to the memory.

2) Intel Fairness: The fairness test results on the Intel

machine are shown in Figure 14. Only Node 0 and Node 3

are shown, as the other nodes’ curves were almost exactly

the same as Node 3. As could be expected, both Node 0 and

Node 3 drop in throughput as the atomic delay grows, and

eventually both reach approximately the same throughput.

We can see that in general, fairness here is not as skewed

as on AMD; at high throughputs (corresponding to low atomic

delay), Node 3 outperforms Node 0 by a factor of 1.4–1.8.

Both node’s performance degrades quickly, though at somewhat

different speeds. At an atomic delay of 34 iterations (around

75 ns), unfairness is at its worst, with Node 3 outperforming

Node 0 by a factor of 12.5. However, soon after that, starting at

an atomic delay of 52 iterations, the two nodes are consistently

within 10% of each other in terms of their throughput.

3) Fairness Takeaways: We conclude that the fairness of

schedules of a lock-free algorithm is highly dependent on the

algorithm itself, in particular, on the length of its atomic modify

section. This observation is perhaps counterintuitive, especially

for theoreticians in the field; a lot of literature on lock-free

algorithms never accounts for ‘local’ work. However, the exact

length of local operations within the atomic modify section can

/

Fig. 14: Intel throughput of CAS operations for varying atomic delay
with all nodes participating. Target allocated on Node 0. Showing total
throughput of Node 0 (distance 0 from target) and Node 3 (distance 1).

have a drastic effect on both fairness and performance. This is

despite the fact that local work operates on the L1 cache and

thus experience much lower latencies than memory instructions

that access new or contended data. We thus recommend making

efforts to minimize work in the atomic modify section when

designing and implementing lock-free algorithms.

Furthermore, we note that despite fairness arbitration efforts

within each node, fairness is not generally achieved among

nodes. This is a similar observation to that made by Song et

al. [24]. However, while they study workloads in which there

is an uneven number of requests from competing nodes, we

show unfairness even when all nodes issue the same number

of requests. In general, to achieve better fairness even with

relatively small atomic modify sections, it can be beneficial to

design architectures to explicitly favor requests from the local

node over those from remote nodes.

B. Focus

Recall the original intuition (Section I) for why focus may

be useful in a hardware schedule. Ideally, to avoid wasted

work, a thread should be able to keep a cache line in its

private cache for long enough to execute both the read and the

CAS instructions of its atomic modify section in a lock-free

algorithm. However, this means that depending on the length of

the atomic modify section of a given algorithm, the cache line

must remain in one core’s cache longer for sufficient focus.

Recall that when inferring the scheduling patterns of each

machine in Section IV, we considered the visit length of a cache

line at each core. That is, we measured how many memory

instructions a single core can execute before the cache line

leaves its private cache. Note that a schedule with better focus

corresponds to a schedule with longer core visits. Thus, more

focus is required from the schedule the longer the atomic delay

is. We say that a hardware schedule has meaningful focus for

a given lock-free algorithm if the entire atomic modify section

of the algorithm fits in a single core visit.

213

/

Fig. 15: AMD throughput of CAS operations for varying atomic delay
with all nodes participating. A target is allocated each node. All cores
accessing a given target are in the same node. In each run, all cores
access targets the same distance away.

We now test how longer core visits observed in Section IV

translate to meaningful focus for lock-free algorithms. Unlike

previous experiments in this paper, we test focus using

experiments with multiple targets. Specifically, we allocate

one target on each node, and each core is assigned one target

to access for the duration of the experiment. This means that

each core is only directly contending with other cores accessing

the same target. However, there may be indirect contention

caused by traffic on the node interconnect. To exhibit a variety

of core visit lengths, we run different types of experiments for

AMD and Intel.

1) AMD Focus: Recall from Section IV-A that nodes that

are 2-hops away from the memory they access have longer

core visits on average. To test how these longer visits translate

to meaningful focus, we conduct competition experiments with

three different settings. In each setting, all cores access a target

that is a fixed distance away. The results of this test are shown

in Figure 15.

For small atomic delays, we observe a significant difference

between the three settings. In particular, both distance 1 and

distance 2 placements exhibit higher throughput than distance 0.

Throughput at distance 1 drops near atomic delay 18. This

indicates that at this point, a thread can no longer fit both its

read and its CAS into the same visit. A similar drop happens

for the distance 2 placement near atomic delay 23. In contrast,

it appears that the distance 0 placement never fits a read and

CAS into the same visit, even with atomic delay 0.

These findings make sense in light of the results of Sec-

tion IV-A. Specifically, as shown in Table II, cores at distance 2

have longer visit lengths than those at distance 1. From the

table initially appears as if distance 0 cores have visit lengths

comparable to distance 1 cores. However, as shown in Figure 6,

cores at distance 0 are frequently skipped in what is otherwise

a mostly round-robin visit sequence. If we view these skips

as “length 0” visits, then cores at distance 1 have visits longer

/

Fig. 16: Intel throughput of CAS operations for varying atomic delay
with all nodes participating. A target is allocated each node. Showing
results for four different target assignments. In grouped assignments,
all cores accessing a given target are in the same node. In split
assignments, the set of cores accessing a given target is split evenly
across two nodes.

than those at distance 0, whose visits can be so short that not

even a single atomic instruction finishes executing.

All three thread placements eventually reach a steady

throughput of around 7.2–10.3 million successful CAS op-

erations per second. This happens at an atomic delay of 36

iterations, roughly corresponding to 125 ns on the AMD

machine (see Section III). Distance 1 nodes display the

highest throughput of the three categories in the steady state,

outperforming distance 2 nodes by 20% and the Node 0 by

43%. This is consistent with the results from the fairness tests,

but the difference in performance is smaller here.

There are some other phenomena that we do not yet know

how to explain, such as the drops in throughput for distances 1

and 2 as atomic delay increases from 0 to 5 and the occasional

throughput spikes. It is possible that some of these effects

would be smoothed over by an experiment in which atomic

delay was random rather than deterministic.

2) Intel Focus: Recall from Section IV-B that longer visits

occur on the first core visited in a node, when the cache line

travels between nodes. In particular, these long core visits

happen only when cores of multiple nodes are active, rather

than just one node. To test the effect of longer core visits on

meaningful focus in the Intel machine, we therefore compare

two types of competition experiments: the first is simply using

all threads of one node, and the second uses the same number

of threads, but splits them across two nodes. Just like we did for

AMD, we run the experiments in parallel to create interconnect

traffic. The results of this test are shown in Figure 16.

As expected given our knowledge of Intel’s schedule, it

is clear that for a small atomic delay, splitting the threads

across two nodes produces significantly higher throughput than

having them all on one node. At around an atomic delay of

214

30 iterations (approximately 66 ns), the runs on a single node

start outperforming the split runs. This can be attributed to

the lowered contention caused by such a high atomic delay.

When contention is low, the dominating factor for performance

becomes the latency of accessing the memory (or the L3 cache,

in this case), which is known to be much lower for local

accesses than for remote accesses.

3) Focus Takeaways: On both machines, we observed that

for experiments with low atomic delay, higher throughput

occurs on schedules that we know exhibit better focus. The

higher focus seems to be meaningful only for an atomic delay of

up to approximately 25-30 iterations, indicating that algorithms

with atomic modify sections of around this length or shorter

can benefit from such schedules.

However, more generally, it is clear that focus in the hardware

schedule is extremely helpful for throughput; it would be

desirable to achieve meaningful focus even for algorithms with

a longer atomic modify section. This observation was made

by Haider et al. [25]. Using simulation results, they showed

that it can be very beneficial to allow each thread to lease a

cache line for a bounded amount of time, and release it either

when that time is up, or when it finishes its atomic modify

section. Our results support those of Haider et al., but on real

architectures rather than simulations. That is, even when all

features of an architecture interact with each other, it can be

beneficial to extend the implicit lease of a cache line that

memory instruction schedules provide a thread.

VI. RELATED WORK

Alistarh et al. [14] ran tests similar to our sequence

experiments to verify the validity of their uniform random

scheduler assumption. They ran the experiments on a single

Fujitsu PRIMERGY RX600 S6 server with four Intel Xeon

E7-4870 (Westmere EX) processors, but they used only one

of its nodes. Our results for this setting are consistent with

theirs; scheduling seems mostly uniformly random on a single

Intel node. Our experiments, however, consider a much greater

scope, noting when this random scheduling pattern falters.

NUMA architectures have been extensively studied. Previous

works have designed benchmarks to understand the latencies

and bandwidth associated with accesses to different levels of

the cache and local versus remote memory on NUMA machines

[20], [26], [27]. However, these papers did not consider the

effect of contended workloads on NUMA access patterns.

A thorough study of synchronization primitives was con-

ducted by David et al. [28]. Some of their tests are similar to

ours. However, their setup is different; in all contention exper-

iments, David et al. inject a large delay between consecutive

operations of one thread. While we use a similar pattern for

our focus and fairness experiments, we also test configurations

that do not inject such delays. Thus, our work uncovers some

performance phenomena that were not found by David et al.
Song et al. [24] show that NUMA architectures can have

highly unfair throughput among the nodes. They also show

that this unfairness does not always favor nodes that access

local memory, displaying this behavior in VMs. However, they

do not study lock-free algorithms or contention.

Performance prediction has been the goal of a lot of work,

not only in the lock-free algorithms community [29], [30],

[31], [32], [33]. Techniques range from simulation, to hand

built models, to regression based models, to profiling tools.

Goodman et al. present one such profiling tool [32]. While this

produces accurate results, sometimes it is impractical to have

the algorithm ready to use for profiling before performance

predictions are made, since performance predictions can help

develop the algorithm. Our work aims to obtain a high level

performance model to guide algorithm design in its earlier

stages. Furthermore, our benchmark can be used on any

machine to gain an understanding of its underlying model.

VII. CONCLUSION

Analytical performance prediction of lock-free algorithms

is a hard problem. One must consider the likely operation

scheduling patterns on the machines on which the algorithm is

run. Previous approaches assumed a random scheduler instead

of an adversarial one, but did not show whether such an

assumption is reflective of real machines.

In this work, we present a thorough study of scheduling

patterns produced on two NUMA architectures, using our

new benchmarking tool, Severus. Our experiments uncover

several phenomena that can greatly affect the schedules of

lock-free algorithms and make models based solely on uniform

randomness seem inaccurate. In particular, we show that thread

placement with respect to a contended memory location can

be crucial, and that surprisingly, remote threads often perform

better under contention than local threads.

On both tested machines, the reason for this rise in through-

put seems to stem from improved focus, or the increased length

of visits of the cache line for cores on remote nodes. This

phenomenon has been largely overlooked in literature that

aims to approximate the operation scheduler, other than a few

exceptions [25]. Additionally, these focus benefits come at

the cost of fairness on modern machines; not all cores on a

machine experience these beneficial longer visits.

We believe that there are several takeaways and further

directions from this paper. Firstly, fairness is not a given. This

knowledge can affect algorithm design, as well as programming

frameworks chosen; in a system with low fairness, a work-

stealing scheduler may be crucial for ensuring a fair allocation

of parallel tasks that leads to high throughput. Secondly, this

paper casts doubt on previous works that assume requests for

a cache line are simply handled in a random order, and shows

that more careful modeling may be necessary. Furthermore,

we’ve shown in our experiments that the length of the atomic

delay (the delay between the read and the following CAS

in a read-modify-CAS loop) has a significant—yet a priori

unpredictable—effect on performance, since different platforms

can behave drastically differently. Finally, we provide a tool

that allows a user to test their platform and understand what

assumptions are reasonable for them, and what factors might

have the greatest effect on their algorithm’s performance.

215

REFERENCES

[1] S. Timnat and E. Petrank, “A practical wait-free simulation for lock-
free data structures,” in ACM Symposium on Principles and Practice
of Parallel Programming (PPoPP), vol. 49, no. 8. ACM, 2014, pp.
357–368.

[2] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), vol. 13, no. 1, pp. 124–149,
1991.

[3] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM Transactions
on Computer Systems (TOCS), vol. 9, no. 1, pp. 21–65, 1991.

[4] T. E. Anderson, “The performance of spin lock alternatives for shared-
money multiprocessors,” IEEE Transactions on Parallel and Distributed
Systems, vol. 1, no. 1, pp. 6–16, 1990.

[5] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali, “A case for
numa-aware contention management on multicore systems,” in USENIX
Annual Technical Conference (ATC), 2011.

[6] F. Ellen, Y. Lev, V. Luchangco, and M. Moir, “Snzi: Scalable nonzero
indicators,” in ACM Symposium on Principles of Distributed Computing
(PODC). ACM, 2007, pp. 13–22.

[7] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms,” in ACM Symposium on
Principles of Distributed Computing (PODC). ACM, 1996, pp. 267–
275.

[8] T. L. Harris, “A pragmatic implementation of non-blocking linked-lists,”
in International Symposium on Distributed Computing (DISC). Springer,
2001, pp. 300–314.

[9] O. Shalev and N. Shavit, “Split-ordered lists: Lock-free extensible hash
tables,” Journal of the ACM (JACM), vol. 53, no. 3, pp. 379–405, 2006.

[10] T. L. Harris, “Five ways not to fool yourself: designing experiments
for understanding performance,” https://timharris.uk/misc/five-ways.pdf,
2016.

[11] N. Ben-David and G. E. Blelloch, “Analyzing contention and backoff
in asynchronous shared memory,” in ACM Symposium on Principles of
Distributed Computing (PODC). ACM, 2017, pp. 53–62.

[12] N. Ben-David, G. E. Blelloch, Y. Sun, and Y. Wei, “Efficient single
writer concurrency,” arXiv preprint arXiv:1803.08617, 2018.

[13] D. Alistarh, T. Sauerwald, and M. Vojnović, “Lock-free algorithms under
stochastic schedulers,” in ACM Symposium on Principles of Distributed
Computing (PODC). ACM, 2015, pp. 251–260.

[14] D. Alistarh, K. Censor-Hillel, and N. Shavit, “Are lock-free concurrent
algorithms practically wait-free?” Journal of the ACM (JACM), vol. 63,
no. 4, p. 31, 2016.

[15] A. Atalar, P. Renaud-Goud, and P. Tsigas, “Analyzing the performance
of lock-free data structures: A conflict-based model,” in International
Symposium on Distributed Computing (DISC). Springer, 2015, pp.
341–355.

[16] ——, “How lock-free data structures perform in dynamic environments:
Models and analyses,” arXiv preprint arXiv:1611.05793, 2016.

[17] M. Herlihy and N. Shavit, “On the nature of progress,” in International
Conference on Principles of Distributed Systems (OPODIS). Springer,
2011, pp. 313–328.

[18] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 1988.

[19] N. A. Lynch, Distributed algorithms. Elsevier, 1996.
[20] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing cache

architectures and coherency protocols on x86-64 multicore smp systems,”
in International Symposium on Microarchitecture (MICRO). IEEE,
2009, pp. 413–422.

[21] I. Calciu, S. Sen, M. Balakrishnan, and M. K. Aguilera, “Black-
box concurrent data structures for numa architectures,” International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), vol. 51, no. 2, pp. 207–221, 2017.

[22] I. Calciu, J. Gottschlich, and M. Herlihy, “Using delegation and
elimination to implement a scalable numa-friendly stack,” in USENIX
Workshop on Hot Topics in Parallelism (HOTPAR), 2013.

[23] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. M. Lohman, “Numa-aware
algorithms: the case of data shuffling.” in Conference on Innovative Data
Systems Research (CIDR), 2013.

[24] W. Song, G. Kim, H. Jung, J. Chung, J. H. Ahn, J. W. Lee, and
J. Kim, “History-based arbitration for fairness in processor-interconnect
of numa servers,” International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), vol. 51,
no. 2, pp. 765–777, 2017.

[25] S. K. Haider, W. Hasenplaugh, and D. Alistarh, “Lease/release: Archi-
tectural support for scaling contended data structures,” ACM SIGPLAN
Notices, vol. 51, no. 8, p. 17, 2016.

[26] H. Schweizer, M. Besta, and T. Hoefler, “Evaluating the cost of atomic
operations on modern architectures,” in International Conference on
Parallel Architecture and Compilation (PACT). IEEE, 2015, pp. 445–
456.

[27] D. Molka, D. Hackenberg, and R. Schöne, “Main memory and cache
performance of intel sandy bridge and amd bulldozer,” in Proceedings of
the workshop on Memory Systems Performance and Correctness. ACM,
2014, p. 4.

[28] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always
wanted to know about synchronization but were afraid to ask,” in ACM
Symposium on Operating Systems Principles (SOSP). ACM, 2013, pp.
33–48.

[29] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman,
and M. Gittings, “Predictive performance and scalability modeling of a
large-scale application,” in Supercomputing, ACM/IEEE 2001 Conference.
IEEE, 2001, pp. 39–39.

[30] L. Carrington, A. Snavely, and N. Wolter, “A performance prediction
framework for scientific applications,” Future Generation Computer
Systems, vol. 22, no. 3, pp. 336–346, 2006.

[31] J. Zhai, W. Chen, and W. Zheng, “Phantom: predicting performance of
parallel applications on large-scale parallel machines using a single node,”
in ACM Sigplan Notices, vol. 45, no. 5. ACM, 2010, pp. 305–314.

[32] D. Goodman, G. Varisteas, and T. L. Harris, “Pandia: comprehensive
contention-sensitive thread placement,” in European Conference on
Computer Systems (EUROSYS). ACM, 2017, pp. 254–269.

[33] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. De Supinski,
and M. Schulz, “A regression-based approach to scalability prediction,”
in Proceedings of the 22nd annual international conference on Super-
computing. ACM, 2008, pp. 368–377.

[34] N. Ben-David, Z. Scully, and G. Blelloch, “Severus,” Aug. 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.3360044

216

APPENDIX

Our tool, Severus uses c++ source code that creates a speci-

fied multithreaded workload and measures various properties

of its schedule, and then processes the output using gnuplot

to create plots that are easy to interpret. It has been tested on

Ubuntu 14.04 and 16.04, and requires the boost and libnuma

libraries to be installed.

Severus is designed to be usable on many different archi-

tectures and workloads. We expect the results of the same

experiments to be different on each machine. Thus, when

evaluating our artifact, one should expect to see that the tool

runs properly, and outputs data that is similar to what we report

in this paper, but potentially showing different numbers and

patterns.

We tested Severus on two different architectures: (1) an

Intel Xeon CPU E7-8867 v4 machine with 4 nodes and 72

cores, each with two-way hyperthreading, and (2) an AMD

Opteron 6278 machine with 8 nodes and 32 cores, each with

two-way hyperthreading. If the reviewer has access to one

or both of these machines, the data gathered by running our

experiments should be very similar to what we report in this

paper. Severus can run on different NUMA machines that use

Ubuntu, but will produce different results. A machine that

runs Severus must have atoimc compare-and-swap (CAS) and

atomic fetch-and-add (F&A, also called xadd).

A. Artifact check-list (meta-information)

• Compilation: g++ verion 5+ (Tested on 5.3.0 and 6.4.0)

• Run-time environment: The tool was tested on Linux

Ubuntu versions 14.04 and 16.04. Software dependencies

are on boost and libnuma libraries. Root access is needed

to install these dependencies if not already present, but is

not needed for the tool itself.

• Hardware: We recommend Intel Xeon E7-886 or AMD

Operton 6278 to verify results reported in this paper.

Similar machines should work, and yield comparable

results in some experiments, while possibly revealing

new patterns for other experiments. The machine must

have atomic CAS and F&A instructions and a NUMA

architecture.

• Run-time state: For most accurate results, this program

should run alone on the machine (no network or cache

contention).

• Execution: The program should execute solo. It runs for

approximately 10 mins to complete the experiments in

paper.sh.

• Metrics: Number of memory accesses per thread/node,

some other related measurements.

• Output: Data files are outout in .txt format, and then

plots are created in .pdf files. Plots highlight important

properties of the execution, including the execution trace,

and how many memory accesses were executed by each

thread, by access type (read, write, etc).

• How much disk space required (approximately)? Less

than 100M

• How much time is needed to prepare workflow (ap-
proximately)? Less than 5 mins

• How much time is needed to complete experiments
(approximately)? Less than 10 mins

• Publicly available? Yes, on Github: https://github.com/

cmuparlay/severus

• Code licenses (if publicly available)? Apache License

2.0

• Archived (provide DOI)? Yes, on Zenodo: https://doi.

org/10.5281/zenodo.3360044 [34]

B. Description

1) How delivered: Available on GitHub: https://github.com/

cmuparlay/severus.

2) Hardware dependencies: We recommend Intel Xeon E7-

886 or AMD Operton 6278 to verify results reported in this

paper. Similar machines should work, and yield comparable

results in some experiments, while possibly revealing new

patterns for other experiments. The machine must have atomic

CAS and F&A7, and a NUMA architecture.

3) Software dependencies: For compiling and running the

source code:

• GCC. Available as gcc from most package managers.

• Boost: Program options. Available as libnuma-dev
from most package managers, or download from

https://www.boost.org/doc/libs/1 66 0/more/getting

started/unix-variants.html.

• libnuma. Available as libnuma-dev from most pack-

age managers.

• gnuplot. Only required for producing plots. Available as

gnuplot from most package managers, or download

from https://sourceforge.net/projects/gnuplot/files/gnuplot/

5.2.7/.

C. Installation

a) Downloading the code.: Clone or download the repos-

itory from GitHub at https://github.com/cmuparlay/severus. All

the artifact code is contained in a single directory, and all the

scripts are intended to be run from that directory.

b) Installing dependencies.: Follow the instructions in

Section B3 to download and install the software dependencies

if they are not already installed on your machine.

D. Experiment workflow

The easiest way to use the tool is to run ./paper.sh.

This works on any machine and reproduces the experiments

that were run and presented in this paper. The script has four

modes:

• ./paper.sh easy replicates the experiments from

Sections IV and V-A on any machine.

• ./paper.sh amd replicates the experiments on the

AMD machine in Sections IV-A, V-A1, and V-B1. This

mode requires exactly 8 NUMA nodes.

7The benchmarks use F&A instructions but only ever add 1, so the code
could be easily adapted to a machine with only an atomic fetch-and-increment
(F&I) instruction.

217

• ./paper.sh intel replicates the experiments in Sec-

tions IV-B, V-A2, and V-B2. This mode requires exactly

4 NUMA nodes.

• ./paper.sh mapping MAP replicates the experi-

ments from Sections IV and V-A and adapts the experi-

ments from Section V-B on any machine. See below for

the details of the argument MAP.

By default, all results are output to ./output/ and its

subdirectories. The output directory can be overriden with

a command line argument. Run ./paper.sh --help for

full details.
The ./paper.sh mapping MAP option, with help from

the user in the form of the argument MAP, recreates a version of

the focus experiments from Section V-B. MAP is list that maps

each node to the node it will access during the experiment.

For example, on a 4-node system, ./paper.sh mapping
1 2 3 0 has Node 0 access Node 1, Node 1 access Node 2,

etc. The intention is that the list is a permutation such that no

node is accesses itself, but other configurations may also be

interesting.
A lower-level interface is the go.sh script, which runs

single experiments. (The paper.sh script is mostly a series of

calls to go.sh.) Run ./go.sh --help for a short manual

on how to use it. The script produces a text file with the output

data from the execution it ran, and by default creates plots in

pdf format using gnuplot. Furthermore, a short summary of

the execution, including the total number of successful and

unsuccessful accesses to memory, is output to the commandline.

If for any reason the plots are not desired, they can be disabled

with the --no-plot option.
Both paper.sh and go.sh avoid rerunning experiments,

which can be lengthy, if output files already exist. To force

rerunning an experiment, delete its output file. (Deleting only)

E. Evaluation and expected result
It is difficult to compare the results across different machines.

In general, it is not the exact throughput reported, but the

scheduling patterns observed that are the main take-away that

should be considered. Overall, when running on a new machine,

the desired result is the ability to understand the scheduling

patterns produced. The code should compile, run, and produce

informative plots.
Some patterns should remain fairly constant across machines.

We expect that in the sequence experiments, for example, the

node on which the memory is allocated (node 0 as default)

should perform worse than others on most NUMA machines.
If running experiments on Intel Xeon E7-886 or AMD

Operton 6278, the scheduling patterns produced should be

similar to the ones reported in this paper, for all experiments.
On any machine, it is important to ensure that this program

is the only one running on the machine when gathering data,

since the schedule is easily skewed by other things happening

in the system.

F. Experiment customization
Severus is parametrized, and allows the user to control the

threads participating, node(s) on which memory is allocated,

and the amount of delay threads should wait between memory

accesses. For details, run ./go --help.

G. Notes

In this paper we produced the plots using a Mathematica

library. However, Mathematica is proprietary, so not all users

have access to it. Furthermore, our Mathematica library is

currently not configurable to handle machines other than the

Intel and AMD machines used in this paper. In the interest

of open access and portability, our artifact uses gnuplot to

generate versions of nearly all of the figures in this paper.

218

