

Security & Safety by Model-based Requirements Engineering

28th IEEE International Requirements Engineering Conference, 2020, Zurich, Switzerland

Sergej Japs, M.Sc.

About Me

Sergej Japs

Fraunhofer Research Institute for
Mechatronic Systems Design IEM
Zukunftsmeile 1
33102 Paderborn (Germany)
sergej.japs@iem.fraunhofer.de

Research Associate &
PhD Candidate (Since 1,5 Years)

Experience in Systems Engineering &
Requirements Engineering (Since 7,5 Years)

M.Sc. in Computer Science
from University of Paderborn (Germany)

[Twitter: @MBSEGuy](#)

[LinkedIn](#)

[Xing](#)

[Research Gate](#)

Motivation

Product Development vs. Increasing Vehicle Complexity

Motivation

Product Development vs. Increasing Vehicle Complexity

Motivation

Product Development vs. Increasing Vehicle Complexity

Motivation

Product Development vs. Increasing Vehicle Complexity vs. Hacking

Motivation

Product Development vs. Increasing Vehicle Complexity vs. Hacking

Motivation

Product Development vs. Increasing Vehicle Complexity vs. Hacking

Motivation

Product Development vs. Increasing Vehicle Complexity vs. Hacking

Motivation

Product Development vs. Increasing Vehicle Complexity vs. Hacking

Holistic Security & Safety Approach

Criteria & Literature Analysis

Criteria

C1	Applicability at system level
C2	Coverage of the requirements engineering process steps (elicitation & negotiation, documentation, validation)
C3 - C4	Consideration of security & safety
C5	Capability (Validation) for use with models
C6-C8	Reduction of engineering effort (model generation & analysis, design patterns)

 = satisfied = partially satisfied = not satisfied

	C1	C2	C3-C4	C5	C6-C8
01 Cheng et al.: 2019					
02 Amorim et al.: 2017					
03 SAE J3061: 2016					
04 SAHARA: 2015					
05 PBSE: 2020					
06 SREP FOR CPS: 2018					
07 ISO 26262-9:2018					
08 POHL: 2016					
09 ISO/IEC/IEEE 15288: 2015					
10 Rupp et al: 2014					
11 Heisel et al: 2019					
12 FERNANDES: 2013					
13 CORAS: 2020					
14 Microsoft SDL: 2016					
15 SQUARE: 2005					

The holistic approach (identify & fix threats) is based on my initial approach (identify threats):
STORM - Security & safety driven model-based requirements engineering process, 2020, (currently under review)

Holistic Security & Safety Approach

Criteria & Literature Analysis

STORM - Security & safety driven model-based requirements engineering process, 2020, (currently under review)

Criteria

C1	Applicability at system level
C2	Coverage of the requirements engineering process steps (elicitation & negotiation, documentation, validation)
C3 - C4	Consideration of security & safety
C5	Capability (Validation) for use with models
C6-C8	Reduction of engineering effort (model generation & analysis, design patterns)

Not every approach can be (directly) used on system level

	C1	C2	C3-C4	C5	C6-C8
01 Cheng et al.: 2019	●	○	○	○	○
02 Amorim et al.: 2017	●	○	○	○	○
03 SAE J3061: 2016	●	○	○	○	○
04 SAHARA: 2015	●	○	○	○	○
05 PBSE: 2020	●	○	○	○	○
06 SREP FOR CPS: 2018	●	○	○	○	○
07 ISO 26262-9:2018	●	○	○	○	○
08 POHL: 2016	●	○	○	○	○
09 ISO/IEC/IEEE 15288: 2015	●	○	○	○	○
10 Rupp et al: 2014	●	○	○	○	○
11 Heisel et al: 2019	○	○	○	○	○
12 FERNANDES: 2013	○	○	○	○	○
13 CORAS: 2020	○	○	○	○	○
14 Microsoft SDL: 2016	○	○	○	○	○
15 SQUARE: 2005	○	○	○	○	○

Holistic Security & Safety Approach

Criteria & Literature Analysis

STORM - Security & safety driven model-based requirements engineering process, 2020, (currently under review)

Criteria

C1	Applicability at system level
C2	Coverage of the requirements engineering process steps (elicitation & negotiation, documentation, validation)
C3 - C4	Consideration of security & safety
C5	Capability (Validation) for use with models
C6-C8	Reduction of engineering effort (model generation & analysis, design patterns)

The most approaches only **partially cover** the requirements engineering process steps

		C1	C2	C3-C4	C5	C6-C8
01 Cheng et al.: 2019		●	●	●	●	●
02 Amorim et al.: 2017		●	●	●	●	●
03 SAE J3061: 2016		●	●	●	●	●
04 SAHARA: 2015		●	●	●	●	●
05 PBSE: 2020		●	●	●	●	●
06 SREP FOR CPS: 2018		●	●	●	●	●
07 ISO 26262-9:2018		●	●	●	●	●
08 POHL: 2016		●	●	●	●	●
09 ISO/IEC/IEEE 15288: 2015		●	●	●	●	●
10 Rupp et al: 2014		●	●	●	●	●
11 Heisel et al: 2019		○	●	●	●	●
12 FERNANDES: 2013		○	●	●	●	●
13 CORAS: 2020		○	●	●	●	●
14 Microsoft SDL: 2016		○	●	●	●	●
15 SQUARE: 2005		○	●	●	●	●

Holistic Security & Safety Approach

Criteria & Literature Analysis

STORM - Security & safety driven model-based requirements engineering process, 2020, (currently under review)

Criteria

C1	Applicability at system level
C2	Coverage of the requirements engineering process steps (elicitation & negotiation, documentation, validation)
C3 - C4	Consideration of security & safety
C5	Capability (Validation) for use with models
C6-C8	Reduction of engineering effort (model generation & analysis, design patterns)

The analyzed approaches cover either security or safety, or they cover security & safety together, but superficially

 = satisfied = partially satisfied = not satisfied

	C1	C2	C3-C4	C5	C6-C8
01 Cheng et al.: 2019					
02 Amorim et al.: 2017					
03 SAE J3061: 2016					
04 SAHARA: 2015					
05 PBSE: 2020					
06 SREP FOR CPS: 2018					
07 ISO 26262-9:2018					
08 POHL: 2016					
09 ISO/IEC/IEEE 15288: 2015					
10 Rupp et al: 2014					
11 Heisel et al: 2019					
12 FERNANDES: 2013					
13 CORAS: 2020					
14 Microsoft SDL: 2016					
15 SQUARE: 2005					

Holistic Security & Safety Approach

Criteria & Literature Analysis

STORM - Security & safety driven model-based requirements engineering process, 2020, (currently under review)

Criteria

C1	Applicability at system level
C2	Coverage of the requirements engineering process steps (elicitation & negotiation, documentation, validation)
C3 - C4	Consideration of security & safety
C5	Capability (Validation) for use with models
C6-C8	Reduction of engineering effort (model generation & analysis, design patterns)

The most approaches which used models, are **not understandable** by non discipline specific experts

 = satisfied = partially satisfied = not satisfied

	C1	C2	C3-C4	C5	C6-C8
01 Cheng et al.: 2019					
02 Amorim et al.: 2017					
03 SAE J3061: 2016					
04 SAHARA: 2015					
05 PBSE: 2020					
06 SREP FOR CPS: 2018					
07 ISO 26262-9:2018					
08 POHL: 2016					
09 ISO/IEC/IEEE 15288: 2015					
10 Rupp et al: 2014					
11 Heisel et al: 2019					
12 FERNANDES: 2013					
13 CORAS: 2020					
14 Microsoft SDL: 2016					
15 SQUARE: 2005					

Holistic Security & Safety Approach

Criteria & Literature Analysis

STORM - Security & safety driven model-based requirements engineering process, 2020, (currently under review)

Criteria

C1	Applicability at system level
C2	Coverage of the requirements engineering process steps (elicitation & negotiation, documentation, validation)
C3 - C4	Consideration of security & safety
C5	Capability (Validation) for use with models
C6-C8	Reduction of engineering effort (model generation & analysis, design patterns)

Only some approaches care about reduction of engineering effort, but do not cover all sub-criteria

 = satisfied = partially satisfied = not satisfied

	C1	C2	C3-C4	C5	C6-C8
01 Cheng et al.: 2019					
02 Amorim et al.: 2017					
03 SAE J3061: 2016					
04 SAHARA: 2015					
05 PBSE: 2020					
06 SREP FOR CPS: 2018					
07 ISO 26262-9:2018					
08 POHL: 2016					
09 ISO/IEC/IEEE 15288: 2015					
10 Rupp et al: 2014					
11 Heisel et al: 2019					
12 FERNANDES: 2013					
13 CORAS: 2020					
14 Microsoft SDL: 2016					
15 SQUARE: 2005					

Holistic Security & Safety Approach

Criteria & Literature Analysis

STORM - Security & safety driven model-based requirements engineering process, 2020, (currently under review)

Criteria

C1	Applicability at system level
C2	Coverage of the requirements engineering process steps (elicitation & negotiation, documentation, validation)
C3 - C4	Consideration of security & safety
C5	Capability (Validation) for use with models
C6-C8	Reduction of engineering effort (model generation & analysis, design patterns)

None of the analysed approaches fulfill all criteria

● = satisfied ● = partially satisfied ○ = not satisfied

	C1	C2	C3-C4	C5	C6-C8
01 Cheng et al.: 2019	●	●	●	●	●
02 Amorim et al.: 2017	●	●	●	●	●
03 SAE J3061: 2016	●	●	●	●	○
04 SAHARA: 2015	●	●	●	●	○
05 PBSE: 2020	●	●	○	●	●
06 SREP FOR CPS: 2018	●	●	●	○	○
07 ISO 26262-9:2018	●	●	●	●	○
08 POHL: 2016	●	●	●	●	○
09 ISO/IEC/IEEE 15288: 2015	●	●	○	○	○
10 Rupp et al: 2014	●	●	●	●	○
11 Heisel et al: 2019	○	●	●	●	●
12 FERNANDES: 2013	○	●	●	●	●
13 CORAS: 2020	○	●	●	●	○
14 Microsoft SDL: 2016	○	●	●	●	●
15 SQUARE: 2005	○	●	●	●	●

Holistic Security & Safety Approach

Process Model

Integrative Model-Based Elicitation & Negotiation

Reduce Misunderstandings Between Stakeholders by Using Models

How to consider security & safety in early engineering?

1. Form interdisciplinary team of stakeholders
2. Identify & fix threats using models
3. Derive requirements

I prepared and moderated 8 workshops with overall 84 participants from industry which were not familiar with security

Lessons learned:

1. Early identification of threats generally works with non security experts
2. For a better common understanding of use and threat cases the stakeholders require tools
3. Non security experts need additional tools to fix identified threats

ID	Description	SAHARA Security Level (0-4)	ISO 26262 Safety Level (0-4)	Derived from System Architecture	Use Cases + Sequence Diagram	Threat Cases + Sequence Diagram
R01	The vehicle system must be able to detect traffic light automatically, using a camera sensor system.	3	2	WBM01	-	TC01
R02	The vehicle needs an alternative sensor system to the traffic light system automatically	3	-	R02	WBM01	-
R03	The decisions regarding detection must be based on information from the camera sensor system and the alternative sensor system.	1	2	R03	WBM01	-

Participant area	No. of workshops	Ø-Partic.	Application purpose	Consideration of safety & security aspects
Farming	5	7	Development of a sensor system	Focus on security aspects
Management consultancy	2	12	Introduction to MBRE using the example of a CPS	Given in the task definition
Mechanical and plant engineering	1	25		

Integrative Model-Based Elicitation & Negotiation

Enable Stakeholders to Identify Use and Threat Cases Using a 3D Environment

How can stakeholders from **different disciplines** communicate with each other and identify use and threat cases on **system of systems** level?

Analyzed approaches either only helped with visualization and **not with model based engineering** or were only applicable to one **specific technical system** -> do both

1. Initiation of the project and project lead since 1.5 years with currently 7 student developers
2. Currently A/B Testing: **Review** of the **effectiveness** of the use of the 3D environment in a 40h project with **130 interdisciplinary master students**.
-> Will the approach **improve** the overall quality of the derived **black box** requirements?
3. Planned: Adjustment of the method and tool usability and **review** with **participants from industry**

1. **Identify** use and threat cases using the 3D environment and derive user stories

Download paper at: <https://doi.org/10.1017/dsd.2020.41>

Download prototype at: https://gitlab.cc-asp.fraunhofer.de/mbseguy/3d_engineer

2. **Generate** models automatically

3. **Refine** models

ID	Description	SAHARA (0-4)	Requirements (0-4)	Derived from Architecture + Sequence Diagrams + Threat Cases + Sequence Diagrams
TC01	The vehicle system must be able to detect traffic light information.	3	2	WBM01 - TC01
TC02	The vehicle needs an alternative sensor system to the traffic light system automatically.	3	1	WBM01 - TC01
TC03	The traffic light information must be based on information from the camera sensor system and the alternative sensor system.	1	2	WBM01 - TC01

4. **Derive** black box requirements

Integrative Model-Based Elicitation & Negotiation

Harden System Model by Applying Security & Safety Design Patterns

So we have managed to identify threats, but how to actually fix these threats?

Literature research: Some good methodical work exists, but without security reference. Many pattern catalogues exist, but only for security experts.
-> consider security, make design patterns understandable for an interdisciplinary team of non security experts

1. Currently A/B Testing: Review of the effectiveness of the use of the security & safety design patterns in an additional 40h project with 130 interdisciplinary master students.
-> Will the approach improve the overall quality of the derived white box requirements?
2. Planned: Adjustment of the method, increase of design pattern pool and review of the method with participants from industry

1. Derive white box system model

2. Mark threats in white box system model, do risk management

3. Apply design patterns considering security principles, derive white box requirements

Integrative Model-Based Elicitation & Negotiation

Planned: Conduct Validation and Verification of the Hardened System Model

Are we done yet? No, the **models & requirements** still have to be reviewed. How can we **reduce the effort** for this?

Lessons learned from workshops with industry participants
-> even **simple sequences** of system behaviour **are not manageable** without software tool support

How can the occurrence of already defined threat cases be **automatically checked** taking into account the already defined use cases?

Literature Research -> **Adapt** existing approaches/software tools so that they can be **used by industry**

Own preliminary work: https://www.google.de/books/edition/Tag_des_Systems_Engineering/Phu4DwAAQBAJ?hl=de&gbpv=0

1. Perform **model analysis**

2. **Fix white box system model**

3. **Refine white box requirements**

THANK YOU

**Security & Safety by
Model-based Requirements Engineering**

28th IEEE International Requirements Engineering Conference, 2020, Zurich, Switzerland

Sergej Japs, M.Sc.

Fraunhofer Research Institute for Mechatronic Systems Design IEM

Paderborn, Germany