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Abstract—AI-based foundation models like FourCastNet,
GraphCast, ClimaX, and Pangu-Weather are revolutionizing
weather and climate predictions but are not yet ready for opera-
tional use. Their limitation lies in the absence of a data assimila-
tion system to incorporate real-time Earth system observations,
crucial for accurately forecasting events like tropical cyclones and
atmospheric rivers. To overcome these obstacles, we introduce a
generic real-time data assimilation framework and demonstrate
its end-to-end performance on the Frontier supercomputer.
This framework comprises two primary modules: an ensemble
score filter (EnSF), which significantly outperforms the state-
of-the-art data assimilation method, e.g., the Local Ensemble
Transform Kalman Filter (LETKF); and a vision transformer-
based surrogate capable of real-time adaptation through the
integration of observational data. We demonstrate both the strong
and weak scaling of our framework up to 1024 GPUs on the
Exascale supercomputer, Frontier. Our results not only illustrate
the framework’s exceptional scalability on high-performance
computing systems, but also demonstrate the importance of
supercomputers in real-time data assimilation for weather and
climate predictions. Even though the proposed framework is
tested only on a benchmark surface quasi-geostrophic (SQG)
turbulence system, it has the potential to be combined with
existing AI-based foundation models, making it suitable for future
operational implementations.

Index Terms—Diffusion models, generative AI, data assimi-
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I. INTRODUCTION

The field of meteorology is undergoing a significant trans-
formation owing to rapid advances in artificial intelligence
(AI). While existing AI-based foundation models such as
FourCastNet [2], GraphCast [3], ClimaX [4] and Pangu-
Weather [5] show considerable potential, they are not ready
yet for a fully operational implementation since they are
decoupled from operational data assimilation (DA) algorithms.
This limitation hinders their ability to dynamically incorporate
real-time observational data and impacts their effectiveness in
predicting complex atmospheric phenomena, such as tropical
cyclones and atmospheric rivers. The reliance on physics-
based models to provide the initial conditions significantly
increases the overall computational costs. In the case of AIFS
(the AI model developed by ECMWF), one still needs to
combine the physics-based ECMWF model (IFS) with a four-
dimensional DA (4D-Var) method in order to initialize the
data-driven forecasts every 12h.

Data assimilation is crucial for making reliable weather
forecasts because it involves the integration of real-time obser-
vational data with weather models, ensuring the models start
from the most accurate representation of the current state of
the Earth system. Within the Earth sciences, the ensemble
Kalman filter (EnKF) of Evensen [6] and its many variants
are a state-of-the-art (SOTA) DA method. For example, one
the finalist paper [1] of the 2023 ACM Gordon Bell Prize for
Climate Modeling used the Local Ensemble Transform Kalman
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Filter (LETKF) that is a specific implementation of EnKF.
However, EnKFs suffer from fundamental limitations as they
make Gaussian assumptions in their update step, which leads
to severe model biases in solving highly nonlinear systems.
Previous studies have illustrated the detrimental effects of
the resulting analysis biases in high-impact situations such
as hurricane prediction [7]. A viable alternative to EnKF
is the particle filter (PF) [8]–[10] – a fully non-parametric
method which converges to the correct Bayesian solution [11].
Although PFs emerged around the same time as the EnKF,
their implementation to large models has been difficult in view
of their curse of dimensionality (weight collapse). In practical
terms, this means that PFs require prohibitively large ensemble
sizes (number of particles) to retain long-term stability.

To overcome these challenges, we propose a generic real-
time DA framework and demonstrate its end-to-end perfor-
mance on the Frontier supercomputer at the Oak Ridge Lead-
ership Computing Facility (OLCF). This framework consists
of two primary modules. The first module is an ensemble
score filter (EnSF), originally developed in [12], [13]. The
EnSF method leverages the generative AI models [14]–[17],
and has shown promising accuracy in estimating the state of a
high-dimensional Lorenz-96 system withO(106) variables and
highly nonlinear observations. The second primary module of
our DA framework is a vision transformer (ViT)-based surro-
gate of the forecast model that could be either a physics-based
model or an AI-based foundation model. The surrogate model
is needed in our DA framework for two reasons. First, the
EnSF requires the gradient of the observation model to update
the score function, and the gradient can be efficiently obtained
from the surrogate model. Second, due to the complexity
of turbulence, the forecast model does not provide sufficient
accuracy without incorporating observation data. Nevertheless,
the online training of the surrogate model requires the use of
supercomputers to perform real-time DA.

Our results demonstrate the proposed framework’s excep-
tional scalability on high-performance computing systems,
which is essential for eventual application to real weather and
climate prediction problems. Even though the proposed frame-
work is tested using the benchmark surface quasi-geostrophic
turbulence (SQG) model, it has the potential to be combined
with existing AI-driven weather models, making it suitable for
operational use. Our contributions are listed as follows:

• We introduce a generic real-time data assimilation frame-
work for estimating turbulent dynamics, providing signifi-
cantly more accurate predictions (Figure 4) than the state-of-
the-art LETKF method which was used in one finalist paper
[1] of the 2023 Gordon Bell Prize for Climate Modeling.

• We showcase the remarkable strong and weak scaling
capabilities of our proposed DA framework on the Frontier
supercomputer, which demonstrates the necessity of super-
computers in real-time data assimilation operation.

• We investigate the strategies for large-scale distributed train-
ing of ViTs, including compute-efficient kernel sizing on
AMD MI250Xs, and memory-efficient data parallelisms for

ViTs with billions of parameters.

The rest of this paper is organized as follows. In Section
II, we introduce the physical SQG model and setup the data
assimilation problem. Section III provides the details of the
proposed framework, including the EnSF and the ViT-based
surrogate model. The scalability experiments and results are
given in Section IV, while Section V summarizes the main
findings and and outlines our future plans.

II. BACKGROUND

A. Data assimilation

Every DA algorithm requires a forecast model to describe
how the physical system evolves over time, and a set of
observations to reduce the growing forecast errors. Let k =
0, 1, ...,K denote the time index. The general evolution of the
system can be written as

Forecast model: Xk = fk−1(Xk−1,E
m
k−1), (1)

where Xk is the discretized state. Note that this forecast model
could be either physics-based like the SQG, or an AI-based
foundation model like FourCastNet. We further assume the
model predictions are not perfect, and their errors captured by
the random vector Em

k . To correct the model predictions, we
use observations given by

Observation model: Yk = hk(Xk) +Eo
k, (2)

where hk is the observation operator mapping the state to
observation space and Eo

k ∼ N (0,Rk) is the corresponding
observation error. In this case, we have made the simplifying
assumption that observations are additive and Gaussian in
nature, but more flexible models can be also used [18].

Given the forecast and observation models, a standard way
to solve the DA problem is to calculate the filtering probability
density function (PDF) P (xk|y1:k), in which the state is
conditioned on the entire history of observations up to the
present (filtering) time. This can be done by iterating through
one prediction and one update (analysis) step, as described
below.

Prediction: Due to its stochastic nature, the state is
evolved forward using the Chapman-Kolmogorov equation
such that

P (xk|y1:k−1) =

∫
P (xk−1|y1:k−1)P (xk|xk−1)dxk−1, (3)

where P (xk|xk−1) is the transition PDF to be determined
from the forecast model (1).

Update: After the new measurements Yk = yk are
collected, the error-prone forecasts are adjusted using Bayes’
theorem:

P (xk|y1:k) ∝ P (xk|y1:k−1)P (yk|xk), (4)

Accounting for the additive-Gaussian assumption on the ob-
servation errors Eo

k, the likelihood P (yk|xk) can be rewritten
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as

P (yk|xk) ∝ exp
[
− (yk − h(xk))

⊤R−1
k (yk − h(xk))

]
.

(5)

B. The surface quasi-geostrophic (SQG) model

The new prediction framework is tested on a benchmark
model simulating the surface quasi-geostrophic (SQG) dynam-
ics [19]. The numerical implementation follows [20] closely.
It is important to emphasize that the proposed DA framework
can be combined with any forecasting model, either physics-
based or AI-driven, as described in Section III. Nevertheless,
our choice to work with the SQG model for this study is
motivated by its ability to generate turbulence behavior that is
representative of real geophysical flows. In particular, fully de-
veloped turbulence in the SQG system follows a kinetic energy
(KE) density spectrum with a -5/3 slope, which aligns with
reference measurements from field campaigns [21]. Previous
studies have shown that such turbulence characteristics set a
limit on the ability to make reliable weather predictions [22].

III. METHODOLOGY

This section contains the details of the proposed real-time
DA framework. The corresponding workflow is summarized in
Figure 1. The major challenge of DA for operational use is that
there is no existing method that can simultaneously resolve
the following three issues: nonlinearity/non-Gaussianity, high-
dimensionality, and scalability on HPC. The new DA method
described next has demonstrated its ability to resolve all
three issues, and has the potential to significantly improve
SOTA weather and climate predictions. There are two major
scalability tasks, one is the online training of the ViT surrogate
using observational data, and the other is the efficient running
of the EnSF. Since training ViT and running EnSF occurs
sequentially with each filtering iteration, the overall computing
time is the summation of the computing times for these two
steps.

A. The ensemble score filter (EnSF)

1) Overview of diffusion models: To describe score-based
diffusion models, we need to introduce the following stochas-
tic differential equation (SDE)

dZt = b(t)Ztdt+ σ(t)dWt, (6)

with Wt being the standard Brownian motion. The initial
condition Z0 follows some target distribution, which in our
case is set to the filtering PDF given by Eq. (4). The following
reverse-time SDE can be used to generate samples {Zi

0}Ni=1

of the target Z0:

dZt =
[
b(t)Zt − σ2(t)s(Zt, t)

]
dt+ σ(t)d

←−
W t (7)

where we have used the notation
∫
·d
←−
W t to define a backward

Itô stochastic integral [23], [24]. Within this new SDE, the
term s(·, t) is referred to as the score function and is a short-
hand for

s(zt, t) = ∇ log(Q(zt)). (8)

Fig. 1. Illustration of the real-time sequential DA workflow, which needs to
be performed very frequently in weather forecast operation. Recent advances
in weather and climate modeling focus on developing AI-based foundation
models, e.g., FourCastNet, GraphCast, etc., to replace the traditional physics-
based forecast models. These data-driven architectures are not yet ready for
operational use due to the lack of real-time data assimilation capabilities. The
proposed DA framework has two primary modules that need to be scaled
on HPC, i.e., the ensemble score filter (EnSF) introduced in Section III-A,
which significantly outperforms SOTA methods like LETKF, and a vision
transformer (ViT)-based surrogate, introduced in Section III-B, capable of
real-time adaptation through the integration of observational data. Our method
can be integrated with either physics models or AI-based foundation models.
The scalability of our method on HPC is essential to ensure computations can
be performed in real time.

The score function s(·, t) is an essential ingredient for
transforming the standard Gaussian distribution of ZT to the
target distribution Q(z0). One important technicality is that
the drift and diffusion coefficients b and σ need to be properly
chosen in order to obtain the desired transformation. Here we
follow [14], [15] and define these functions as

b(t) =
d logαt

dt
, σ2(t) =

dβ2
t

dt
− 2

d logαt

dt
β2
t , (9)

with αt = 1− t and βt =
√
t for t ∈ [0, 1].

2) The ensemble score filter (EnSF): The main philosophy
behind EnSF, our new filtering approach, is to approximate
the score functions sk|k−1 and sk|k corresponding to the
prior (forecast) and posterior PDFs in (3) and (4). At the
beginning of the k-th iteration, we have the analysis ensemble
at time level k − 1, the EnSF’s workflow reduces to the
standard iterative application of prediction and update steps,
as described next.

Prediction step: This part of the algorithm is identi-
cal for all ensemble-based approaches and uses the forecast
model (1) on each analysis member Xm

k−1|k−1, with the
integration length determined by the time separation between
observations. The resulting sample {Xm

k|k−1}
M
m=1 represents

an unbiased approximation of the prior PDF P (xk|y1:k−1) and
will be utilized in the estimation of the prior score ŝk|k−1.

Update step: The main goal here is to obtain an approx-
imation for the posterior score sk|k (i.e., ŝk|k). The Bayesian
update formula in Eq. (4) inspired us to propose the following
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form for the posterior score sk|k(z, t):

sk|k(z, t) := sk|k−1(z, t) + h(t)∇x log p(yk|z). (10)

Note that the coefficient h(t) multiplying the likelihood score
represents a damping factor that decreases over the pseudo-
time interval [0, T ] such that h(0) = 1 and h(T ) = 0. In our
numerical experiments, we define h(t) = T−t, although other
options are also possible and will be explored in future work.
Unlike existing diffusion models that use neural networks
to learn the score function, we first derive the closed-form
representation of the score function as follows:

s(zt, t) =∇z logQ(zt) = ∇z log

(∫
Q(zt|z0)Q(z0)dz0

)
=

1∫
Q(zt|z′0)Q(z′0)dz

′
0

∫
−zt − αtz0

β2
t

Q(zt|z0)Q(z0)d z0

=−
∫

zt − αtz0
β2
t

wt(zt, z0)Q(z0)dz0.

(11)
Notice that the weight function wt(zt, z0) follows the defini-
tion

wt(zt, z0) =
Q(zt|z0)∫

Q(zt|z′0)Q(z′0)dz
′
0

, (12)

and satisfies the condition
∫
wt(zt, z0)Q(z0)dz0 = 1. In our

implementation, we use Monte Carlo estimator to approximate
the integrals in Eq. (11), such that we can completely avoid
the training process for existing diffusion models.

3) Scalable implementation of EnSF on HPC: We have
implemented the EnSF method in PyTorch, making the
code base compatible with both CPU-based platforms and
those equipped with accelerators. The computational workload
scales with various factors, including the number of ensembles,
problem dimensions, and the total number of filtering cycles.
The most efficient factor for parallelization are the ensembles,
as it incurs minimal communication overhead. Considering the
large memory capacity of GPUs on Frontier, straightforward
parallelization can already support EnSF with dimensions up
to 100 million, which is more than sufficient for our applica-
tion. Since the training of the ViT surrogate is the bottleneck
of the overall scaling, we will focus on the optimization of
distributed training in the following.

B. ViT surrogate for the SQG model

a) Compute-efficient architecture: We have developed
a Vision Transformer (ViT) surrogate tailored specifically
for the surface quasi-geostrophic (SQG) model, utilizing a
standard ViT backbone. Figure 2 illustrates the architecture
of SQG-ViT, which consists of multi-head self-attention and
multi-layer perceptron (MLP) components, augmented by nor-
malization layers before and after the attention mechanism.
To address overfitting, we have incorporated Dropout and
DropPath regularization techniques. It is worth noting that
the MLP component typically dominates the parameter count,

making matrix-matrix multiplication (GEMM) the most com-
putationally intensive operation.

Fig. 2. Building block of ViT surrogate model for the forecast model in
Figure 1. The number of parameters and floating point operations (FLOPs)
are exemplified with 8-head attention, an embedding dimension of 2048, and
a MLP to attention ratio of 8.

The performance of GEMM is significantly influenced by
the shapes of the matrices [25], [26], thereby impacting the
overall training efficiency of ViT. This dependency under-
scores the importance of appropriately sizing kernels, a task
determined by factors such as embedding dimension, number
of attention heads, and the ratio of MLP to attention. Adhering
to the scaling law for Transformer architecture, where model
capacity scales with the number of parameters, optimizing
kernel sizes for computational efficiency becomes imperative
for large-scale training on HPC systems. In the following
section, we describe our distributed training strategies.

Method optimizer optimizer
gradient

optimizer
gradient
weight

hierarchical

FSDP n/a shard grad op full shard hybrid shard
ZeRO stage 1 stage 2 stage 3 n/a

TABLE I
THE DISTRIBUTED TRAINING METHODS WITH DIFFERENT MEMORY

PARTITION STRATEGIES.

b) Fully sharded data parallel (FSDP): In addition
to conventional data parallelism, where each device hosts
a duplicate of the model, recent advancements in memory-
efficient data parallelism, such as FSDP, have emerged as
more suitable options for training large models due to their
reduced memory footprint. Even when utilizing half precision,
Vision Transformer (ViT) training necessitates approximately
12 times the model parameter size in memory storage, encom-
passing model weights (1X), optimizer states (2X for Adam
optimizer), gradients (1X), and intermediate storage (2X) like
FSDP units. FSDP offers distributed partitioning of various
memory components through three strategies outlined in Ta-
ble I. Specifically, shard_grad_op distributes gradients and
optimizer states across all devices, full_shard partitions
all memory components, and hybrid_shard represents a
blend of data parallelism and FSDP.
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c) ZeRO data parallel: Besides PyTorch built-in FSDP,
another widely utilized memory-efficient data parallel imple-
mentation is DeepSpeed ZeRO. These two strategies exhibit an
almost one-to-one correspondence (refer to Table I). However,
ZeRO offers a broader array of tuning parameters for perfor-
mance optimization compared to FSDP. These include adjust-
ing the message bucket size for operations like AllGather
and Reduce, enabling continuous memory allocation for
gradients, and other similar optimizations.

d) Computational budget estimation: The total num-
ber, T, of floating-point operations (FLOPs) required for train-
ing ViT is directly proportional to the number of tokens, which
depends on factors such as input size (L), patch size (P), num-
ber of epochs (E), and the number of model parameters (M).
Specifically, this relationship follows T = 6

∏d
i=1

Li

Pi
∗E ∗M,

where d represents the dimension of the input image. The
number of tokens per input image is given by the product, and
hence T is essentially proportional to the total number of to-
kens during the training and the number of model parameters.
The factor 6 comes from the fact that every token is processed
with a multiply-accumulate (MAC) and two MACs during the
forward and backward propagation, respectively. In Figure 3,
we present the total number of FLOPs and the computation
hours (in the unit of Frontier node hours) needed to train three
representative sizes of ViT. Without loss of generalizability, we
assume training over 100 epochs with a dataset containing 1
million images.

Fig. 3. Computation need in terms of FLOPs and Frontier node hours for
training ViT surrogate model for the SQG model on 1M images.

IV. RESULTS

We perform the experiments on the first Exascale supercom-
puter, Frontier. Each Frontier node is equipped with four AMD
Instinct MI250X GPUs with dual Graphics Compute Dies
(GCDs). A GCD is viewed as an effective GPU, and we use
GCD and GPU interchangeably in the following discussion.
All four MI250Xs (eight effective GPUs) are connected using
100 GB/s Infinity Fabric (200 GB/s between 2 GCDs of
MI250X). We report the following two sets of experimental
results (the code is publicly available1):
• Accuracy tests: Comparing our method with the state-

of-the-art LETKF method to demonstrate the superior
accuracy of our method in predicting highly nonlinear
turbulent dynamics.

1https://github.com/jqyin/sqg vit

• Scalability tests: Demonstrating the scalability of the
proposed real-time DA workflow in Figure 1, including
the online ViT training and the online EnSF execution.

A. Accuracy tests

a) Experimental setup: For our numerical tests, we
discretize the SQG model on a 64x64x2 mesh and evaluate
the errors of different DA systems in the setting where the
entire SQG state is directly observed; that is, the observa-
tion operation hk in (2) becomes the identity matrix I. For
simplicity, the error covariance matrix R is also set to I.
Observations are generated synthetically every 12h within a
standard observation system simulation (OSSE) framework
[27]. We compared with accuracy of our method with the state-
of-the-art LETKF method, which was originally proposed by
Bishop et al. [28] and further developed in Hunt et al. [29].

The ensemble size for both DA algorithms (LETKF and
EnSF) is set to 20. Initial ensembles are created through the
random selection of model states from a long-term integration
of the SQG model. Since the external model errors discussed
earlier are unpredictable, LETKF’s inflation and localization
parameters are tuned in an error-free twin experiment. We find
that the optimal RTPS factor and cut-off localization scales are
0.3 and 2000 km, respectively. One significant advantage of
the EnSF algorithm used in our new DA framework is that it
can maintain stable performance without any special tuning.
For the numerical tests presented in this study, localization is
not applied and the variance (spread) of the analysis ensemble
is simply relaxed to the prior (forecast) values in order to
guarantee the long-term filtering stability.

We compare the performance over the time period t ∈
[0, 3600] and consider the four different architectures:

• SQG only: Run the SQG model iteratively from t = 0
to t = 3600 without incorporating observations.

• ViT only: Run the offline trained ViT surrogate iteratively
from t = 0 to t = 3600 without using observations.

• SQG + LETKF: Apply LETKF (a SOTA method in the
DA community) to assimilate observations and correct
the SQG forecasts.

• ViT + EnSF: This is the proposed framework in this
study – use the more accurate EnSF method to adjust the
forecasts from the pre-trained ViT surrogate of the true
SQG dynamics.

Figure 4 shows the root mean squared error (RMSE) of
the above four experiments. We can make several important
observations. First, DA is a necessary component to ensure
accurate long-term reconstruction of the SQG state. This to
be contrasted with the SQG-only and ViT-only experiments
where the RMSEs experience a rapid growth as a result of
the developing SQG turbulence. This is caused by the chaotic
dynamics and the rapid amplification of IC errors. Second, the
LETKF RMSEs gradually increase as we add model errors
to true SQG state. Eventually, the LETKF’s performance is
comparable to the SQG-only and ViT-only simulations in
which DA is not carried out. The latter implies that the SOTA
LETKF method is sensitive to model imperfections even when

15



Fig. 4. The root mean squared errors (RMSEs) of the four test cases. We
observe that data assimilation is a necessary component to ensure accurate
reconstruction of the SQG state. On the other hand, the RMSE of experiments
that only use SQG or ViT without a DA component grows very fast in
time. Moreover, LETKF diverges from the ground truth as model errors
accumulate in time, suggesting that the LETKF method is sensitive to
model imperfections. The proposed EnSF+ViT framework provides superior
performance since we observe stable performance throughout all analysis
cycles even in the absence of fine tuning.

the inflation and localization parameters are optimally tuned.
Third, EnSF+ViT provides superior performance – we observe
stable results throughout the entire integration period without
any special fine tuning.

B. Scalability tests

We investigate the scaling of the proposed DA framework,
i.e., the ViT+EnSF workflow, on Frontier from the compute-
efficient architecture search on single node, to performance
analysis and profiling, and optimization at scale.

Fig. 5. Computation performance (TFLOPS) heatmap for the ViT surrogate’s
architecture on Frontier.

a) Compute-efficient architecture: As shown in Fig-
ure 5, the single-node training performance of 2562 inputs
varies from 20 TFLOPS to 52 TFLOPS, mostly depending
on the embedding dimensions, the number of attention heads,
and the MLP ratio (i.e., the percentage of MLP parameters
of a ViT layer). Typically, higher number of attention heads
reduce the performance, and a embedding dimension of 2048
provides the best performance. Increasing the weight of MLP
operations will improve the performance overall.

We design our scaling experiments for three input and model
sizes, with detailed architectures listed in Table II. The number
of parameters ranges from 157M to 2.5B. While the number
of attention heads is fixed at 8, the embedding dimension
increases from 1024 to 2048, to provide more capacity for
larger inputs. The number of layers is doubled from each size
as well.

To study the performance bottleneck, we profile the runtime
of the ViT training at 1024 GPUs on Frontier for all three

input patch #layers #heads #embed dim #mlp ratio #params

642 4 12 8 1024 4 157M
1282 4 24 8 2048 4 1.2B
2562 4 48 8 2048 4 2.5B

TABLE II
THE ARCHITECTURE OF THE VIT SURROGATE MODELS.

model and input sizes. As shown in Figure 6, the runtime
breakdown indicates the training is dominated by computation
and communication, with negligible IO, although the IO
portion increases slightly from small input (642) to large input
(2562). Specifically, for 642, the computation is less intensive
(hence takes longer runtime) compared to larger models due to
the 1024 embedding size, and yet the portion of communica-
tion is still larger than that of 1282, indicating a slower training
performance. On the other hand, for 2562, the computation
workload is twice of 1282, but the communication takes a
larger portion because the message volume also doubles. Our
results show that ViT training is mostly communication bound
at scale, especially for large inputs (i.e., longer sequences).

Fig. 6. The runtime percentage of computation, communication and IO for
training the ViT surrogate model with input size of 642, 1282, and 2562,
respectively.

b) Scaling on Frontier: With the profiling analysis
and baselines established, we are ready to compare different
distribution strategies and scale the ViT surrogate up to 1024
GPUs on Frontier. In Figure 7, we first compare the scaling of
different model and input sizes. 1282 performs the best with
a scaling efficiency of 86%, while 642 and 2562 performs
comparably. This is consistent with the profiling analysis (see
Figure 6), which indicates a trade-off between the computation
intensity and communication volume, and 1282 input with a
1.2B model size seem to be optimal on Frontier.

However, for our scientific application, a larger input is
desired. To improve the performance of 2562, we further
study different memory-efficient data-parallel strategies. As
shown in Figure 7, the DeepSpeed stage 1 with default setting
(message bucket size 200MB) in PyTorch lightning does
not perform well because the communication bandwidth of
AllReduce deteriorates around this message size. On the
other hand, a very large message size will not work well
either due to less opportunities to overlap communication with
computation. We find a message size around 500MB works the
best, and resulted scaling efficiency improves to 85%. Overall,
with more optimization knobs, DeeSpeed ZeRO data-parallel
outperforms FSDP for training SQG-ViT on Frontier.

c) EnSF scaling: With the training of the forward
model optimized, we study the scaling behavior of EnSF on
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Fig. 7. Scaling ViT surrogate up to 1024 GPUs on Frontier with distributed
data parallel (DDP), DeepSpeed (DS) stage 1 and 2, and fully sharded data
parallel (FSDP) with full and grad op strategies. The model size for 642,
1282, and 2562 input is 157M, 1.2B, and 2.5B, respectively.

Frontier. The MPI parallelization is along the dimension of the
ensemble, so the ranks are straightforwardly parallel and the
outputs are MPI reduced in the end. As shown in Figure 8,
EnSF weak scales perfectly up to 1024 GPUs on Frontier.
The time per step is about 0.4s for 1M dimension, and 28s
for 100M.

Fig. 8. Weak scaling of EnSF on Frontier up to 1024 GPUs for dimension
size of 106, 107, and 108, respectively.

V. CONCLUSION

In this study, we introduce a generic sequential data as-
similation framework for estimating turbulent dynamics and
demonstrate its end-to-end performance on the Frontier super-
computer. By investigating compute-efficient kernel sizing and
comparing various parallelization strategies, we achieve a 85%
strong scaling efficiency and linear weak scaling up to 1024
GPUs, respectively, on the Frontier supercomputer. Our results
demonstrate the framework’s exceptional scalability on high-
performance computing systems, which is essential for im-
proving the medium-range forecasts of high-dimensional Earth
system applications. As shown in the numerical experiment,
e.g., Figure 4, physics-based or AI-based weather/climate
models cannot predict turbulent dynamics without an efficient
DA workflow. We emphasize that the proposed workflow can
be combined with any physics-based or AI-based foundation
weather models because of using the ViT surrogate.
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