
ChatBLAS: The First AI-Generated and Portable
BLAS Library

Pedro Valero-Lara
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
valerolarap@ornl.gov

William F. Godoy
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
godoywf@ornl.gov

Keita Teranishi
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
teranishik@ornl.gov

Prasanna Balaprakash
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
pbalapra@ornl.gov

Jeffrey S. Vetter
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
vetter@ornl.gov

Abstract—We present ChatBLAS, the first AI-generated and
portable Basic Linear Algebra Subprograms (BLAS) library on
different CPU/GPU configurations. The purpose of this study
is (i) to evaluate the capabilities of current large language
models (LLMs) to generate a portable and HPC library for
BLAS operations and (ii) to define the fundamental practices
and criteria to interact with LLMs for HPC targets to elevate
the trustworthiness and performance levels of the AI-generated
HPC codes. The generated C/C++ codes must be highly optimized
using device-specific solutions to reach high levels of performance.
Additionally, these codes are very algorithm-dependent, thereby
adding an extra dimension of complexity to this study. We used
OpenAI’s LLM ChatGPT and focused on vector-vector BLAS
level-1 operations. ChatBLAS can generate functional and correct
codes, achieving high-trustworthiness levels, and can compete or
even provide better performance against vendor libraries.

Index Terms—Julia, JACC, metaprogramming, performance
portability, high-bandwidth on-chip memory

I. CHATBLAS

ChatBLAS 1 is the first AI-generated and portable Basic
Linear Algebra Subprograms (BLAS) library that can be
deployed in different CPU and GPU configurations, and the
C/C++ codes implementing the different routines that compose
the BLAS standard specification are generated by AI large
language models (LLMs).

ChatBLAS provides a unified standard-based BLAS API
on top of different back ends, thereby enabling the deploy-
ment of the same API on different hardware configurations
without changing one line of code. ChatBLAS interacts with
LLMs via libraries that provide the necessary capabilities to
communicate with these models by using prompts as input
and collecting the responses from the models in the form of
text (e.g., programming language codes) as output. Once the

1https://github.com/pedrovalerolara/ChatBLAS

codes are collected, they can be compiled, analyzed, and run
by ChatBLAS. This study focuses on the use of OpenAI’s
LLM ChatGPT; however, other LLMs can also be used if a
library with which to interact is provided.

We used the Julia [1] language and ecosystem to implement
the ChatBLAS library (or a Julia package—ChatBLAS.jl—
using the Julia terminology). Julia is a dynamic and just-in-
time (JIT) compiled front end to the LLVM programming
language that was designed to provide a powerful unifying
strategy to close the gaps between scientific computing and
data science. We implemented ChatBLAS in Julia to benefit
from a relatively easy-to-use syntax similar to that of Fortran
and from its JIT capabilities that make testing, packaging,
support for different back ends, and other processes extremely
easy. Additionally, Julia provides support for reference BLAS,
which can be used to easily evaluate the correctness of the
AI-generated BLAS codes, everything interactively and effi-
ciently. Furthermore, any library implemented in any language
(e.g., C or Fortran) can be compiled and used from a Julia
terminal.

ChatBLAS comprises different back ends according to
programming languages (e.g., C/C++, Fortran, Julia) or the
programming model to be used (e.g., OpenMP, OpenACC,
CUDA, HIP). ChatBLAS interacts with LLMs that generate
C/C++ codes. LLMs can also generate codes implemented in
other programming languages. For clarity, this study focuses
on C/C++ codes and OpenMP, CUDA, and HIP models.
ChatBLAS specializes in the AI generation of BLAS codes,
and in this initial study, we focus on BLAS level-1 rou-
tine (axpy, scal, swap, copy, dot, sdsdot, asum, nrm2, and
isamax), a set of highly specialized operations focused on
vector-vector operations, which are popularly used in multiple
HPC applications [2]. ChatBLAS is an extraordinary platform

19979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00010

Fig. 1. ChatBLAS main components.

to evaluate and create novel LLMs’ capabilities and LLM-
based techniques such as prompt engineering or fine-tuning to
generate highly optimized BLAS codes on different hardware
platforms.

Figure 1 shows the main components of ChatBLAS. Chat-
BLAS is a Julia package composed of three main components:
(i) those files related to the Julia package (files indicated
by blue text in Figure 1), (ii) those files related to the AI-
generated C/C++ HPC and portable library (files indicated
by gray text in Figure 1), and (iii) the LLM model used to
generate the source codes that implement the different BLAS
routines.

ChatBLAS.jl manages the interaction with OpenAI Chat-
GPT to send the prompts to the LLM model and collect
from that model the C/C++ codes that implement the differ-
ent BLAS level-1 routines by using a specific programming
model for parallelization (OpenMP, CUDA, or HIP). This
is implemented in /src/ChatBLAS.jl via Julia functions, and
one function per BLAS routine was implemented. The codes
collected are stored in the ChatBLAS library in /ChatBLAS/.

The use of ChatBLAS functions is very simple with the
JIT Julia environment. Entering ChatBLAS.saxpy() in a Julia
terminal will run the Julia code that sends the prompt to LLM
for this to generate an HPC code that implements the axpy
BLAS operation for a specific target (e.g. C++ and CUDA).
Julia provides reference BLAS support, which is used for
the testing. Julia packages are created with a default testing
support that can be used to evaluate the functionality. In our
case, the testing consists of comparing the results of running
the Julia reference BLAS and ChatBLAS libraries. The library
must have been previously compiled or created and can use
any language or programming model. The compilation can
be performed from a Julia terminal too, and it is part of
ChatBLAS.jl functions (ChatBLAS.compilation()).

Additionally, we provide the HPC and portable library (gray
files in Figure 1). ChatBLAS stores the AI-generated codes
collected from the OpenAI ChatGPT LLM model. We can find
three extensions: .c for OpenMP codes, .cu for CUDA codes,
and .cpp for HIP codes. ChatBLAS provides a separate header
file and makefile corresponding to the different extension files
and targets (CPUs, NVIDIA GPUs, and AMD GPUs). The

headers and makefiles were not generated by AI. The perfor-
mance of ChatBLAS vs. that of the vendor libraries can be
evaluated in ChatBLAS.jl/ChatBLAS/performance-tests/, and
the necessary scripts to compile and run the test codes are
provided.

The last component is the LLM model. In this study, we
use two generations of the OpenAI LLM ChatGPT: 3.5-Turbo
and 4o. Although ChatGPT 3.5-Turbo is not the last version
of the OpenAI’s Generative AI model, it can be used to train
the model (fine-tuning), whereas ChatGPT 4o cannot. We use
this model to generate the HPC codes that implement the
BLAS level-1 operations by using C/C++ codes and OpenMP,
CUDA, and HIP models. Additionally, this model allows users
to interact with it via different LLM-based techniques, such
as prompt engineering and fine-tuning (only on the 3.5-Turbo
version).

II. ANALYSIS

In this section, we evaluate the capability of the AI gen-
erative model ChatGPT to generate BLAS level-1 codes for
different architectures. For this analysis, we used two versions
of ChatGPT: 3.5-Turbo and 4o. The prompt used depends
on the programming model or ChatBLAS back end: one for
OpenMP, one for CUDA, one for HIP, and the BLAS level-1
routine. The prompts used for the CUDA and HIP models
are very similar. The operations are made by using single
precision.

A. Correctness

The metric used to evaluate the correctness of the AI-
generated codes consists of the number of times that the
required codes generated by ChatGPT were correct divided
by the total number of times that the codes were generated.
We ran the tests for 10 iterations. We define correct codes as
those that use the programming language (e.g., C/C++) and the
programming model (e.g., OpenMP, CUDA, HIP) required and
specified in the prompts, that can be compiled and run, and
that provide a correct result.

First, we evaluate the correctness of the codes generated by
using very basic prompts that do not include any detail about
the implementation or parallelization, providing only a brief
description of the problem (BLAS level-1 operations) and the
programming language and model (e.g., C and OpenMP) that
we want the codes to use. Next, we include an example of the
prompts used for the saxpy operation for the CUDA back end:

Give me a function code only that computes a multi-
plication of a vector x by a constant a and the result
is added to a vector y. Vectors x and y are length
n, use C and CUDA to compute in parallel include
the next line in the code, and use the next function
name and parameters void chatblas saxpy(int n,
float a, float *x, float *y). Include the next line at
the beginning #include chatblas cuda.h

As we observe in Table I, for OpenMP codes, ChatGPT can
provide a 93% efficiency (93% of the codes generated are
correct) by using the 3.5-Turbo version of the ChatGPT model.

20

This result is elevated up to 100% by using the same prompt
but on the more modern 4o version of ChatGPT. For CUDA
codes, both ChatGPT versions, 3.5-Turbo and 4o, provide a
66% efficiency. For HIP codes, we report an efficiency of 75%
and 82% when using the 3.5 and 4o versions, respectively.

Routine OpenMP CUDA HIP
ChatGPT Version 3.5 4o 3.5 4o 3.5 4o

saxpy 1.0 1.0 0.8 0.8 1.0 1.0
sscal 0.6 1.0 0.8 0.6 1.0 0.8
sswap 1.0 1.0 0.4 0.4 0.8 1.0
scopy 1.0 1.0 0.6 0.8 1.0 0.8
sdot 1.0 1.0 1.0 0.6 1.0 0.8

sdsdot 1.0 1.0 0.2 0.2 0.6 0.2
sasum 0.8 1.0 0.6 1.0 0.4 1.0
snrm2 1.0 1.0 0.8 0.6 0.6 0.8
isamax 1.0 1.0 0.6 0.8 0.4 1.0

TABLE I
BLAS LEVEL-1 CORRECTNESS OF CHATBLAS USING BASIC PROMPTS.

The deficiencies found in the code generated by ChatGPT
can be very diverse. Most of these deficiencies are found in
GPU codes (e.g., CUDA and HIP codes), and these deficien-
cies include the use of CUDA syntax in HIP codes, GPU codes
that do not include CPU-GPU communication primitives,
or wrong use for the thread index or block/grid of block
size, among others. It is particularly challenging to generate
those operations that require compute reductions, such as
sdot, sasum, or sdsdot. In these cases, the kernels may be
required to use relatively advanced techniques, such as atomic
operations, the use of shared memory, or synchronization. One
challenging case corresponds to the sdsdot operation. This is
a very particular case, in which the operations are internally
transformed from single to double in the kernel, and the result
must be transformed back to single precision before returning
it.

1) Prompt Engineering: To increment the efficiency of the
AI-generated codes, we study the use of the so-called ”prompt
engineering”. This consists of complementing the prompts
with more information regarding the operations that will be
computed by the codes to minimize the deficiencies found in
the codes (e.g., wrong use of CUDA indexes or the lack of
CPU-GPU communication). Next, we include an example of
the prompts used for CUDA:

Give me a kernel and a function only that computes
a multiplication of a vector x by a constant a and
the result is added to a vector y. Do not give a main
function. Vectors x and y are length n, use C and
CUDA to compute in parallel, allocate and free the
GPU vectors, and make the CPU - GPU memory
transfers in the function. The size of blocks of threads
and the number of blocks must be defined. Use the
next function name and parameters for the kernel

global void saxpy kernel(int n, float a, float *x,
float *y), and the next function name and parameters
for the function void chatblas saxpy(int n, float a,
float *x, float *y). Include the next line at the
beginning of the code #include ”chatblas cuda.h”.

Routine OpenMP CUDA HIP
ChatGPT Version 3.5 4o 3.5 4o 3.5 4o

saxpy 1.0 1.0 0.8 1.0 1.0 0.8
sscal 1.0 1.0 1.0 1.0 1.0 1.0
sswap 1.0 1.0 1.0 1.0 1.0 1.0
scopy 1.0 1.0 1.0 0.8 0.8 1.0
sdot 1.0 1.0 0.6 0.8 1.0 0.8

sdsdot 1.0 1.0 0.4 0.8 0.4 0.2
sasum 1.0 1.0 0.8 0.8 1.0 0.4
snrm2 1.0 1.0 1.0 0.8 0.8 0.8
isamax 1.0 1.0 0.6 0.6 0.8 0.6

TABLE II
BLAS LEVEL-1 CORRECTNESS OF CHATBLAS USING PROMPT

ENGINEERING.

By performing prompt engineering, we incremented the
efficiency of all the AI-generated codes (see Table II) except
for HIP codes by using the 4o ChatGPT version. For OpenMP
codes, prompt engineering provides 100% efficiency when
using both models. For CUDA codes, the efficiency is incre-
mented from 66% to 80% and from 66% to 84% when using
the 3.5-Turbo and 4o versions of ChatGPT, respectively. For
HIP codes, we achieved better results (from 75% to 86%) by
using the 3.5-Turbo version; however, the results were worse
when using the 4o version (from 82% to 73%).

2) Fine-Tuning and Training: Although we elevated the
efficiency of the AI-generated codes via prompt engineering,
this is not enough to achieve the highest level of correctness.
To do so, we used ”fine-tuning”. This consists of training the
AI generative models with the necessary information to reduce
the deficiencies of the codes generated by AI. This effort
is made on only the 3.5-Turbo version of ChatGPT because
OpenAI does not allow users to do so on the 4o version.

These techniques require the use of very specific file formats
(e.g., JSON). These files contain two blocks: (i) a prompt
used as an example that describes the information required
by the users and (ii) a valid output. In our case, we used as
prompts the prompts detailed in the previous analysis and used
as output the codes correctly generated by ChatGPT.

By fine-tuning, we could elevate the correctness to the
desired levels, empowering ChatBLAS to reach an efficiency
of 100% for the generation of BLAS level-1 operations using
OpenMP, CUDA, and HIP programming models. This is most
likely due to overfitting because the loss ratio dropped to
zero. In our scenario, this is a positive outcome because we
want the model to provide a correct and optimized code.
We also experimented with different configurations for the
hyperparameters with very similar results.

B. Performance

In this section, we focus on the performance analysis of
the codes generated by the AI generative model ChatGPT
3.5-Turbo and 4o. We used the vendor libraries as references
(e.g., MKL library for Intel CPUs, AOCL for AMD CPUs,
cuBLAS/hipBLAS for NVIDIA/AMD GPUs). We used four
architectures: two CPU architectures (Intel Xeon E5-2698 v4
Broadwell 20-core and AMD EPYC 7742 Rome 64-core) and
two GPU architectures (NVIDIA Ampere A100 and AMD

21

Mi100). For this analysis, we focused on five of the most
representative BLAS level-1 routines by using single-precision
(saxpy, sdot, sasum, sscal, and sswap). The size of the vectors
used in this analysis is equal to 500M.

To help ChatGPT generate codes that perform well on
GPUs, we added some hints to the prompts in those routines
that are more susceptible to an increment in performance, such
as sasum, sdot, or sdsdot. These hints corresponded to very
high-level details about the efficient use of GPU resources.
Examples of these are ”use shared memory to accelerate the
computation” and ”minimize the use of atomic operations.”

First, we evaluated the performance of ChatBLAS using
OpenMP vs. the Intel MKL library (see Figure 2). The
performance provided by the vendor-specific Intel CPU library
and ChatBLAS is very similar. Notably, we used the multi-
threading version of the Intel library, and we set the number
of OpenMP threads to the number of cores available for the
ChatBLAS library.

Fig. 2. Intel MKL performance (top) and AMD AOCL performance (bottom)
vs. ChatBLAS-OpenMP performance.

Unlike in the comparison with Intel’s library, we observe
better performance when using ChatBLAS compared with the
AMD AOCL library. This library is based on the open-source
BLIS library, and it does not provide parallel codes for BLAS
level-1 operations (see Figure 2). This is an example of the
impact that tools automatically generated by LLMs models
have by covering those deficiencies or performance gaps found
in vendor libraries.

Next, we focus on NVIDIA GPUs. The implementation
of CUDA codes is considerably more complicated than us-
ing high-level and directive-based solutions like OpenMP.
Figure 5-top shows the performance reached by ChatBLAS

__global__ void sdot_kernel(int n, float *x, float
*y, float *res) {↪→

int index = threadIdx.x + blockIdx.x *
blockDim.x;↪→

float result = 0.0;
if (index < n) {

result = x[index] * y[index];
}
atomicAdd(res, result);

}

Fig. 3. Example of the nontrained CUDA kernel code for single-precision
dot product.

codes against the NVIDIA cuBLAS library. The performance
is competitive for operations like saxpy, sscal, or sswap,
where the performance of ChatBLAS is about 80% concerning
the cuBLAS performance. However, we see an important
performance gap in operations like sdot or sasum, where
ChatBLAS is performing much worse than cuBLAS. This is
mainly due to the algorithms used by ChatBLAS codes for
these operations, which are not optimal to perform well on
NVIDIA GPUs. In many cases, this low performance is caused
by excessive use of costly operations like atomics or the lack
of use of high-bandwidth memories, such as shared memory.
An example of this is shown in Figure 3, which illustrates
the sdot code generated by ChatBLAS originally. This code,
although functional and correct, makes use of an algorithm
that excessively uses atomics, which causes an important fall
in performance. Unlike this algorithm, the code/algorithm
illustrated by Figure 4 is more efficient. By using shared
memory to make part of the reductions, it is possible to reduce
the number of atomic operations considerably.

__global__ void sdot_kernel(int n, float *x, float
*y, float *res) {↪→

__shared__ float products[256];
int index = threadIdx.x + blockIdx.x *

blockDim.x;↪→

float product = x[index] * y[index];
products[threadIdx.x] = product;
__syncthreads();
if (threadIdx.x == 0) {

float result = 0.0;
for (int i = 0; i < blockDim.x; i++) {

result += products[i];
}
atomicAdd(res, result);

}
}

Fig. 4. Example of the trained CUDA kernel code for single-precision dot
product.

Unlike in the previous section, in which we focus on
correctness only, here we can use the same training or fine-
tuning techniques to improve performance for sdot and sasum
operations of ChatBLAS when using CUDA. As a result,
performance is improved for these operations (Figure 5, bot-
tom), thereby reaching acceleration of about 4× and providing
similar performance to those reported by the other BLAS level-
1 routines (e.g., axpy, sscal, or sswap).

As illustrated in Figure 6, we observe a different trend on
the AMD GPU. In this case, ChatBLAS codes can provide

22

Fig. 5. The cuBLAS performance vs. nontrained (top) and trained (bottom)
ChatBLAS-CUDA performance.

better performance than the equivalent codes in hipBLAS,
reaching accelerations of about 2× in some cases, except
for the sasum routine, in which ChatBLAS performs worse
than hipBLAS. Similar to CUDA ChatBLAS codes for the
sdot routine, this performance issue is due to the use of
a nonoptimized algorithm (see Figure 7) that uses atomics
massively. To improve performance for sasum operations, we
use as part of the training (fine-tuning) the code/algorithm
generated by ChatBLAS for the sdot routine and adapt it to
sasum singularities (see Figure 8). The ChatBLAS code for
sdot uses advanced techniques to avoid atomic operations on
the GPU side by computing the reduction on the CPU side and
maximizes the use of high-bandwidth memories in the GPU.
As shown (see Figure 6, bottom), the performance for sasum
is improved considerably, providing accelerations close to 3×
compared with hipBLAS.

III. RELATED WORK

Recently, several works related to the application of LLMs
to HPC domain-specific tasks have been published. Foun-
dational LLMs driven by the needs of the industry include
GPT-3/3.5/4.0, Llama [3], and Bert [4]. Ding et al. [5] in-
troduce HPC-GPT, which is a trained model leveraging the
open-source Llama-13B foundational model. HPC-GPT was
successfully applied to manage AI models and datasets and
for data race detection. Kadosh et al. [6] explore the use of a
domain-specific LLM, Tokompiler, which demonstrates better
results for code completion and semantics than a GPT-3 based
model for Fortran, C, and C++ code. Chen et al. [7] introduce
LM4HPC, which is a language model specifically designed

Fig. 6. The hipBLAS performance vs. nontrained (top) and trained (bottom)
ChatBLAS-CUDA performance.

__global__ void sasum_kernel(int n, float *x, float
*sum) {↪→

int idx = blockIdx.x * blockDim.x +
threadIdx.x;↪→

if (idx < n) {
atomicAdd(sum, fabsf(x[idx]));

}
}

Fig. 7. Example of the nontrained HIP kernel code for the single-precision
asum routine.

for HPC that demonstrates success in specific tasks such as
code similarity analysis, parallelism detection, and OpenMP
question answering. Similarly, Nichols et al. [8] present HPC-
Coder, which is a trained model based on the DeepSpeed [9]
deep learning model. They found a varying degree of success
in tasks such as code completion, including OpenMP pragmas
and Message Passing Interface calls, in their work targeting
HPC code. Munley et al. [10] provide LLM4VV, a fine-tuned
model that explores the capabilities of GPT-4 and Llama 2 to
generate tests for the compiler functionality of the directives-
based OpenACC parallel programming model that shows a
high degree of success. Godoy et al. [11] and the follow-up
work including Llama 2, Valero-Lara et al. [12] evaluate the
current LLMs capabilities for generating correct and functional
representative HPC kernels on modern HPC programming
models.

IV. CONCLUSIONS

In this work, we present ChatBLAS, the first AI-generated
and portable HPC library for BLAS operations. We present
an exhaustive study about how to use disruptive AI-based

23

__global__ void sasum_kernel(int n, float *x, float
*sum) {↪→

__shared__ float cache[512];
int tid = threadIdx.x + blockIdx.x *

blockDim.x;↪→

int cacheIndex = threadIdx.x;
float temp = 0;
while (tid < n) {

temp += abs(x[tid]);
tid += blockDim.x * gridDim.x;

}
cache[cacheIndex] = temp;
__syncthreads();
int i = blockDim.x / 2;
while (i != 0) {

if (cacheIndex < i)
cache[cacheIndex] += cache[cacheIndex +

i];↪→

__syncthreads();
i /= 2;

}
if (cacheIndex == 0) sum[blockIdx.x] =

cache[0];↪→

}

Fig. 8. Example of the trained HIP code for the single-precision asum routine.

technologies, such as large language models, to generate HPC
codes using different programming models such as OpenMP,
CUDA, or HIP and define the fundamental practices and
criteria to interact with LLMs for HPC targets. We also
provide a deep analysis of the impact of LLM-based tech-
niques, such as prompt engineering and fine-tuning to improve
the trustworthiness and the performance of the AI-generated
codes. When the performance of ChatBLAS is compared with
that of highly optimized vendor libraries, ChatBLAS codes
can provide either competitive performance vs. Intel’s MKL
and NVIDIA’s cuBLAS libraries and better performance vs.
AMD’s libraries AOCL (on CPUs) or hipBLAS (on GPUs).

As future work, we plan to extend this study to cover
the other BLAS levels (e.g. level-2 matrix-vector and level-3
matrix-matrix) operations, as well as use other AI techniques
that can help generate highly optimized HPC codes for BLAS
and other important HPC operations.

ACKNOWLEDGMENT

This research used resources from the Experimental Com-
puting Laboratory at Oak Ridge National Laboratory, which
is supported by the Office of Science of the US Department
of Energy (DOE) under contract DE-AC05-00OR22725. This
research was funded in part by the ASCR Stewardship for Pro-
gramming Systems and Tools (S4PST) project, part of the Next
Generation of Scientific Software Technologies (NGSST).
This material is based upon work by the RAPIDS Institute,
supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing Research, and
Scientific Discovery through Advanced Computing (SciDAC)
program. This manuscript has been authored by UT-Battelle
LLC under contract DE-AC05-00OR22725 with DOE. The US
government retains and the publisher, by accepting the article
for publication, acknowledges that the US government retains
a nonexclusive, paid-up, irrevocable, worldwide license to

publish or reproduce the published form of this manuscript, or
allow others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

REFERENCES

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp.
65–98, Jan. 2017.

[2] S. Catalán, X. Martorell, J. Labarta, T. Usui, L. A. T. Dı́az, and
P. Valero-Lara, “Accelerating conjugate gradient using ompss,” in
20th International Conference on Parallel and Distributed Computing,
Applications and Technologies, PDCAT 2019, Gold Coast, Australia,
December 5-7, 2019. IEEE, 2019, pp. 121–126. [Online]. Available:
https://doi.org/10.1109/PDCAT46702.2019.00033

[3] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu,
W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa,
I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi,
A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang,
R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang,
A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov,
and T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,”
2023.

[4] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of naacL-HLT, vol. 1, 2019, p. 2.

[5] X. Ding, L. Chen, M. Emani, C. Liao, P.-H. Lin, T. Vanderbruggen,
Z. Xie, A. Cerpa, and W. Du, “Hpc-gpt: Integrating large language
model for high-performance computing,” in Proceedings of the SC
’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis. New York, NY, USA:
Association for Computing Machinery, 2023, p. 951–960. [Online].
Available: https://doi.org/10.1145/3624062.3624172

[6] T. Kadosh, N. Hasabnis, V. A. Vo, N. Schneider, N. Krien, A. Wasay,
N. Ahmed, T. Willke, G. Tamir, Y. Pinter, T. Mattson, and G. Oren,
“Scope is all you need: Transforming llms for hpc code,” 2023.

[7] L. Chen, P.-H. Lin, T. Vanderbruggen, C. Liao, M. Emani, and
B. de Supinski, “Lm4hpc: Towards effective language model application
in high-performance computing,” in OpenMP: Advanced Task-Based,
Device and Compiler Programming, S. McIntosh-Smith, M. Klemm,
B. R. de Supinski, T. Deakin, and J. Klinkenberg, Eds. Cham: Springer
Nature Switzerland, 2023, pp. 18–33.

[8] D. Nichols, A. Marathe, H. Menon, T. Gamblin, and A. Bhatele,
“Modeling parallel programs using large language models,” 2023.

[9] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed:
System optimizations enable training deep learning models with
over 100 billion parameters,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 3505–3506. [Online]. Available:
https://doi.org/10.1145/3394486.3406703

[10] C. Munley, A. Jarmusch, and S. Chandrasekaran, “Llm4vv: Developing
llm-driven testsuite for compiler validation,” 2023.

[11] W. Godoy, P. Valero-Lara, K. Teranishi, P. Balaprakash, and J. Vetter,
“Evaluation of openai codex for hpc parallel programming models
kernel generation,” in Proceedings of the 52nd International Conference
on Parallel Processing Workshops, ser. ICPP Workshops ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p.
136–144. [Online]. Available: https://doi.org/10.1145/3605731.3605886

[12] P. Valero-Lara, A. Huante, M. A. Lail, W. F. Godoy, K. Teranishi,
P. Balaprakash, and J. S. Vetter, “Comparing llama-2 and gpt-3 llms
for hpc kernels generation,” 2023.

24

