
PULSE: Using Mixed-Quality Models for Reducing Serverless Keep-Alive Cost

Kausalya Sankaranarayanan
Department of ECE

Northeastern University
Boston, USA

sankaranarayanan.k@northeastern.edu

Rohan Basu Roy
Department of ECE

Northeastern University
Boston, USA

basuroy.r@northeastern.edu

Devesh Tiwari
Department of ECE

Northeastern University
Boston, USA

d.tiwari@northeastern.edu

Abstract—This paper addresses a key challenge with using
serverless computing for machine learning (ML) inference which
is cold starts that occur during initial invocations and container
inactivity. Fixed keep-alive policies, like the commonly adopted
10-minute strategy, have been implemented by cloud providers
to alleviate cold start issues. However, the substantial size
of ML models poses a significant hurdle, leading to elevated
keep-alive costs and potential strain on system resources. In
response to these challenges, we introduce PULSE, a dynamic 10-
minute keep-alive mechanism that employs ML model variants
to optimize the balance between keep-alive costs, accuracy, and
service time while avoiding peaks in keep-alive memory consump-
tion. Our evaluation, using real-world serverless workloads and
commonly used machine learning models, demonstrates reduced
keep-alive costs compared to the fixed policy. Additionally, we
observe that integrating PULSE improves the performance of
existing state-of-the-art serverless function warm-up strategies.

I. INTRODUCTION

Serverless computing has emerged as a transformative
paradigm in cloud computing, offering a dynamic and cost-
effective approach to application development and deploy-
ment.

The convergence of serverless computing and Machine
Learning (ML) has opened up a new era of possibilities,
enabling the deployment and management of ML models in a
highly scalable manner.
The challenge of cold starts in serverless computing. Cold
starts in serverless computing occur during the initial invoca-
tion or following periods of inactivity, where the creation of
the container and the loading of the initial code contribute to
increased service time.
Cloud provider’s approach to cold starts. To address the
cold start challenge, cloud providers use a fixed keep-alive
policy, where a container is kept alive for a certain period,
typically 10 minutes, after its last invocation.
Challenges of a fixed 10-minute keep-alive policy for
machine learning models in serverless computing. The
substantial size of machine learning models, poses a challenge
when employing a fixed 10-minute keep-alive policy. Large
models incur substantial keep-alive costs, consuming valuable
memory resources without guaranteeing actual usage. This
issue is exacerbated during periods of high invocation demand,
as the system must keep-alive containers for an extended 10-
minute period after the peak has subsided. This keep-alive
memory consumption leads to unnecessarily high keep-alive
costs and can potentially strain the system’s memory resources.

Key idea. To address the inherent limitations of fixed keep-
alive policies, we propose PULSE, a dynamic 10-minute keep-
alive mechanism that leverages machine learning model vari-
ants to achieve a balance between keep-alive cost, accuracy,
and service time.
Overall, PULSE makes the following contributions:
• PULSE is a novel machine learning model keep-alive

scheme for serverless functions, optimizing accuracy,
service time, and keep-alive costs. It utilizes predictive
mechanisms based on past invocations and a greedy op-
timization technique to determine model variant selection
and duration within the 10-minute keep-alive period.

• Additionally, PULSE employs a utility value-based strat-
egy for downgrading to lower accuracy model variants
during peak keep-alive memory usage. This strategy
factors in arrival probability, accuracy benefits, and prior
downgrade frequency for decision-making, achieving re-
source efficiency while maintaining accuracy.

• Evaluation demonstrates a 39.5% reduction in keep-
alive costs and an 8.8% improvement in service time in
comparison to the OpenWhisk fixed 10-minute keep-alive
policy. Furthermore, PULSE enhances the performance of
existing serverless techniques when integrated.

II. MOTIVATION

In this section, we commence by showcasing the benefits
of introducing a mix of diverse quality models into the
serverless execution environment. Subsequently, we examine
the complex challenges presented by user invocation patterns
observed in serverless workloads that hinder the full realization
of this model blending. As a solution to these challenges, we
introduce PULSE, which offers comprehensive strategies.

TABLE I: Comparative analysis of model variants: service
time, keep-alive cost, and accuracy.

Model Service Time (with Warmup) Keep Alive Cost Accuracy
(sec) (cents/hour) (Percent)

GPT-Small 12.90 11.7 87.65
GPT-Medium 22.50 22.57 92.35

GPT-Large 23.66 41.71 93.45

BERT-Small 1.09 4.392 79.6
BERT-Large 2.21 6.12 82.1

DenseNet-121 1.09 3.46 74.98
DenseNet-169 1.38 3.53 76.2
DenseNet-201 1.65 4.07 77.42

99979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00021

Machine learning models frequently come in various vari-
ants, each presenting unique design trade-offs, particularly
pertinent in serverless computing. As illustrated in Table I,
the highest quality variant excels in accuracy but at the
expense of longer service times and higher keep-alive costs
– characteristics less desirable in the serverless landscape. In
contrast, the lowest quality variant maintains lower accuracy
but offers reduced service times and keep-alive costs. Keeping-
alive this high-quality variant continuously to prevent cold
starts translates to substantial keep-alive costs. Hence, the judi-
cious warming of high-quality models solely during invocation
periods, when their usage likelihood is notably high, becomes
an essential strategy for cost-effective serverless operation.
Simultaneously, the utilization of lower-quality models when
there’s even a slight chance of invocation prevents these
models from incurring high service times due to cold starts,
albeit at the trade-off of slightly lower accuracy compared
to their high-quality counterparts. By judiciously combining
models, particularly incorporating lower quality models that
consume less keep-alive memory i.e the memory consumed
in keeping a container alive, under scenarios where numerous
models have a high likelihood of invocation, providers can
leverage available memory resources to accommodate all the
models, optimizing both resource allocation and the ability to
deliver warm starts to models with the highest invocation prob-
ability. The result is a balance between quality and resource
efficiency, reshaping the serverless ecosystem and enhancing
the experience of both users and providers.

Next, we substantiate our arguments with empirical evi-
dence sourced from real-world machine learning models listed
in Table IV [5], [10], [11], [26], [27] and a production-level
serverless workload trace [31]. Our objective is to highlight the
critical challenges that need to be tackled to fully leverage the
benefits of reduced service time and keep-alive costs, achieved
through the integration of diverse quality models, as opposed
to relying solely on high-quality variants.

5 100
25
50
75

100

Pe
rc

en
ta

ge
 o

f
 in

vo
ca

tio
ns

Function
A

5 100
25
50
75

100
Function

B

5 10
Openwhisk fixed 10-minute keep alive period

0
25
50
75

100
Function

C

5 100
25
50
75

100
Function

D

5 100
25
50
75

100
Function

E

Fig. 1: Diverse inter-arrival patterns are observed among
various functions within the 10-minute timeframe following
invocation (represented on the x-axis) .

5 100
10
20
30
40
50

First Four
Days

5 10
Openwhisk fixed 10-minute keep alive period

0
10
20
30
40
50

Middle Four
Days

5 100
10
20
30
40
50

Last Four
Days

Pe
rc

en
ta

ge
 o

f
In

vo
ca

tio
ns

Fig. 2: Different inter-arrival time patterns are observed across
different periods for the same function within the 10-minute
timeframe following invocation (represented on the x-axis) .
Observation 1. Dynamic inter-arrival patterns call for

TABLE II: Peak I evaluation
Service Time Keep-alive Cost Accuracy

(sec) (USD) (Percent)
All High Quality 1799.49 0.86 77.81
All Low Quality 902.38 0.39 71.41

Random High Quality Low Quality 1246.05 0.61 76.13
Intelligent Solution 1661.80 0.78 76.85

TABLE III: Peak II evaluation
Service Time Keep-alive Cost Accuracy

(sec) (USD) (Percent)
All High Quality 1771.12 0.9 78.01
All Low Quality 912.94 0.40 71.62

Random High Quality Low Quality 1246.92 0.62 76.26
Intelligent Solution 1648.79 0.78 77.02

adaptive keep-alive policies in serverless environments.
Figure 1 showcases the diverse inter-arrival time patterns

exhibited by different functions sharing a common serverless
environment. This visualization underscores the need for a
keep-alive policy to accommodate to the unique invocation
patterns of each function, dispelling the notion of a one-size-
fits-all strategy. Additionally, Figure 2 reinforces the same
notion, here a dynamic inter-arrival pattern occurs across
varying periods, for the same function. This indicates that
rigid policies, such as the standard 10-minute fixed keep-alive
policy commonly used by major serverless service providers
(including OpenWhisk, Azure Functions, AWS, and Google
Functions) where the functions are kept-alive for 10 minutes
after an invocation, are suboptimal in the presence of such
dynamic patterns. The decision of when to keep a model alive
and for how long it should remain alive should adapt to these
evolving invocation patterns.

This discussion has predominantly addressed inter-arrival
patterns, but it has not delved into the significant implications
for critical factors such as keep-alive cost, service time, and
accuracy. In the following discussion, our objective is to
underscore the need to optimize all functions collectively. This
entails identifying the functions that need to be kept alive and
specifying the variants of these functions that should be kept
alive, based on the potential performance gains in terms of
accuracy, reduction in keep-alive costs, and service time these
keep-alive decisions could yield.
Observation 2: The existence of peak invocation periods
necessitates the collective consideration of all invoked
functions for efficient optimization in serverless computing.

In the production-level serverless workload trace, we identi-
fied numerous peaks in invocations (cumulative for all concur-
rent functions in the serverless environment) . For analysis, we
designate two prominent peaks , characterized by the highest
volume of invocations. We comprehend the performance impli-
cations of the 10-minute fixed keep-alive policy for these peak
periods. Following the peak, the functions are kept alive for
10 minutes regardless of their likelihood of invocation during
this period, incurring substantial keep-alive memory and cost
requirements. We assessed the performance of four distinct
approaches during this 10-minute keep-alive periods following
these two peak periods when functions run machine learning
models in Table II and Table III respectively, evaluating their
effectiveness in terms of keep-alive cost and accuracy.In terms
of service time, the objective is to achieve higher warm starts.

100

In this scenario, all four approaches exhibit an equal number
of warm starts.

The first approach involved keeping alive high-quality mod-
els for the entire 10 minutes following an invocation, resulting
in the highest service time,keep-alive cost, and the best accu-
racy. In contrast, the second approach entailed keeping-alive
low-quality models throughout the full 10-minute period for
all functions with an invocation, leading to significantly lower
accuracy, coupled with the lowest service time and keep-alive
cost.

The third approach introduced the concept of blending
models of varying qualities, employing random decisions to
determine which functions would have high-quality models
kept-alive and which would have low-quality models. While
these decisions were randomized, we ensured that the number
of functions with high-quality and low-quality models kept-
alive was balanced. This approach achieved a middle ground,
with keep-alive cost falling between those of the first and
second approaches, and accuracy close to using only high-
quality models.

In the fourth approach, we implemented an intelligent
solution wherein functions with a higher number of actual
invocations during the 10 minutes had high-quality models
kept alive, while others utilized low-quality models. This
approach achieved accuracy levels even closer than the third
approach to those of high-quality models while maintaining
relatively lower keep-alive costs compared to scenarios where
only high-quality models were kept alive.

Our findings reveal that real-world scenarios involve sudden
spikes in invocations, resulting in corresponding peaks in
keep-alive memory and costs. In such contexts, our approach,
integrated into PULSE, considers all functions collectively and
allocates model variants judiciously based on the performance
gains in terms of keep-alive cost, accuracy, and service time
achieved by the assignment. This approach ensures the op-
timized management of keep-alive memory and cost during
unpredictable peaks, which would otherwise go unnoticed
when focusing exclusively on individual functions.

III. PULSE:KEY IDEAS AND DESIGN

Model A
Function-centric

Optimizer

Function-centric
Optimizer

Function-centric
Optimizer

Keep-alive
decisions

H L M
L M H
H H L

Peak
Detected?

Model B

Model C

Global
Optimizer

Metadata
Store

Model
Repository

Invocation

Invocation

Invocation

Yes

No

Worker

PULSE

H L M
L M H
H H L

Fig. 3: Overview of the design of PULSE.

We begin by providing an overview of PULSE (Figure 3) .
(1) Individual function optimization. The PULSE sys-

tem utilizes historical data for which inter-arrival times are

calculated, and associated probabilities for each inter-arrival
time are computed. Probability thresholds are determined
based on the number of model variants. Employing a greedy
optimization technique utilizing the computed probability and
probability thresholds, the system selects the model variant
to be kept alive and specifies the duration for the keep-
alive of each variant within the 10 minutes following an
invocation. While this approach effectively reduces keep-alive
costs, challenges associated with keep-alive memory peaks
persist, necessitating unbiased function downgrades.
(2) Cross-function optimization. During a peak, PULSE

employs cross-function optimization to determine which func-
tion to downgrade. This decision is based on a utility value
calculated from the function’s accuracy, the frequency of
downgrades to lower accuracy variants in the past, and the
probability of invocation during the peak.
Next, we delve into these two components in detail.

A. PULSE:Individual Function Optimisation

Why is an individual function optimization needed?
In the 10-minute fixed keep-alive policy followed by serverless
providers, if an invocation occurs in the 2nd minute, the
container remains active for a constant 10-minute duration,
extending until the 12th minute. Serverless providers face
abrupt peaks in invocations (refer Section II) . During
these peaks, if invoked functions are associated with machine
learning models, the subsequent 10-minute period experiences
significantly high keep-alive memory usage due to the sub-
stantial memory consumption of machine learning models,
ranging between 300 and 3500 MB. To alleviate this keep-
alive memory, we introduce various quality variants of the
machine learning models within these 10 minutes. Individual
function optimization is employed to determine which model
variant to keep-alive and for how long.
How is individual function optimization implemented?
To achieve this, we utilize historical data from two time
periods: the immediate past, referred to as the local window,
and the duration until the most recent invocation. We employ
two time periods because function inter-arrival times can vary
(refer Figure 2) over time. Therefore, it is necessary to
examine both the immediate period and the entire duration
the system has been operational. For each of these periods,
we calculate the inter-arrival time of invocations, and the
time resolution used for inter-arrival time is in minutes. We
calculate the probabilities associated with the inter-arrival
times during the keep-alive period. For example, when the
inter-arrival time of 2 appears 10 times, we compute the
probability of 2 as 10 divided by the total number of inter-
arrival times. Subsequently, we calculate the average of the
probabilities obtained for both periods.
We employ a greedy optimization technique to determine
which variant to keep-alive, guided by the computed probabil-
ities. For determining the probability threshold we divide the
probability space, ranging between 0 and 1, into the number of
variants. For N variants, we require N-1 thresholds (computed
as 1/N,2/N. . . N-1/N) , dividing the probability space into N

101

areas. The lowest accuracy variant is assigned to the area with
the lowest probabilities and so on.

0 100
Time (minutes)

(a)

30K

60K

Ke
ep

-a
liv

e
M

em
or

y
(M

B) Avg.

0 100
Time (minutes)

(b)

30K

60K

Avg.

Fig. 4: (a) OpenWhisk’s fixed keep-alive policy exhibits high
and sudden peaks in keep-alive memory. (b) Individual func-
tion optimization reduces keep-alive memory but does not
eliminate peaks. Therefore, there is a need for a cross-function
optimization technique.

This method facilitates the selection of model variants based
on calculated probabilities while minimizing overhead, by
employing a greedy optimization approach. The greedy op-
timization can be tuned by the provider based on available
resources and specific needs. As demonstrated in Section V ,
PULSE remains effective as long as the general principle of
keeping alive the variant with the highest accuracy at higher
invocation probabilities is followed.

The memory, a finite resource for serverless providers, is
shared between actual invocations and keep-alive. Individual
function optimization, as depicted in Figure 4, reduces keep-
alive memory; however, peaks persist. During peak mem-
ory consumption when total memory consumption exceeds
available resources, random functions/models are downgraded,
which may result in models with higher-chance of invocation
being downgraded while lower-chance models are kept alive.
We address this issue by implementing unbiased downgrades
to flatten peaks, as discussed in the following section.
B. PULSE:Cross-function Optimisation

How is the concept of a “peak” defined in our approach?
We define a peak at a specific minute if its keep-alive

memory exceeds the prior keep-alive memory by a threshold,
calculated as the product of the keep-alive memory threshold
and the prior keep-alive memory. This keep-alive memory
threshold serves as a tunable parameter depending on the
system’s capacity to withstand memory stress. Functions ex-
hibit variability in their activity patterns. Some experience
periods of inactivity between two time periods, while others
may be nocturnal or diurnal. When invocations occur for such
functions, setting the prior keep-alive memory based on the
immediate past period’s keep-alive memory value (equal to 0
in circumstances after inactivity) would result in a high number
of cold starts. Conversely, some functions have a consistent
pattern of invocations. The design of the prior keep-alive
memory takes into account these diverse conditions. These
challenges are particularly relevant during the first minute of
the keep-alive period. For subsequent minutes, the approach
is straightforward: the prior keep-alive memory is always the
keep-alive memory consumed in the previous minute.

Algorithm 1 Peak Determination

Require: Current keep-alive memory (C KaM) , sliding lo-
cal window duration (l window) and keep-alive memory
threshold (KM T)

1: Define: P KaM : Prior keep-alive memory
2: function ISPEAK(C KaM, P KaM)
3: if C KaM > P KaM + KM T× P KaM then
4: return True
5: else
6: return False
7: end if
8: end function
9: for t = 1 to len (keep-alive period) do

10: if t equal to 1 then
11: KaM ← Avg. Keep-alive memory for l window
12: if T ≥ 2× l window and KaM>0 then
13: P KaM= KaM
14: else
15: for q in 1 to T do
16: Q KaM ← Keep-alive memory at q
17: (P KaM = Q KaM >0 ? Q KaM :∞
18: end for
19: end if
20: else
21: P KaM = Keep-alive memory of t-1
22: end if
23: ISPEAK(C KaM, P KaM)
24: end for

Algorithm 1 illustrates the methodology used in this paper
to determine the prior keep-alive memory after an invocation
at period T . The methodology is designed to tackle the
scenarios mentioned earlier. When the PULSE system has
been operational for at least local window minutes but has
an immediately previous period of inactivity, the prior keep-
alive memory is set to the last non-zero keep-alive memory
value. Conversely, if there has been continuous activity, the
prior keep-alive memory is calculated as the average keep-
alive memory over the last local window minutes.
How do we determine which models and associated vari-
ants should be kept alive during a “peak”?
When we identify a period as a peak, we have access to
specific information. This includes the model variants selected
for keep-alive during the peak, performance meta-data for
all model variants, and the computed invocation probabilities
from our individual function optimization. Next, we will delve
into the various components utilized by PULSE to compute
the utility value of a specific keep-alive decision, based on the
available data.
Accuracy improvement. For each model selected to be
kept alive during a peak, we need to consider two variants:
the chosen keep-alive variant and one with slightly lower
accuracy. We compute the accuracy improvement provided
by the chosen keep-alive variant in comparison to the other
variant. When the chosen variant is the lowest accuracy option,

102

Algorithm 2 Utility Value Computation for Model Keep-Alive
Decisions

1: Initialize the priority structure as an array with zeros for
all models. This initialization occurs immediately after the
system has started.

2: for every time period t classified as peak do
3: while Peak is not flattened do
4: Normalise the priority structure
5: for every model that is kept-alive in t do
6: Compute Ai and Pr

7: Uv ←Ai+Pr+Ip
8: end for
9: Downgrade the model m with lowest Uv

10: Update Priority Structure with +1 for m
11: end while
12: end for

as there is no further lower variant to keep the model alive,
the accuracy improvement is equivalent to the accuracy of this
lowest quality variant in decimal form. Accuracy improvement
values range from 0 to 1. However, a challenge arises when
using accuracy improvement as the sole criterion. For example,
if YOLO’s lowest accuracy variant has an accuracy of 56.8%,
and GPT’s lowest accuracy variant has an accuracy of 87.65%,
relying solely on accuracy improvement to determine which
model to downgrade would introduce bias and consistently
prioritize GPT over YOLO when both are competing to be kept
alive during a peak. To mitigate this bias, the next component
has been introduced.
Priority. We maintain a count of how many times a model
has been downgraded within a structure known as the Priority
structure. When a peak occurs, we employ the normalization
formula presented in Equation 1 to standardize the values
within the structure. This gives a priority value for each model,
ranging between 0 and 1. The model that has experienced
the most downgrades will be assigned the highest priority
value. To minimize memory overhead, the priority structure
is implemented as an array.

Xnormalized =

X −Xmin

Xmax −Xmin,
if Xmax ̸= Xmin

X −Xmin, if Xmax = Xmin

(1)

Where:
Xnormalized: Normalized Value
X: Original Value
Xmax: Maximum Value
Xmin: Minimum Value

Probability of invocation. This value is derived in the individ-
ual function optimization. It plays a crucial role in computing
the impact of a model keep-alive decision, offering insights
into the probability of the function being invoked.

Using the above three components (accuracy improvement
(Ai) , normalized priority (Pr) , and probability of invocation

TABLE IV: Model Families and their variants used.
Model Family Model Variants Dataset

BERT (sentiment analysis) [5] BERT-base,BERT-large sst2
YOLO (object detection) [27] s,l,x COCO

GPT (text generation) [26] base,medium,large wikitext
ResNet (image classification) [10] 50,101,152 CIFAR-10

DenseNet (image classification) [11] 121,169,201 CIFAR-10

(Ip)) the utility value (Uv) is calculated during a peak for
every model chosen to be kept-alive as follows:

Uv = Ai + Pr + Ip (2)
Each of these components ranges from 0 to 1. To ensure a

balanced assessment and prevent bias, the three components
are equally weighted, holding equal significance in determin-
ing the utility value of a model keep-alive decision.
As shown in Algorithm 2, during a peak, the utility value for
all the models selected to be kept alive is computed. The model
with the lowest utility value is downgraded by one variant
and receives an additional point in the priority structure. This
process continues until the peak is flattened. In this way,
when there is a sudden spike in keep-alive memory, instead
of randomly selecting models for cold starts, models with the
lowest utility value are chosen to have warm starts with models
having lower accuracy, or even cold starts. This process is
unbiased, ensuring that one model doesn’t consistently bear
the burden of downgrading itself due to the existence of the
priority structure.

IV. EXPERIMENTAL METHODOLOGY

Experimental platform. We conducted a simulation of
the setup. To achieve this, we constructed models as Docker
images, which were subsequently stored in an AWS Elastic
Container Registry (ECR) . These Docker images were then
leveraged within AWS Lambda functions and invoked using
Python 3.10 scripts that incorporated the Boto3 library. To
ensure efficient operation and handle a substantial volume of
invocations, we configured the AWS Lambda memory size to
be twice the size of the ECR image.
Workloads. The evaluation of PULSE is driven by machine
learning models and real-world workload traces [31]. To en-
sure the diversity and realism of our experiments, we employed
a varied set of machine learning models, each designed to
perform distinct tasks mirroring the diversity of real-world
workloads. The models selected for our experiments encom-
pass some of the most commonly used machine learning
models, including BERT, YOLO, GPT, ResNet, and DenseNet.
Table IV provides details about the machine learning models
employed, the dataset used for inputs, and their respective
variants. In a demonstration of versatility, we also explored
the presence of multiple variants. For instance, BERT featured
two variants, while ResNeT exhibited three variants. This
approach highlights PULSE’s capability to adapt to various
model configurations. To ensure optimal performance and
resource efficiency, we opted for the ONNX version of these
models, as it required fewer dependencies that consumed less
memory compared to the PyTorch version.

In terms of dataset inputs, we made use of widely rec-
ognized datasets within the machine learning domain. These
datasets provided a rich and diverse range of inputs, allowing

103

us to effectively capture the intricacies of machine learning
models in the serverless context, including service time, which
comprises both cold start time and execution time.

To mirror a production-like workload, we utilized the Mi-
crosoft Azure Function trace, which contains two weeks’
worth of serverless invocation data from Microsoft’s produc-
tion systems. This trace offered valuable insights into the inter-
arrival times of functions, the memory allocations for each
function, and their corresponding execution times. It’s worth
noting that PULSE, in its experimentation, utilized the inter-
arrival of 12 functions observed in the Azure trace,previously
employed by Wild and IceBreaker to illustrate PULSE’s stan-
dalone efficacy and integration potential with state-of-the-art
methodologies. These functions represent different invocation
patterns encountered in serverless environments, ensuring our
approach’s alignment with real-world usage patterns.
State-of-the-art serverless function warm-up strategies.
The cutting-edge strategies for serverless function warm-up
are:
(a) Serverless in the Wild (Wild) [31]: This approach em-
ploys a hybrid histogram-based technique to predict inter-
arrival times of various serverless functions, incorporating the
ARIMA model for functions with a heavy-tailed histogram.
(b) IceBreaker [28]: IceBreaker utilizes a fast Fourier-based
method to forecast inter-arrival times of diverse serverless
functions. It also employs a utility function for making se-
lections among heterogeneous nodes.

It is noteworthy that these techniques were not designed
to accommodate various machine learning model variants to
reduce keep-alive costs while ensuring optimal performance.
This feature is unique to PULSE. Our experimental findings
demonstrate that integrating PULSE to these techniques helps
them achieve better performance. Once techniques like Wild
and IceBreaker forecast the inter-arrival times of functions,
PULSE takes the lead in determining which model variant
should be kept active and for how long. For this experiment,
we used only one type of node for both IceBreaker and Wild,
thereby eliminating the need for utility function computation in
IceBreaker.This approach proves superior to the conventional
practice of invoking high-quality models indiscriminately.
Competing keep-alive strategy. The performance of PULSE
is compared with OpenWhisk’s policy, which keeps the func-
tion alive for 10 minutes after invocation. However, this policy
cannot predict the timing of subsequent invocations. Further-
more, it is not tailored to handle different machine learning
model variants for minimizing keep-alive costs while ensuring
optimal performance. OpenWhisk strategy aligns with those
of other major commercial serverless providers like AWS,
Google, and Azure Functions.
Metrics. Our experimental analysis focuses on three key per-
formance metrics: service time, keep-alive cost, and accuracy.
Service Time: This metric encompasses the combined time for
a function, including cold-start time and execution time. When
an invoked function experiences a warm start, it incurs zero
cold-start time.
Keep-Alive Cost: Keep-alive cost refers to the total monetary

expenses incurred by the service provider in maintaining a
function in memory. This cost reflects the resources allocated
to keep functions readily available.
Accuracy: The accuracy of the system is calculated as the sum
of the accuracy delivered by each model during invocations, di-
vided by the total number of invocations. This metric provides
an overview of the system’s overall precision in delivering
results.

Simulation. To investigate the performance of PULSE over
many runs (each run with different model-to-function assign-
ments) we established a simulation framework. This setup
commenced by characterizing the behavior of ML models
within a serverless environment. We initiated this process
by executing the Lambda function for each model and its
associated variants using 1000 distinct inputs drawn from the
datasets.

To measure the service times during a cold start, we used a
technique that revolved around manipulating the memory size
of the Lambda function. By modifying the memory size, a
new container is generated, leading to a cold start for the next
invocation after this adjustment. Our procedure began with the
initial execution of a function to determine its cold start time.
Following this, we adjusted the memory size of the function
to an arbitrary value, conducted a dummy invocation, and
subsequently reverted the memory size to its original setting.
Running the function again after these alterations allowed us
to precisely gauge the service time during a cold start.

To assess service times during warm start, we performed
a dummy run followed by 1000 consecutive runs. These
consecutive runs ensured that the containers remained active,
leading to warm starts for each of these 1000 invocations.

The cost associated with keeping functions alive was de-
termined based on Amazon Web Services pricing , which
amounts to $16.67 for every KB-second. For accuracy assess-
ments, we relied on values provided by the authors of relevant
papers.

Using the gathered data, we conducted 1000 simulation
runs, each presenting a unique combination of model-to-
function assignments. Within each simulation run, we navi-
gated through the entire trace period for the 12 most com-
monly used functions from the trace. For each invocation,
we employed PULSE to decide which variant should be
warmed up and for what duration in the subsequent 10-minute
window following the invocation. These decisions informed
the computation of the total service time, the cumulative keep-
alive cost, and the average accuracy for each run, guided by
predetermined values.

V. EVALUATION AND ANALYSIS

This section presents an analysis of PULSE and evaluates its
performance relative to OpenWhisk. Furthermore, we assess
the performance of state-of-the-art techniques when integrated
with PULSE.

In Figure 5, the 10-minute keep-alive periods, when using
only the low-quality model, exhibit low accuracy and keep-
alive costs. Conversely, employing solely the high-quality

104

400 500 600 700 800 900 1000
Keep-alive Cost($)

70

80

90
Ac

cu
ra

cy
(%

)
Highest
QualityLowest

Quality
PULSE

Fig. 5: Analyzing the trade-off between accuracy and keep-
alive cost in scenarios where only high-quality models, only
low-quality models, and PULSE, a hybrid technique combin-
ing different quality models is employed during 10-minute
keep-alive periods.

model yields high accuracy along with increased keep-alive
costs. In contrast, PULSE attains a keep-alive cost similar
to the lowest quality while preserving accuracy levels closely
aligned with the highest quality.

In Figure 6, the performance of PULSE is depicted in
comparison to the OpenWhisk fixed keep-alive policy.
Keep-Alive cost. PULSE reduces the overall keep-alive cost
for the service provider by 39.5% compared to the OpenWhisk
10-minute fixed keep-alive policy.

In Figure 6 (a) , the overall keep-alive cost, representing
the total expenditure for keep-alive of containers hosting the
models and their dependencies, is observed to be lower for
PULSE compared to the OpenWhisk policy. This difference
arises because, during the 10-minute keep-alive period after
an invocation, OpenWhisk consistently keeps the containers
with high-quality model alive, regardless of the likelihood of
invocation. In contrast, PULSE dynamically decides which
containers to keep-alive, guided by the likelihood of future
invocations. When the likelihood of invocation is high, PULSE
keeps the containers with the high accuracy model alive,
while during periods of low invocation likelihood, it keeps
the containers with low accuracy model alive. This adaptive
approach allows PULSE to minimize the keep-alive cost while
maximizing the number of warm starts.

PULSE
(a)

−10
0

10
20
30
40
50

%
 Im

pr
ov

em
en

t
ov

er
 O

pe
nW

hi
sk

Accuracy
Keep-alive Cost

Service Time

0 100 200 300
Time(minutes)

(b)

−100
−50
0
50
100
150

Er
ro

r K
ee

p-
Al

iv
e

Co
st

(%
)

PULSE OpenWhisk

Fig. 6: PULSE improves the overall keep-alive cost and service
time when compared to OpenWhisk’s fixed 10-minute keep-
alive policy despite a slight reduction in accuracy.

Service time. PULSE reduces the total service time by 8.8%
compared to the fixed keep-alive policy.

Figure 6 (a) illustrates the total service time, representing
the cumulative service times of all functions throughout the

entire duration. It is presented as a percentage improvement
relative to the OpenWhisk 10-minute fixed keep-alive policy.
The primary objective of PULSE is to reduce the keep-alive
cost while maintaining an equivalent number of warm starts
as OpenWhisk. Even in scenarios with hard-to-predict patterns
encountered by the function-centric optimization, PULSE en-
sures that at least the container with low-quality model is
kept alive every 10 minutes after an invocation, preventing
cold starts during that timeframe. Additionally, in response to
keep-alive memory usage spikes, PULSE dynamically selects
which containers to keep alive based on their utility values
and may downgrade to containers with lower-quality variants.
This strategic decision potentially results in instances where
containers with lower quality models are kept alive instead
of allowing invocations to randomly undergo cold starts,
contributing to a reduction in service times.
Accuracy. The accuracy obtained by using PULSE closely
approaches (with a 0.6% decrease) the best accuracy while
maintaining a lower keep-alive cost and service time.

0 100
Time (minutes)

(a)

30K

60K

Ke
ep

-a
liv

e
M

em
or

y
(M

B) Avg.

Accuracy=75.76%

0 100
Time (minutes)

(b)

30K

60K

Avg.

 Accuracy=75.60%

Fig. 7: OpenWhisk’s fixed 10-minute keep-alive policy (a)
creates memory peaks, while PULSE (b) reduces keep-alive
memory and smooths memory peaks.

Keep-alive memory. PULSE reduces overall keep-alive mem-
ory consumption compared to the OpenWhisk policy, while
simultaneously eliminating sudden peaks in keep-alive memory
usage.
Figure 7 (a) illustrates the keep-alive memory consumption
when employing the 10-minute fixed keep-alive policy. The
high keep-alive memory consumption is likely attributed to
the 10-minute fixed keep-alive policy maintaining all invoked
functions containers in an active state for the entire 10-minute
duration, regardless of their utilization. This leads to a keep-
alive memory wastage. Additionally, there are abrupt spikes in
keep-alive memory usage due to sudden peaks in invocation
(refer to Section II) . The average accuracy achieved by the
machine learning models assigned to the functions during this
run is 75.76%. Figure 7 (b) presents the results achieved by
PULSE. Here, the keep-alive memory consumption has been
reduced, with no abrupt spikes, and with a minimal accuracy
drop of 0.16%. PULSE achieves this through function-centric
optimization, which aims to keep containers with lower-
accuracy models alive when the invocation probability is low
within the 10 minutes following an invocation, and global
optimization, which reduces keep-alive memory consumption
spikes using a utility value-based methodology to downgrade
models to lower accuracy variants in an unbiased manner.
Why does PULSE outperform OpenWhisk?

105

Figure 6 (b) displays the deviation in keep-alive costs for
each minute, comparing both PULSE and OpenWhisk to the
ideal value of keep-alive cost, where the model is only kept
alive during the time it is invoked. The time resolution in this
context is in minutes.

Figure 6 (b) highlights that the keep-alive cost associated
with the OpenWhisk 10-minute policy is often higher com-
pared to the ideal scenario. In contrast, PULSE maintains a
keep-alive cost comparatively closer to the ideal value. The
improved performance of PULSE compared to OpenWhisk in
terms of keep-alive cost is primarily attributed to the strategic
mixing of different quality models within the 10-minute keep-
alive period using function-centric optimization. Specifically,
the inter-arrival time-based probability of invocation proves
highly effective. This ensures that the high-quality model is
kept alive precisely during the period (at minute resolution) of
an invocation. In many instances of actual invocation, the con-
tainer with higher accuracy model is kept alive. Conversely, in
situations with a lower likelihood of invocation, the container
with lower-quality model is kept alive.
Integrating with Existing Techniques. PULSE effectively
functions both as a standalone technique and when integrated
with existing state-of-the-art techniques.

Accuracy Keep-alive
Cost

Service
Time

−20
0

20
40
60
80

100

%
 Im

pr
ov

em
en

t
 o

ve
r T

ec
hn

iq
ue

Wild IceBreaker

Fig. 8: Illustrates the performance achieved by integrating
PULSE into Wild and IceBreaker,as compared to using the
original technique.

As outlined in Section IV, the state-of-the-art techniques,
Wild and IceBreaker, are not machine-learning model variant
aware. Moreover, they do not enforce a memory constraint
to prevent peaks in keep-alive memory consumption. Con-
sequently, we aim to integrate both these components into
these techniques to assess whether the incorporation of PULSE
complements and enhances their performance.
Figure 8 illustrates the trade-off achieved between keep-alive
cost, service time, and accuracy upon integrating PULSE
into Wild. This integration preserves Wild’s predicted con-
currency, followed by PULSE’s function-centric and global
optimization. We observe a 99% reduction in keep-alive cost,
accompanied by a 27.1% increase in service time and a 0.6%
reduction in accuracy.
Figure 8 illustrates the performance impact of integrating
PULSE into IceBreaker. PULSE is incorporated after the
function invocation predictor, which determines the concur-
rency of subsequent periods using past invocation patterns
in IceBreaker. The integration of PULSE into IceBreaker
demonstrates improvements in both keep-alive cost and service
time. We observe a 14% reduction in keep-alive cost, and a
7% decrease in service time, with a 0.5% drop in accuracy.

The core idea and design behind PULSE are flexible and
can be adapted to different keep-alive durations depending on
the specific needs of the provider.
Overhead. PULSE incurs a low overhead which makes it
well-suited for practical deployment in real-world scenarios.
Mixed Integer Linear Programming (MILP) is an alternative

10−4 10−3
Overhead/Service Time

0

500

1000

Nu
m

be
r o

f
Si

m
ul

at
io

n
Ru

ns

MILP PULSE
Technique

70
72
74
76
78
80

Ac
cu

ra
cy

(%
)

MILP PULSE

Fig. 9: (a) Compares the overhead incurred by PULSE in con-
trast to the Mixed Integer Linear Programming optimization
technique. (b) Compares the accuracy of Mixed Integer Linear
Programming with that of PULSE.

technique for achieving an optimized trade-off between keep-
alive cost, service time, and accuracy while preventing keep-
alive memory spikes. MILP is used to solve optimization
problems where the objective is to find a set of values for
the variables that maximizes or minimizes a given objective
function, subject to a set of constraints. In this problem, the
objective is to maximize overall utility value subject to a strict
memory budget constraint.MILP simultaneously evaluates all
selected models and their variants, aiming to identify the
combination that maximizes utility value while adhering to the
memory budget constraint. Figure 9 (a) illustrates that MILP
incurs considerably higher overhead compared to PULSE and
in Figure 9 (b) , there is an accuracy reduction incurred by
MILP in comparison to PULSE as MILP tends to favor lower-
quality models due to lack of iterative adaptability. The high
overhead makes MILP impractical for production deployments
in serverless environments due to their demanding workload
characteristics.
PULSE’s overhead remains minimal even when handling a
large number of concurrent functions. This scalability demon-
strates PULSE’s suitability for real-world serverless environ-
ments.

T1 T2
(a)

0.0

2.5

5.0

7.5

10.0

Se
rv

ice
 T

im
e

(%
 im

pr
ov

em
en

t
ov

er
 O

pe
nW

hi
sk

)

T1 T2
(b)

0
10
20
30
40
50

Ke
ep

-a
liv

e
Co

st
(%

 im
pr

ov
em

en
t

ov
er

 O
pe

nW
hi

sk
)

T1 T2
(c)

−0.8

−0.6

−0.4

−0.2

0.0

Ac
cu

ra
cy

(%
 im

pr
ov

em
en

t
ov

er
 O

pe
nW

hi
sk

)

Fig. 10: PULSE proves effective across diverse probability
threshold values, serving as criteria for model warm-up se-
lection.In this figure Technique T1 partitions the invocation
probability range into N areas, while Technique T2 reserves
the variant with the lowest accuracy for zero probability invo-
cations and divides the remaining range into N-1 areas.Here
N is the number of variants.

Effectiveness on different probability, keep-alive mem-
ory thresholds and local window sizes. PULSE exhibits

106

M1 M2 M3
(a)

−20

−10

0

10
Se

rv
ice

 T
im

e
(%

 im
pr

ov
em

en
t

ov
er

 O
pe

nW
hi

sk
)

M1 M2 M3
(b)

0
10
20
30
40
50
60

Ke
ep

-a
liv

e
Co

st
(%

 im
pr

ov
em

en
t

ov
er

 O
pe

nW
hi

sk
)

M1 M2 M3
(c)

−0.8

−0.6

−0.4

−0.2

0.0

Ac
cu

ra
cy

(%
 im

pr
ov

em
en

t
ov

er
 O

pe
nW

hi
sk

)

Fig. 11: PULSE demonstrates its effectiveness across various
memory constraints. In this figure, M1 represents a keep-
alive memory threshold of 5%, M2 represents 10%, and M3
represents 15%.

10 60 1200

5

10

Se
rv

ice
 T

im
e

(%
 im

pr
ov

em
en

t
ov

er
 O

pe
nW

hi
sk

)

10 60 120
Local Window Size(minutes)

0
10
20
30
40
50
60

Ke
ep

-a
liv

e
Co

st
(%

 im
pr

ov
em

en
t

ov
er

 O
pe

nW
hi

sk
)

10 60 120−0.8

−0.6

−0.4

−0.2

0.0

Ac
cu

ra
cy

(%
 im

pr
ov

em
en

t
ov

er
 O

pe
nW

hi
sk

)

Fig. 12: PULSE demonstrates its effectiveness across various
local window sizes.

effectiveness across various probability thresholds in function-
centric optimization , keep-alive memory thresholds in global
optimization and local window sizes.
In Figure 10, we compare two probability threshold tech-
niques. Technique T1 corresponds to the threshold mechanism
outlined in the greedy optimization approach for establishing
probability thresholds, as described in Section III. In this
method when the total number of variants of a model is N,
the invocation probability range (always 1) is divided into N
areas. The number of probability thresholds is equal to N-1.
Technique T2, on the other hand, keeps alive the variant with
the lowest accuracy when the probability of invocation is 0.
For values of probability of invocation greater than 0 and less
than or equal to 1, technique T2 divides the probability of
invocation into N-1 areas. Here the number of probability
thresholds is equal to N-2.
Figure 10 demonstrates that both probability threshold de-
termining techniques, T1 and T2, produce comparable re-
sults. This suggests that the effectiveness of PULSE is not
significantly influenced by the specific probability threshold
selection, as long as the general principle of keeping alive
the variant with the highest accuracy at higher invocation
probabilities is adhered to. This observation highlights the
robustness and adaptability of PULSE in handling diverse
probability threshold schemes.
Figure 11 illustrates the performance of PULSE for varying
keep-alive memory thresholds . The outcomes are expressed
as an improvement over the OpenWhisk 10-minute fixed keep-
alive policy. Here, M1 signifies a 5% keep-alive memory
threshold, M2 denotes a 10% keep-alive memory threshold, as
discussed in Section III, and M3 represents a 15% keep-alive
memory threshold. PULSE achieves a balance between keep-
alive cost, service time, and accuracy for every memory con-
straint. This demonstrates that PULSE consistently performs
well across a range of keep-alive memory thresholds.
Figure 12 illustrates the performance of PULSE across various
local window sizes. PULSE demonstrates equilibrium among
keep-alive cost, service time, and accuracy for each local

window size. This indicates the consistent performance of
PULSE across the spectrum of local window sizes.

VI. RELATED WORK

Serverless Workload Characterization. Numerous stud-
ies have examined the behavioral patterns of commercial
serverless platforms, considering user perspectives through
representative benchmarks [9], [18], [21], [34], [38]. Multiple
studies have also presented detailed workload trace analy-
sis [30], [31], [35], [36]. Other studies reveal diverse trends in
serverless computing, covering scheduling effects, invocation
patterns, and I/O behaviors [8], [14]–[16], [20], [22]. Most
prior serverless studies have acknowledged the impact of cold
starts on the service time [1], [19], and esp. during the peak
periods. In summary, previous research have quantified the
significance of cold start times and keep-alive costs [6], [9],
[23], [32], [33]. But, they have not proposed or employed the
use of mixed-quality machine learning models to reduce the
serverless keep-alive cost, esp. during bursty periods.
Machine Learning Inference Service. Previous research
extensively explores aspects of ML inference services, such
as adaptive query batching [2], [3], [7], and energy efficiency
on GPU clusters [12], [17], [24] and battery-powered de-
vices [13], [37], [39]. There are prior works on how ML mod-
els can be of different qualities [25] and they can be deployed
in different scenarios [4], [25], [29]. This is the first work
to show that mixed-quality ML models can be leveraged to
reduce the cost of providing serverless ML inference services
– PULSE provides that carefully navigating the competing
trade-offs among accuracy, cost, and service time. PULSE
significantly reduces the cost and improves service time with
minimal impact on accuracy.

VII. CONCLUSION

PULSE proposes a novel approach to address the challenges
of cold starts and minimize keep-alive costs while avoiding
sudden spikes in keep-alive memory associated with machine
learning models in serverless environments. This is achieved
through the utilization of diverse quality model variants.
Acknowledgement. We thank the reviewers for their construc-
tive feedback. This work is supported by NSF Award 1910601,
2124897, and Northeastern University.

107

Appendix: Artifact Description
Artifact Description (AD)

VIII. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 PULSE introduces a novel scheme tailored for
serverless functions, leveraging model variants to
optimize accuracy, service time, and keep-alive costs.

C2 PULSE utilizes a predictive mechanism based on
past invocations, combined with a greedy optimiza-
tion technique, to determine which model variant to
keep alive and for how long within the 10-minute
keep-alive period.

C3 PULSE devises a utility value-based strategy for
downgrading to lower accuracy model variants in
response to sudden peaks in keep-alive memory.
By considering factors such as arrival probability,
the accuracy benefit of retaining the current model
variant, and the frequency of prior downgrades for a
given function for decision-making it selects model
variants to balance resource efficiency and accuracy
during peaks.

B. Computational Artifacts

A1 https://zenodo.org/records/10976369

Artifact ID Contributions Related
Supported Paper Elements

A1 C1,C2,C3 Figure 6(a),8

IX. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

A1 has the source code necessary to conduct simulations
experiments described in PULSE. Through these simulations,
we aim to evaluate the influence of PULSE on various met-
rics such as keep-alive cost, service time, and the accuracy
of machine learning models in serverless environments. By
analyzing the outcomes of these experiments, we can gain
valuable insights into the effectiveness and practical implica-
tions of integrating PULSE into serverless architectures.

Expected Results

PULSE reduces keep-alive cost with a minimal reduction in
accuracy when used standalone or when integrated into other
techniques.

Expected Reproduction Time (in Minutes)

The expected computational time of this artifact is approx-
imately 1950 minutes for the simulation(1.95 minutes per run
in a x86 64, 8-core Intel i7).

Artifact Setup (incl. Inputs)

Extract the ‘simulation’ folder present in the artifact in the
local system.

Artifact Execution

For the simulation experiment, navigate to each tech-
nique’s respective folder and execute the corresponding Python
files. To run PULSE, execute the file located at ’/open-
whisk/with technique T1.py’. For OpenWhisk, execute the
file at ’/openwhisk/openwhisk only high.py’. For Icebreaker,
execute the file at ’/icebreaker/icebreaker only high.py’. For
PULSE integrated with Icebreaker, execute the file at ’/ice-
breaker/with technique T1.py’. For Wild, execute the file at
’/wild/wild only high.py’. Finally, for PULSE integrated with
Wild, run the file located at ’/wild/with technique T1.py’.The
simulation experiments consist of 1000 runs, with each run
covering the entire trace period. In each run, the assignment
of models to functions varies.

Artifact Analysis (incl. Outputs)

PULSE reports its accuracy in “tech-
nique accuracy sliding with memory constraint T1.txt”.The
simulation stores total service time per run in “tech-
nique servicetime sliding with memory constraint T1.txt”.
Lastly “technique keepalive cost sliding with memory
constraint T1.txt” stores the total keep-alive cost.Similarly,

the other techniques generate .txt files containing service
time, keep-alive cost, and accuracy metrics. Using these
files, we compute simulation results by averaging the values
across all runs for service time, accuracy, and keep-alive
cost. Subsequently, we quantify the improvement achieved
by implementing PULSE over the original technique. These
computed values are then integrated into the plots.ipynb file,
which utilizes Matplotlib to generate the bar plots.

REFERENCES

[1] S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky, “Putting the”
micro” back in microservice,” in 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18), 2018, pp. 645–650.

[2] Y. Choi, Y. Kim, and M. Rhu, “Lazy batching: An sla-aware batching
system for cloud machine learning inference,” in 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2021, pp. 493–506.

[3] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system.” in
NSDI, vol. 17, 2017, pp. 613–627.

[4] D. Daimary, M. B. Bora, K. Amitab, and D. Kandar, “Brain tumor
segmentation from mri images using hybrid convolutional neural
networks,” Procedia Computer Science, vol. 167, pp. 2419–2428,
2020, international Conference on Computational Intelligence and Data
Science. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1877050920307614

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[6] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “Serverless applications: Why,
when, and how?” IEEE Software, vol. 38, no. 1, pp. 32–39, 2020.

108

[7] K. Fu, J. Shi, Q. Chen, N. Zheng, W. Zhang, D. Zeng, and M. Guo, “Qos-
aware irregular collaborative inference for improving throughput of dnn
services,” in 2022 SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE Computer
Society, 2022, pp. 993–1006.

[8] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson et al., “An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 3–18.

[9] J. R. Gunasekaran, P. Thinakaran, N. C. Nachiappan, R. S. Kannan, M. T.
Kandemir, and C. R. Das, “Characterizing bottlenecks in scheduling
microservices on serverless platforms,” in 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2020,
pp. 1197–1198.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[11] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269.

[12] D.-K. Kang, K.-B. Lee, and Y.-C. Kim, “Cost efficient gpu cluster
management for training and inference of deep learning,” Energies,
vol. 15, no. 2, p. 474, 2022.

[13] T. Kannan and H. Hoffmann, “Budget rnns: Multi-capacity neural
networks to improve in-sensor inference under energy budgets,” in
2021 IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2021, pp. 143–156.

[14] A. Klimovic, H. Litz, and C. Kozyrakis, “Selecta: Heterogeneous cloud
storage configuration for data analytics,” in 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), 2018, pp. 759–773.

[15] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle, and
A. Trivedi, “Understanding ephemeral storage for serverless analytics,”
in 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC}
18), 2018, pp. 789–794.

[16] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic ephemeral storage for serverless analyt-
ics,” in 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), 2018, pp. 427–444.

[17] T. Komoda, S. Hayashi, T. Nakada, S. Miwa, and H. Nakamura, “Power
capping of cpu-gpu heterogeneous systems through coordinating dvfs
and task mapping,” in 2013 IEEE 31st International Conference on
computer design (ICCD). IEEE, 2013, pp. 349–356.

[18] H. Lee, K. Satyam, and G. Fox, “Evaluation of production serverless
computing environments,” in 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD). IEEE, 2018, pp. 442–450.

[19] Z. Li, Q. Chen, S. Xue, T. Ma, Y. Yang, Z. Song, and M. Guo,
“Amoeba: Qos-awareness and reduced resource usage of microservices
with serverless computing,” in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2020, pp. 399–
408.

[20] X. C. Lin, J. E. Gonzalez, and J. M. Hellerstein, “Serverless boom or
bust? an analysis of economic incentives,” in 12th {USENIX} Workshop
on Hot Topics in Cloud Computing (HotCloud 20), 2020.

[21] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing microser-
vice performance,” in 2018 IEEE International Conference on Cloud
Engineering (IC2E). IEEE, 2018, pp. 159–169.

[22] N. Mahmoudi and H. Khazaei, “Performance modeling of serverless
computing platforms,” IEEE Transactions on Cloud Computing, 2020.

[23] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhom-
linov, “Agile cold starts for scalable serverless,” in 11th {USENIX}
Workshop on Hot Topics in Cloud Computing (HotCloud 19), 2019.

[24] S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “Batchsizer: Power-
performance trade-off for dnn inference,” in Proceedings of the 26th
Asia and South Pacific Design Automation Conference, 2021, pp. 819–
824.

[25] M. A. Ouassil, B. Cherradi, S. Hamida, E. Mouaad, O. el Gannour, and
A. Raihani, “A fake news detection system based on combination of
word embedded techniques and hybrid deep learning model,” Interna-
tional Journal of Advanced Computer Science and Applications, vol. 13,
01 2022.

[26] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:160025533

[27] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” 2016.

[28] R. B. Roy, T. Patel, and D. Tiwari, “Icebreaker: Warming serverless
functions better with heterogeneity,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 753–767.
[Online]. Available: https://doi.org/10.1145/3503222.3507750

[29] A. K. Sahu, S. Sharma, M. Tanveer, and R. Raja, “Internet of
things attack detection using hybrid deep learning model,” Computer
Communications, vol. 176, pp. 146–154, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366421002164

[30] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications
of function-as-a-service computing,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
1063–1075.

[31] M. Shahrad, R. Fonseca, I. n. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in Proceedings of the 2020 USENIX Conference
on Usenix Annual Technical Conference, ser. USENIX ATC’20. USA:
USENIX Association, 2020.

[32] P. Silva, D. Fireman, and T. E. Pereira, “Prebaking functions to warm
the serverless cold start,” in Proceedings of the 21st International
Middleware Conference, 2020, pp. 1–13.

[33] D. Taibi, J. Spillner, and K. Wawruch, “Serverless computing-where are
we now, and where are we heading?” IEEE Software, vol. 38, no. 1, pp.
25–31, 2020.

[34] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot, “Bench-
marking, analysis, and optimization of serverless function snapshots,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
559–572.

[35] A. Wang, S. Chang, H. Tian, H. Wang, H. Yang, H. Li, R. Du, and
Y. Cheng, “Faasnet: Scalable and fast provisioning of custom serverless
containerruntimes at alibaba cloud function compute,” arXiv preprint
arXiv:2105.11229, 2021.

[36] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), 2018, pp. 133–146.

[37] M. Xu, X. Zhang, Y. Liu, G. Huang, X. Liu, and F. X. Lin, “Approximate
query service on autonomous iot cameras,” in Proceedings of the 18th
International Conference on Mobile Systems, Applications, and Services,
2020, pp. 191–205.

[38] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and
H. Chen, “Characterizing serverless platforms with serverlessbench,” in
Proceedings of the 11th ACM Symposium on Cloud Computing, 2020,
pp. 30–44.

[39] A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos, “Gobo: Quan-
tizing attention-based nlp models for low latency and energy efficient
inference,” in 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2020, pp. 811–824.

109

