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Abstract—The convergence of edge computing, big data analyt-
ics, and AI with traditional scientific calculations is increasingly
being adopted in HPC workflows. Workflow management sys-
tems are crucial for managing and orchestrating these complex
computational tasks. However, it is difficult to identify patterns
within the growing population of HPC workflows. Serverless
has emerged as a novel computing paradigm, offering dynamic
resource allocation, quick response time, fine-grained resource
management and auto-scaling. In this paper, we propose a
framework to enable HPC scientific workflows on serverless.
Our approach integrates a widely used traditional HPC workflow
generator with an HPC serverless workflow management system
to create benchmark suites of scientific workflows with diverse
characteristics. These workflows can be executed on different
serverless platforms. We comprehensively compare executing
workflows on traditional local containers and serverless comput-
ing platforms. Our results show that serverless can reduce CPU
and memory usage respectively by 78.11% and 73.92% without
compromising performance.

Index Terms—HPC Serverless Workflows, Serverless Comput-
ing, Scientific Workflows

I. INTRODUCTION

In modern research, scientific workflows are critical in man-
aging and orchestrating complex computational tasks across
diverse domains [1]. These workflows, composed of inter-
dependent tasks, enable scientists to process large volumes
of data, automate analyses, and derive meaningful insights
with high efficiency [2]. As science evolves, so does the tech-
nology supporting these workflows. Recently, there has been
a notable shift towards leveraging serverless computing for
scientific workflows, particularly in High-Performance Com-
puting (HPC) environments. This shift is driven by serverless
computing’s potential to simplify management, reduce costs,
enhance scalability, and enable on-demand resource provision-
ing. Examples of such applications include genomics data
processing, large-scale simulation workflows, and real-time
data analysis in environmental sciences [3], where serverless
paradigms can significantly streamline execution and resource
allocation while maintaining the computational rigor required
by HPC workloads.
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Given the importance of HPC serverless workflows, it is
thus not surprising that this class of workflows has become a
focal point for numerous research and development efforts [4]–
[10]. These activities span a wide range of objectives, in-
cluding the design of resource management and scheduling
algorithms, the development of runtime systems capable of
executing workflows across various hardware and software
stacks, and the analysis of workflow configurations to iden-
tify commonalities and differences across scientific domains.
However, most experimental evaluations of these workflows
rely on real-world workflow instances running on production
platforms to ensure their relevance to current application do-
mains or testbeds to explore hypothetical and future scenarios.

Despite these advances, the existing literature on HPC
serverless workflows lacks a comprehensive framework that
supports and bridges the theoretical and practical aspects
of workflow managers’ research and development. WfCom-
mons [11] has been a pivotal framework for the scientific
workflow community, offering tools and data to cater to re-
search and development needs by making real-world workflow
instances accessible through a common format and generating
realistic workflow benchmark specifications. However, Wf-
Commons has been tailored primarily for traditional workflow
managers and is currently not equipped to advance the research
and development of serverless workflows, especially those
tailored for HPC environments. This paper addresses this
gap by proposing an extension of WfCommons to support
serverless computing. Our approach includes adapting the Wf-
Commons framework to generate serverless-compatible HPC
workflow benchmarks and developing a new workflow man-
ager specifically designed for HPC serverless environments.
This comprehensive framework will enable more extensive
research into the performance and applicability of serverless
computing within the scientific workflow domain. Our frame-
work is available in a GitHub repository1 and detailed in the
AD/AE appendix.

In this work, we make the following contributions:
• A framework that enables HPC scientific workflows on

serverless computing, assembling a workflows manager
for serverless and the WfCommons framework;

• A prototype of a workflow management system for
serverless, evaluated using Knative, yet designed to cor-

1https://github.com/HewlettPackard/wfm-serverless-hpc
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respond to any serverless platform that handles HTTP
requests;

• Extension to the WfCommons Framework with Knative
as a serverless platform;

• Extension to the WfCommons, proposing WfBench as a
Service (one of the key components of WfCommons);

• An extensive evaluation, comparing serverless and bare-
metal containers in terms of granularity, execution time,
power, CPU, and memory usage.

II. BACKGROUND AND RELATED WORK

A. HPC Workflows

Since the moment we built the first computers, scientist
has been one of their main power users. Along the way,
the complexity of both, the computational facilities and the
calculations themselves have co-evolved substantially, giving
rise to our modern HPC facilities and HPC workflows respec-
tively. In this respect, the sophistication and variety of our
current scientific workflows have been driven by a variety
of factors and as such running these calculations efficiently
presents ever-increasing challenges [12]. Notably, the conver-
gence of disruptive technologies such as edge computing, big
data analytics, and AI with traditional scientific calculations
are rapidly becoming mainstream HPC workflows [1], [13].
Furthermore, identifying patterns in the growing set of HPC
workflows is challenging, partly due to their diverse origins
across specialized scientific communities. Consequently, the
convergence execution management tools for these workflows
seem at the moment unlikely although these are ongoing
discussions within the workflow communities [14]. In this
context, an open-source framework like WfCommons [11]
with its capability to generate diverse types of workflow
instances, strikes us as an adaptable research tool to explore
the use of new technologies like serverless.

B. Workflow Management Systems

Workflow Management Systems (WMS) are used to auto-
mate the orchestration of scientific computations [15]. By man-
aging task dependencies, data transfer, and resource allocation,
WMS’s simplify distributed computing, enabling scientists to
concentrate on research rather than infrastructure. To capture
the complexity of computational workflows, WFM often sup-
ports at least one of the many workflow definition languages in
existence such as Common Workflow Language (CWL) [16]
or Yet Another Workflow Language (YAWL) [17]. Charac-
teristically, individual scientific communities have their own
preferences for workflow languages; for instance, Nextflow is
very popular for the design of bioinformatics pipelines [18].
While the use of domain-specific languages facilitates the
development of workflows, it comes with the risk of vendor
lock-in and reduces the interoperability between WFMs. On
the other hand, some other WFMs have rejected the idea
of using workflow languages and instead natively integrate
programmable APIs for popular languages like Python, so that
users can write workflows as code. Pegasus [19], is an example
of this last type of WMS; this strategy, although powerful,

requires additional programming knowledge and experience
by the workflow developers. In the context of domain-specific
workflow languages, little has been done to provide WFM with
serverless capabilities. A notable exception is the specification
for an Abstract Function Choreography language (AFCL) [20],
a YAWL-like language for serverless applications. Yet, for
WFM that has no support for AFCL the feasibility of executing
traditionally serverful workflows under the serverless model
is challenging. Other sets of challenges also arise for WFM
that implement workflows as code. One might think that,
pragmatically, the execution of serverless workflows might be
easier without the involvement of WFM at all [21] or with
the implementation of a light-weight serverless-aware WFM,
which is the kind of strategy we follow here.

C. Serverless Functions and Platforms

Serverless computing has emerged as a novel paradigm
in cloud and cluster computing, offering a dynamic way
to allocate resources based on the specific requirements of
individual compute functions. Traditionally, users of large-
scale computing systems were limited to allocating resources
in coarse-grained virtual machines (VMs). The introduction
of serverless computing aimed to improve resource utilization
by dynamically allocating the resources for a user’s applica-
tion at runtime. This model simplifies resource management
and provides enhanced performance for short-lived functions,
which are common in many HPC workflows. In the context of
serverless computing, a function is defined as a stateless task
that is executed when an event invoking the function enters
the serverless framework.

Various platforms support serverless computing on large
clusters, with Knative [22] being a popular example. Knative
is a Kubernetes [23] based platform that enables serverless
computing, allowing developers to focus on writing code
without the need to manage complex infrastructure. This
approach is particularly beneficial for HPC workflows, as it
can efficiently handle the bursty and variable nature of many
scientific computations. Serverless platforms can automatically
scale resources up or down based on demand, potentially
leading to cost savings and improved resource efficiency.
Additionally, the event-driven nature of serverless computing
aligns well with the structure of many scientific workflows,
where one computation often triggers subsequent analyses or
simulations.

D. HPC and Serverless

The Cloud Native Computer Foundation (CNCF), which
is part of Linux Foundation is hosting the development of
a community-driven open source specification for a Server-
less Workflow Domain Specific Language (serverlesswork-
flow.io) [24]. Additionally, under the same umbrella, there
is an ongoing effort to develop a workflow manager called
Synapse that is fully compliant with this specification [25].
Although both projects are still under active development and
it might be too early to predict their final acceptance, there
will likely be some resistance to replacing current traditional
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HPC solutions with their cloud-native counterparts. Ideally,
both cloud-native and HPC solutions might merge into a better
general solution or develop enough interoperability to coexist,
exploiting the best of both environments. Other attempts
to combine workflow managers with serverless technology,
though less comprehensive, have also been proposed [7],
[26]. Like the serverlessworkflow.io + Synapse pairing,
these initiatives have primarily focused on cloud solutions
rather than HPC. In some cases like in Mashup [6], although
targeting HPC, the serverless capabilities are limited to offload
computations to the cloud in the form of serverless tasks when
the computer capabilities of HPC clusters are stretched. Spill-
ner et al. discuss the adoption of Cloud Computing in HPC
and further explore how FaaS allows for a faster and cheaper
way to run some HPC workloads [8]. Copik et al. explore the
integration of High Performance Computing with serverless,
they discuss the benefits of using serverless in the context of
HPC like better compute and memory disaggregation and the
ability for dynamic scheduling [5]. Malla et al., in their work,
compare the performance of HPC workloads in the Cloud
and a more traditional setup like IaaS. Their results show
that specific HPC workloads that can take advantage of auto-
scaling can subjectively be more performant in a Cloud-like
setting [27].

III. A FRAMEWORK TO STUDY HPC SCIENTIFIC
WORKFLOWS ON SERVERLESS

In the pertinent literature, we can find several workflow
management systems with relatively broad adoption such as
Pegasus [19], NextFlow [18], or AirFlow [28]. However, none
of them were designed for managing serverless-composed
workflows. Knative, a well-known and validated container or-
chestrator built on Kubernetes, receives invocations for server-
less functions, creates the necessary processes (pods), and
executes them taking into account several other mechanisms
such as resource-management, auto-scaling, fault-tolerance,
etc. Knative is broadly known in the literature as well as
other serverless platforms such as Globus Compute (previously
FuncX [29]), OpenWhisk [30], OpenFaas [31], OpenShift [32]
and OpenShift Serverless [33] (also based on Knative). We
have chosen Knative as our core serverless platform because
of its relatively simple installation, setup, and ease of use. By
doing so, we hope that our results can be reproduced by others
effortlessly.

Despite all the benefits, neither Knative nor the other server-
less platforms offer mechanisms to manage workflow invoca-
tions, as they are all stateless and meant for single invocations.
Therefore, we developed a prototype workflow manager for
serverless environments. Although we used Knative as the
initial target for our experiments, our workflow manager is
designed to work with any serverless platform that handles
invocations through HTTP requests. For the first version of
our prototype, we assume that all machines in the cluster have
access to a common shared directory for storing I/O. With that,
we enforce that all functions in the workflows can write to and

read from the same place, hence the communication between
the different functions and steps is guaranteed.

To compensate for the lack of HPC scientific workflows
for serverless, we rely on WfCommons, a framework that
generates realistic synthetic workflows. WfCommons can cre-
ate and translate workflows to fit the requirements of several
workflow managers such as Pegasus and NextFlow. In this
work, we extend WfCommons by proposing a new Translator,
for Knative. With that, we can produce several different
scientific workflows and have all of them ready to be executed
on serverless, using Knative.

Finally, we propose a framework illustrated in Figure 1,
composed of 4 main components. By combining our workflow
manager (component 3), which is capable of executing work-
flows on any serverless platform that handles HTTP requests
from any cluster (component 4), with our contribution to
WfCommons (component 1), we can perform an extensive
set of experiments with scientific workflows on serverless
platforms (component 2). In these experiments, we vary the
size of the workflows, the amount of CPU each function should
stress, the choice of keeping or not keeping memory allocated
over the execution of the functions, and the granularity of the
serverless processes. In the remainder of this section, we detail
each of these components.

Fig. 1: Architecture of our framework for managing HPC
scientific workflows on serverless.

Fig. 2: WfCommons architecture and our contribution.

A. Extending WfCommons

WfCommons is a framework that comprises four main com-
ponents: (1) WfInstances: gathers different scientific work-
flows and groups them by type; (2) WfChef: uses the groups of
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workflow instances to generate recipes of scientific workflows
for that type; (3) WfGen: uses the recipes to generate work-
flows; and (4) WfBench: creates benchmarks after the work-
flows are generated. In particular, WfBench has a component
called Translator that converts a generated workflow that is
written in the WfCommons pattern to different workflow man-
agers [34]. Currently, WfCommons supports Translators for
Pegasus and NextFlow. We propose a new Translator, targeting
Knative. Figure 2 details WfCommon’s main components
and how they interact. Specifically, the figure highlights our
extension to the framework. In addition, the excerpt of code
below illustrates the output of our Knative Translator after
generating workflows with WfCommons. Lines 7-14 and line
20 represent respectively two of our main modifications. The
first modification converts the entry ”arguments” from a list of
parameters to a sub-entry with key-values, making it easier to
build the HTTP request command in our workflow manager
for serverless. The second modification includes the HTTP
request endpoint of that specific function on the serverless
platform.

1 {
2 "blastall_00000002": {
3 "name": "blastall_00000002",
4 "type": "compute",
5 "command": {
6 "program": "wfbench.py",
7 "arguments": [
8 {
9 "name": "blastall_00000002",

10 "percent-cpu": 0.9,
11 "cpu-work": 100,
12 "out": {
13 "blastall_00000002_output.txt": 40161
14 },
15 "inputs": [
16 "split_fasta_00000001_output.txt"
17 ]
18 }
19 ],
20 "api_url": "http://wfbench.knative-functions

↪→ .00.000.000.000.sslip.io/wfbench"
21 },
22 "parents": [
23 "split_fasta_00000001"
24 ],
25 "children": [
26 "cat_blast_00000042",
27 "cat_00000043"
28 ],
29 "files": [
30 {
31 "link": "output",
32 "name": "blastall_00000002_output.txt",
33 "sizeInBytes": 40161
34 },
35 {
36 "link": "input",
37 "name": "split_fasta_00000001_output.txt",
38 "sizeInBytes": 40161
39 }
40 ],
41 "runtimeInSeconds": 0,

42 "cores": 1,
43 "id": "00000002",
44 "category": "blastall",
45 "startedAt": "2024-07-12T17:09:21.522439+02:

↪→ 00"
46 },
47 }

B. WfBench as a Service

One of the key aspects of our integration of WfCommons to
a serverless framework is to turn WfBench [34] into a service.
Through WfBench, the WfCommons framework offers an ex-
ecutable, coded in Python, that performs real computation for
each function of the synthetic workflows generated, respecting
their parameters of stressing CPU, memory, and producing
and using I/O. This application was designed to be executed
on bare metal, but we containerized it, and then deployed it
on Knative, turning it into a service on a serverless platform.
Afterward, WfBench executable responds to an HTTP request,
where we send a POST request containing all the necessary
parameters, including the name of the function, CPU stress
percentage, CPU workload, input and output data, and the
directory were I/O operations should be recorded. The request
structure appears as follows:

curl localhost:8080/wfbench -X POST -H ’
↪→ Content-Type: application/json’ -d ’{"
↪→ name":"split_fasta_00000001", "percent-
↪→ cpu":0.6, "cpu-work":100, "out":{"
↪→ split_fasta_00000001_output.txt": 204082
↪→ }, "inputs":["split_fasta_00000001_input
↪→ .txt"], "workdir":"../data/wfbench-
↪→ knative"}’

C. Building a Serverless Workflow Manager

Our serverless workflow manager processes input in the
form of a workflow description formatted as a JSON file.
This file is structured according to the WfCommons pattern,
where each entry represents a single function. Each function
is linked to its predecessor (parent) and successor (child)
functions, along with their associated input and output files.
The key innovation in adapting WfCommons for serverless
environments involves enhancing the workflow description to
include a new entry for each function. This entry specifies
the HTTP request required to execute the function using
the WfBench service. Additionally, we introduced a header
(starting function) at the beginning of the workflow and a
tail (finishing function) at the end. These additions streamline
the management of various workflow types, ensuring a more
generic and flexible execution process. Upon invocation, the
workflow is translated into a Directed Acyclic Graph (DAG).
For each step in the DAG, all associated functions are collected
and simultaneously executed by sending HTTP requests to
their respective addresses.

In its initial version, our workflow manager assumes the
presence of a shared drive within the serverless cluster to
handle the input and output data exchanged between different
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functions and phases. Before invoking each function, the
workflow manager checks whether the required input files are
available on the shared drive. This ensures they were generated
by preceding functions. To guarantee the correct sequencing, a
brief delay of one second is introduced between each workflow
phase, allowing sufficient time for the preceding functions to
complete and write the expected files to the shared drive. These
outputs then serve as inputs for the subsequent functions.

D. A Bare-metal Local Container Baseline

Since standard HPC workflows are typically executed on
workflow managers deployed on bare-metal platforms, we
adopt this approach as our baseline computational paradigm.
Consequently, our serverless workflow manager, as described
above, also supports the execution of scientific workflows
using a bare-metal local container setup. In this configuration,
we assume the presence of a shared drive within the local
cluster, and the workflow is managed as a DAG of functions
executed in phases. The key distinction is that, instead of
relying on the WfBench service deployed on Knative, we
utilize a local container that hosts the same version of the
WfBench application, allowing the workflows to be executed
entirely within the local environment.

IV. METHODOLOGY

To address the lack of available scientific workflow in-
stances and workflow managers for serverless, we propose and
evaluate a framework that comprises both (see Section III).
Using a workflow generator (see Section III-B), we create dif-
ferent types of synthetic workflows. Additionally, we extended
this tool to convert the generated workflows to serverless plat-
forms (see Section III-A). In doing so, we became equipped to
study the different behaviors of the now serverless workflows.
Particularly, the types of workflows under consideration differ
not only in their number of functions, but also in other
characteristics such as being burst or spread, and having many
or few phases. To properly execute these workflows on top of
serverless platforms, we use our first prototype of a workflow
manager for serverless (see Section III-C). We emphasize that
this approach is compatible with any serverless platform that
uses HTTP requests for function invocation. Similarly, our
baseline (see III-D) is applicable to any bare-metal platform
capable of running Docker [35] containers.

To evaluate our framework and show its versatility, we
performed a series of experiments following the design shown
in Table I. Specifically, we evaluate two computational plat-
forms: serverless computing and local bare-metal containers.
We compare both platforms in terms of execution time, power
consumption, CPU, and memory usage. We also evaluate
different granularities for the computational processes, as well
as the number of inner workers and threads of their execution.
Finally, we vary the size of the workflows and the config-
urations of the auto-scaling mechanisms for the serverless
setups. In total we perform 140 experiments, from where:
a) 98 experiments are focused on fine-grained scenarios,
varying 7 computational paradigms, 7 workflows and 2 sizes of

TABLE I: Design of Experiments.

Parameter Value

Platform Bare-metal local containers, Knative

Workflows Blast, Bwa, Cycles, Epigenomics,
Genomes, Seismology, Srasearch

Workflow Sizes 250, 500, 1000 tasks
CPU stressing intensity 100%

Number of workers 1, 10 workers
Functions’ granularity Coarse-grained, fine-grained

Persistent Memory With, without

Computational Paradigms

Kn1wPM,
Kn1wNoPM,
Kn10wNoPM,
Kn1000wPM,

LC1wPM,
LC1wNoPM,

LC10wNoPM ,
LC10wNoPmNoCR,

LC1000wPM

Total 140 experiments

workflows; b) 42 experiments are focused on coarse-grained
scenarios, varying 2 computational paradigms, 7 workflows
and three sizes of workflows. The computational paradigms
are detailed on Table II.

V. EXPERIMENTAL EVALUATION

To ensure a more structured analysis and discussion, we
have organized our experimental results into four groups:

A. An initial workflow characterization, where we aggre-
gate different aspects of workflows, including their DAG
structures, phase/step compositions, and their different
functions.

B. An analysis of the impact of different approaches and
setups with fixed computational paradigms, focusing
on parameters such as the number of workers managing
simultaneous parallel invocations, the use of persistent
memory, and pre-allocated resources.

C. A study of the effectiveness of coarse-grained ap-
proaches within different computational paradigms.

D. A comparison between the performance of workflows ex-
ecuted in serverless environments and local containers.

To represent the computational paradigms presented in
them, all the figures use the nomenclature detailed in Table II.

A. Workflow Characterization

WfCommons workflows represent a large set of real-world
workflow instances from diverse application domains based
on their executions using diverse workflow systems. Wf-
Commons instances are derived from execution logs of real-
world workflow applications. They represent domains such
as Bioinformatics, Agroecosystems, Seismology and Astron-
omy. Detailed classification can be found in the WfInstances
repository on GitHub [36]. They represent a good fraction of
HPC scientific workflows. Additional workflows with similar
structures but with different requirements could be generated
using WfBench [34].
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TABLE II: Nomenclature for the computation paradigms used in the experimental evaluation.

Computational Paradigm Description

Kn1wPM Knative, with 1 worker per process (pod), and Persistent Memory over the functions
Kn1wNoPM Knative, with 1 worker per process (pod), and No Persistent Memory over the functions
Kn10wNoPM Knative, with 10 worker per process (pod), and No Persistent Memory over the functions

Kn1000wPM Knative, with 1000 worker per process (pod), and Persistent Memory over the functions
(only coarse-grained for Kn)

LC1wPM Local Containers, with 1 worker per process (container), and Persistent Memory over the functions
LC1wNoPM Local Containers, with 1 worker per process (container), and NoPersistent Memory over the functions
LC10wNoPM Local Containers, with 10 worker per process (container), and NoPersistent Memory over the functions

LC10wNoPMNoCR Local Containers, with 10 worker per process (container), No Persistent Memory over the functions,
and No CPU Requirement

LC1000wPM Local Containers, with 1000 worker per process (container) and Persistent Memory over the functions
(only coarse-grained for LC)

Using our extension to WfCommons, we generate and
translate seven HPC scientific workflows, namely Blast, BWA,
Cycles, Epigenomics, Genomes, Seismology, and Srasearch.
Figure 3 illustrates the composition and structure of Blast,
BWA, Cycles, and Epigenomics workflows. The first subfigure
depicts the overall workflow, the second shows the distribution
of functions across the workflow phases, and the third shows
the number of functions categorized by their specific types.
The two first workflows, Blast and BWA, are more dense,
featuring fewer steps but a high concentration of functions
executed simultaneously. In contrast, Cycles and Epigenomics
have a more complex structure, as evident in their visualiza-
tion, with varying numbers of steps and a broader diversity of
function types.

B. Impact of Fixed Paradigm Configurations

Figures 4 and 5 show the various workflows and metrics
across multiple dimensions. The x-axis presents different se-
tups of computational paradigms, while the y-axis represents
the corresponding metrics, and the colors differentiate work-
flow sizes. Both figures emphasize the Blast and Epigenomics
workflows, as they exemplify the two main behaviors identified
across the different workflows. Blast shares similarities with
BWA, Genome, Seismology, and SraSearch workflows, while
Epigenomics is comparable to the Cycles workflow.

Figure 4 shows the different configurations for the serverless
paradigm using Knative. The three setups vary by the number
of workers (1w or 10w) and whether persistent memory is
utilized (PM or NoPM). The results suggest that using 10
workers (10w) without persistent memory (NoPM) slightly
improves execution time, power, and memory usage, though
it does not significantly impact CPU usage. This outcome is
expected since 10 workers per container within Knative allow
for more parallel function execution. Overall, despite the less
optimal CPU usage, the trade-offs across the different metrics
indicate that the 10wNoPM setup provides the most balanced
performance. In addition, this is the closest scenario to real
production platforms, with more than one worker per process.
Therefore, this is the preferred configuration for the subsequent
comparisons.

Figure 5 shows the different setups for the local container
(LC) paradigm performed on bare metal. The four setups vary

the number of workers (1w or 10w), whether to use persistent
memory (PM or NoPM), and the option to specify in advance
the number of cores and memory to be used by the containers
(NoCR). Not surprisingly, the results suggest that using 10
workers (10w) without persistent memory (NoPM) and no
CPU request (NoCR) slightly improves power efficiency and
CPU usage, though it does not enhance execution time or
reduce memory usage. This outcome is expected because
when the container’s memory requirements are specified in
advance, the container enforces a hard limit, but without such
constraints, it may consume more memory, as observed in this
case.

C. Coarse-grained for Serverless

Figure 6 displays various workflows and metrics across mul-
tiple facets. The colors represent the computational paradigms
(Knative and local containers, respectively), while the x-
axis presents workflow sizes. The y-axis shows the measured
metrics. The figure shows the performance of serverless versus
local containers for a coarse-grained scenario. In this scenario,
we had one unique process in serverless that specifically
reserved all the resources on the machine. Therefore, there is
no cold-start delay involved, nor scaling of the computational
process. This scenario shows that with coarse-grained reserva-
tions, even for serverless, we can manage bigger applications
and workflows composed of more functions (e.g 1000 func-
tions) in an easier way. Because of auto-scaling the previous
fine-grained scenarios did not conclude their execution without
reaching memory and CPU limits. Also, it is possible to
see in the first column of the figure that serverless can be
close to or even faster than the local container approach.
However, by reserving the entire machine in advance for
one unique process, serverless loses in terms of resource
utilization, having similar or worse performance in terms of
power, memory, and CPU usage.

D. Serverless versus Local Containers

We select the 10wNoPM computational paradigm as the best
one for serverless, which despite the less optimal CPU usage,
presents good trade-offs across the different metrics indicating
the most balanced performance (see Figure 4). In addition,
this is the closest scenario to real production platforms, with
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Fig. 3: Different workflows, its phase density in number of in functions, and its composition in function’s name and quantity.
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Fig. 4: Comparison between different setups for the Serverless
Computational Paradigm.

Fig. 5: Comparison between different setups for the Local
Containers Computational Paradigm.

more than one worker per process. From the local container
perspectives, the directly comparable computational paradigms
is the LC10wNoPM (see Figure 5).

Figure 7 shows an overview of the various workflows and
metrics across multiple facets. The x-axis presents the different
workflow sizes, against the corresponding metrics on the y-

Fig. 6: Comparison for coarse-grained granularity between the
Serverless and the Local Container Computational Paradigm.

axis, while the colors represent the computational paradigms
(respectively 10wNoPM for knative and LC10wNoPM for
local containers). This figure shows that by developing a
workflow manager for serverless and extending WfCommons
to translate their generated workflows for execution on server-
less platforms, our approach enables researchers to study
the performance of different types of scientific workflows
across various metrics. Additionally, our setup allows for the
combination of multiple parameters. WfCommons facilitates
the adjustment of CPU intensity and I/O operations for indi-
vidual functions. With the Knative setup, we can explore the
dynamics of cold/warm containers and the number of accepted
requests. Finally, using Docker, we can control the number of
workers per container to manage requests per core.

Upon further analysis, the workflows can be categorized into
two main groups based on their behaviors: (1) First group:
Blast, BWA, Genome, Seismology and SraSearch workflows
exhibit longer execution time on serverless platforms com-
pared to local containers, as expected; (2) Second group:
the Cycles and Epigenomics workflows surprisingly present a
different pattern where local containers generally outperform
serverless in terms of execution. However, the performance
gap is narrower for this group, especially when managing
workflows containing a higher number of functions. Despite
this, serverless platforms demonstrate advantages across other
metrics, such as power consumption, where they match local
containers while reducing CPU usage by up to 78.11% and
memory usage by up to 73.92% during workflow execution.

The most significant gains are observed in the first group
of workflows, suggesting that scientific workflows with dense

117



Fig. 7: Comparison between best setups for Serverless and Local Container Computational Paradigms.
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steps, where many of the identical functions are invoked
simultaneously using the same processes on serverless plat-
forms, can reduce resource usage while maintaining execution
performance comparable to local containers. Therefore, we
emphasize the effectiveness of this paradigm for such work-
flows.

Although the second group of workflows does not show
clear benefits from serverless execution, it’s important to note
that workflows often consist of different steps and types of
functions. We believe that these workflows could benefit from
serverless execution when combined with those from the first
group, either by invoking them concurrently or by merging
their functions. Furthermore, we argue that complex work-
flows may gain the most advantage from a hybrid approach,
leveraging a combination of both computational paradigms, if
applied strategically to different steps within the workflows.

VI. CONCLUSION

In this work, we propose a framework for executing and
evaluating HPC scientific workflows on serverless platforms.
Our approach combines (1) a serverless workflow manager and
(2) an extension of the WfCommons framework to translate
traditional workflows into serverless-compatible versions. By
doing so, we empower researchers with new tools to study
the performance of various HPC scientific workflows across
multiple metrics. Our setup offers flexibility in configuring
different parameters, such as modifying CPU intensity and I/O
operations per task through WfCommons, exploring container
dynamics like cold/warm startups and the number of accepted
requests via Knative, and managing the number of workers
per CPU core using Docker.

Our extensive experiments demonstrate that HPC scientific
workflows can significantly benefit from serverless in terms
of resource efficiency (CPU, memory, and power) while
maintaining performance levels close to traditional execution
times. Yet, not all evaluated workflows showed these benefits
uniformly when executed on serverless platforms. We should
recall that workflows can be composed of different steps and
types of functions, not all of them are necessarily ideal for
serverless execution. Therefore, it is likely that in some cases,
a mapping of different execution paradigms per sub-workflow
might be a better choice. Namely, the optimal strategy for com-
plex workflows might be combining executions on serverless
and bare-metal local containers for different tasks or groups
of tasks.

We also evaluate coarse-grained scenarios for serverless.
In that case, we understand that the management of CPU
and memory is simpler than in fine-grained scenarios, as
these resources are reserved in advance. The consequence is
that the results from serverless are closer to the bare-metal
local containers; however, the resource usage is not optimal
for serverless as it is when using fine-grained resources. We
understand that we can evaluate bigger workflows on coarse-
grained scenarios. Still, with fine-grained resources and auto-
scaling enabled, managing resources such as CPU and memory
is more challenging. The auto-scaling configuration enables

us to create new processes (pods) in advance whenever a
specific load is achieved on the existing processes. However,
between creating these new warm processes and invoking new
functions, some functions executed on the older processes may
be finished, enabling them to receive the newly submitted func-
tions, making the new processes either empty or underutilized.
In this case, more resources are used, and limits of memory
and CPU may be reached. For that reason, bigger workflows
were successfully executed on coarse-grained scenarios in our
small setup. The experiments were not concluded for all the
tests due to memory and CPU limits being reached.

We conclude that our framework and investigation shed light
on how researchers can perform studies on HPC scientific
workflows using serverless computing. We show that our
framework is very flexible, enabling the usage of an already
well-validated tool, WfCommon. Our workflow management
system can be used on top of any serverless platform that
uses HTTP requests for invoking functions. Therefore, we
believe these results provide an important step toward the
characterization of scientific, HPC-based serverless workflows

VII. FUTURE WORK

We intend to leverage this study and include more aspects
of serverless, either by investigating other mechanisms of the
current chosen platform or including new ones in the WfCom-
mons’ list of targets. For instance, we intend to investigate the
impacts of using external distributed data storage for managing
scientific workflows. We also plan to study the impacts of
serverless on multi-cluster invocation scenarios. We believe
that fine-grained resource management and the auto-scaling
mechanism of serverless can improve even more aspects such
as resource usage, when we consider the invocation of multiple
concurrent functions by different workflows. In addition to
Knative, we will explore other serverless platforms, such as
Globus Compute [29], and those offered by Cloud providers
(AWS Lambda, Google Cloud Functions, and Azure). Finally,
we expect that all these directions can lead us to the charac-
terization of HPC scientific workflows on serverless, being
able to select the best types of functions for the different
computational paradigms, and merging them with serverless
computing.
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 A framework that enables HPC scientific workflows on
serverless computing, assembling a workflow manager for
serverless and the WfCommons framework;

C2 A prototype of a workflow management system for server-
less, evaluated using Knative, yet designed to correspond
to any serverless platform that handles HTTP requests;

C3 Extension to the WfCommons Framework with Knative
as a serverless platform;

C3 Extension to the WfCommons, proposing WfBench as a
Service;

C4 An extensive evaluation, comparing serverless and bare-
metal containers in terms of granularity, execution time,
power, CPU, and memory usage.

B. Computational Artifacts

A1 https://github.com/HewlettPackard/wfm-serverless-hpc/
tree/main/wfbench

A2 https://github.com/HewlettPackard/wfm-serverless-hpc

Artifact ID Contributions Related
Supported Paper Elements

A1, A2 C1 − C5 Figures 3-7
Table 2

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

This is our contribution to WfCommons, which consists on
creating a new Translator component, and the deployment of
one of its modules as a service. They are included in our
repository, organized as following:

• /wfbench/knative-translator/:
– knative.py: this is our Knative translator component,

designed to translate WfCommons workflows to be
executed on the Knative serverless platform.

– generate workflows example.py: this script exampli-
fies how to import our Knative Translator module, and
how to generate and translate workflows.

• /wfbench/services/:
– wfbench: this folder contains the source-code that

packs wfbench as a service to be deployed on Knative.
– wfbench-local: this folder contains the source-code

that packs wfbench as a local container.

Expected Results

The components are both used in combination with Artifact
A2 for the production of the results of the paper. WfCommon
is now able to translate their generate workflows to the Knative
serverless platform, and developers and scientists are equipped
to use WfBench as a Service.

Expected Reproduction Time (in Minutes)

Artifact Setup: The expected computational time for de-
ploying the setup, to install all dependencies, setting up the
cluster and the serverless platform, is about 60 minutes.
Artifact Execution: The expected computational time of this
artifact depends mostly on the amount of workflows generated
and their sizes. In our case, the total time, considering all
workflows and all combination of different scenarios is 5
minutes. Artifact Analysis: The analysis process for this
artifact is actually the testing of our scripts and the validation
of the deployment of all components, on serverless or locally.
It takes in order of 10 minutes.

Artifact Setup (incl. Inputs)

Hardware: There is no hardware requirements.
Software: The following programs, libraries and frame-

works must be installed:
• Git: https://github.com/git-guides/install-git
• Kubernetes: https://kubernetes.io/docs/tasks/tools/
• Knative: https://knative.dev/docs/install/
• Python3: https://www.python.org/downloads/
• Workflow Commons (WfCommons): https://docs.

wfcommons.org/en/latest/quickstart installation.html
• Performance Co-Pilot (PCP): https://pcp.readthedocs.io/

en/latest/QG/QuickReferenceGuide.html#installation
Datasets / Inputs: There are no datasets required for the

execution of this artifact.
Installation and Deployment: Other than the software re-

quirements, it is necessary to clone ours and the WfCommons
GitHub repositories, as well as to install the Python libraries
used by our framework.

Artifact Execution

This artifact’s workflow consists of two tasks T1 and T2,
that interact as T1, T2 (there is no dependcy between them).
Task T1 may deploy WfBench as a Service in the Knative
serverless platform, and locally as a bare-metal local container.
Task T2 may clone the WfCommon repository, compile our
Knative Translator component and make sure that it is working
properly, using the example available.

Artifact Analysis (incl. Outputs)

The outputs of this artifact are the service alive in the
Knative platform, and examples of workflows in JSON format
and their respective I/O datasets in txt format.
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B. Computational Artifact A2

Relation To Contributions

This is our framework for generating and managing HPC
scientific workflows on serverless computing. All the com-
ponents for the paper and all the experiments conducted are
included here, organized by folder, as following:

• /experiments/src/
– serverless-workflows-wfbench.py: this is our proto-

type of WFM for serverless.
– run all wfbench.sh : this is a bash script that calls

each experiment on our serverless setup.
– run all wfbench local.sh : this is a bash script that

calls each experiment on our local container setup.
• /experiments/workflows/

– generate workflows.py: this script imports our Kna-
tive Translator module and use it to generate and
translate workflows.

• /experiments/results/
– workflow executions: this folder contains the main

results of our experiments - the measurements of
execution time, and CPU, memory and power usage.
They are grouped by paradigm, described in the paper
in Table 2. They are:
∗ knative-sequential
∗ knative-level
∗ knative-scaling-1w
∗ knative-scaling-1w-novm
∗ knative-scaling-10w-novm
∗ local-level
∗ local-container-96w
∗ local-container-96w-novm
∗ local-container-960w-novm

– workflows descriptions/: this folder contains, by
group, the analyses for the workflows we used. The
groups are:
∗ functions invocation/ : this folder containers the

analysis of the number of invocations per phase;
∗ functions invocation name/ : this folder contain-

ers the analysis of the number of invocations per
function name.

• /analysis/graphs visualization/
– generate visualization.py: this script generates the

visualization for the workflows in the /experiments/-
workflows. The outputs of this script are placed in the
pdf and png folders in this same directory, and some
of them compose Figure 3.

• /analysis/jupyter notebook/
– analysis wfbench.ipynb: this is the Jupyter Notebook

script that produces the Figures 4-7.
– analysis wfbench invocation.ipynb: this is the

Jupyter Notebook script that produces some of the
figures in Figure 3.

Expected Results

The outcomes of using this framework are the experiments
with different HPC scientific workflows over serverless plat-
forms and local-based containers. Serverless-based executions
should show benefits from bare-metal local container-based
executions in terms of power, CPU and memory usage.

Expected Reproduction Time (in Minutes)

Artifact Setup: This artifact uses the same setup as Artifact
A1. Artifact Execution: The expected computational time
of this artifact depends mostly on the workflows that are
being executed. In our case, the total time, considering all
workflows and all combination of different scenarios is 800
minutes (13 hours). More specifically, to reproduce each figure
of the paper, representing our different sets of experiments:
Figure 4: 100 minutes; Figure 5: 130 minutes; Figure 6:
510 minutes (where only the Epigenomics workflow takes
410 minutes); Figure 7: 60 minutes. Artifact Analysis: The
expected computational time for running our analysis scripts,
is about to 10 minutes.

Artifact Setup (incl. Inputs)

Hardware: There is no hard-requirements for hardware. But
we ran the experiments using a 2-nodes cluster connected to
one shared-drive for storing data. We ran all experiments on
a local cluster with two nodes with Ubuntu 22.04.4 LTS. The
first node was the master, with 2x AMD EPYC 7443 24-Core
Processor, 48 threads, with 256 GB of memory. The second
node was the worker, with 2x AMD EPYC 7443 24-Core
Processor, 48 threads, with 192 GB of memory.

Software: This artifact has the same software requirements
as Artifact A1.

Datasets / Inputs: The datasets required for our experiments
are HPC scientific workflows in JSON format. All the datasets
are generated using our framework, using the script generate
workflows.py.

Installation and Deployment: This artifact has the same
installation and deployment requirements as Artifact A1.

Artifact Execution

This artifact’s workflow consists of three tasks, T1, T2, and
T3, that interact as T1 → T2 → T3. Task T1 may generate the
datasets, which are the HPC scientific workflows that are going
to be executed. These workflows are then used as input by our
workflow manager for serverless in task T2. Task T2 manages
and executes the workflows in the Knative serverless platform
(or bare-metal local containers for baseline purposes), and it
stores the inputs and outputs in the shared disk that was set-up.
In addition, our workflow manager uses Performance Co-Pilot
(PCP) to measure resource usage (CPU, memory, and power).
These outputs are processed by task T3, which produces the
final results (Figures 3-7).
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Artifact Analysis (incl. Outputs)

The outputs of the experiments are csv files containing the
measurements of execution time, power, CPU, and memory
usage for each executed workflow. To process these outputs,
we use our two Jupyter Notebook scripts (analysis-wfbench.
ipynb, analysis-wfbench-invocation.ipynb) to produce Fig-
ures 3-7. In addition, the generate visualization.py script
generates parts of the visualization of the workflows for Figure
3 (this script can be executed before or after the experiments).

Artifact Evaluation (AE)
A. Computational Artifact A1

Artifact Setup (incl. Inputs)

This artifact’s workflow consist of two tasks T1 and T2,
that interact as T1, T2. Once all the software requirements are
installed (including the deployment and configuration of the
Kubernetes cluster and Knative), proceed to install the Python
libraries required:
$ cd src/
$ pip install -r requirements.txt

Then we proceed to the setup for each task:
• Task T1: to deploy our contribution to WfCommons (as

Task T1), it is needed to first clone their repository, to
copy our Knative Translator to there, and to compile
the entire repository as an unique python package, as
following:
$ cd .. & git clone https://github.com/wfcommons

↪→ /WfCommons.git
$ cd wfcommons & cp ../wfm-serverless/wfbench/

↪→ knative.py ./wfcommons/wfbench/Translator
↪→ /

$ pip install -r requirements.txt
$ pip install . --break-system-packages

• Task T2: to deploy WfBench as a Service, we follow
similar processes for serverless or for bare-metal local
containers:
– To deploy WfBench as a service on serverless, first it is

needed to make sure that the container is uploaded on
DockerHub then it is possible to deploy it as a service
on Knative:
$ cd wfbench/services/wfbench/wfbench/
$ sudo docker build -t
<dockerhub_user_name>/<container_image>:<

↪→ containet_tag> .
$ sudo docker push <dockerhub_user_name>/<

↪→ container_image>:<containet_tag>
$ kubectl apply -f service.yaml

As an example, using ou DockerHub repository2:
$ cd wfbench/services/wfbench/wfbench/
$ sudo docker build -t andersonandrei/wfbench-

↪→ knative:wfbench-local .
$ sudo docker push andersonandrei/wfbench-

↪→ knative:wfbench-local
$ kubectl apply -f service.yaml

2https://hub.docker.com/r/andersonandrei/wfbench-knative/

We remark that we update and re-deploy this Dock-
erfile, modifying a few parameters in two key files,
for each set of experiments with each computational
paradigm listed on Table 2. These files and parameters
are:
∗ Dockerfile: there are modifiable parameters in the

last line of the Dockerfile in this directory, such
as: number of workers, number of threads, time-
out response:

CMD exec gunicorn --bind :$PORT --workers <
↪→ number_of_workers> --threads <
↪→ number_of_threads> --timeout <
↪→ timeout_response> app:app

∗ wfbench.py: the line 118 of the wfbench.py pro-
gram, attached to the Dockerfile, enables or disables
the use of persistent memory between the functions
of the workflow:

118 "--vm-bytes", f"{total_mem}", "--vm-
↪→ keep"] # or "--vm-bytes", f"{
↪→ total_mem}"]

For instance, for the computational paradigm
Kn10wNoPM where we have 10 workers running
and no persistent memory between the different
functions, the last line of the Dockerfile should be:

CMD exec gunicorn --bind :$PORT --workers
↪→ 10 --threads 1 --timeout 0 app:app

And the wfbench.py attached program should have:

118 "--vm-bytes", f"{total_mem}"]

– To deploy WfBench as a Service on bare-metal local
containers, for the baseline experiments, we deploy the
container similarly as detailed above. As an example:

$ cd wfbench/services/wfbench-local/wfbench/
$ sudo docker build -t andersonandrei/wfbench-

↪→ knative:wfbench-local .
$ sudo docker push andersonandrei/wfbench-

↪→ knative:wfbench-local

We remark that the modifications to perform the ex-
periments for each computational paradigm in local
containers listed on Table 2 are the same as described
for the serverless variations, but performed in the
wfbench/services/wfbench-local/ directory.

Artifact Execution

• Task T1: To test if our Knative Translator is correctly
deployed withing WfCommons, creating workflows and
translating them to Knative, run the following:

$ cd wfbench/knative-translator/
$ python3 generate_worklfows_example.py

• Task T2: To execute the WfBench service deployed on
serverless, run the following:
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curl http://<server_address>:<port_number>/
↪→ wfbench -X POST -H ’Content-Type:
↪→ application/json’ -d ’{"name":<
↪→ function_name>, "percent-cpu":<
↪→ percent_cpu>, "cpu-work":<cpu_work>, "out
↪→ ":<outputs_dictionay>, "inputs":[<
↪→ list_of_inputs>], "workdir":<
↪→ workflow_data_location>}’

Notice that the following parameters are modifi-
able: server address, port number, function name, per-
cent cpu, cpu work, outputs dictionay, list of inputs,
workflow data location. As an example:

curl http://localhost:80/wfbench -X POST -H ’
↪→ Content-Type: application/json’ -d ’{"
↪→ name":"split_fasta_00000001", "percent-
↪→ cpu":0.9, "cpu-work":100, "out":{"
↪→ split_fasta_00000001_output.txt": 10010},
↪→ "inputs":["split_fasta_00000001_input.
↪→ txt"], "workdir":"../data/BlastRecipe
↪→ -250-100"}’

To execute the WfBench service deployed on bare-metal
local containers, run the following:

$ docker run -t -v /mnt/data:/data --name
↪→ wfbench --cpus=2 -p 127.0.0.1:80:8080/tcp
↪→ andersonandrei/wfbench-knative:wfbench-
↪→ local

Then, in a second terminal, run the same command as
for Knative, but using the address of the local container.
As an example:

curl http://localhost:80/wfbench -X POST -H ’
↪→ Content-Type: application/json’ -d ’{"
↪→ name":"split_fasta_00000001", "percent-
↪→ cpu":0.9, "cpu-work":100, "out":{"
↪→ split_fasta_00000001_output.txt": 10010},
↪→ "inputs":["split_fasta_00000001_input.
↪→ txt"], "workdir":"../data/BlastRecipe
↪→ -250-100"}’

Artifact Analysis (incl. Outputs)

The output of our Knative translator will be a workflow
description in a JSON file format with entries for the Knative
HTTPs request API. The outcome of deploying WfBench
as a Service will be having WfBench as service in the
Knative platform, or as a service in a local-container. These
components and the outcomes here are intermediate. They
will be used by the Artifact A2 for the main experiments, as
components of the same framework, for creating and managing
HPC scientific workflows for Serverless.

B. Computational Artifact A2

Artifact Setup (incl. Inputs)

This artifact’s workflow consists on three tasks, T1, T2,
and T3 and they interact as T1 → T2 → T3. Once all the
software requirements are installed (including the deployment
and configuration of the Kubernetes cluster and Knative),
proceed to install the Python libraries required for having the
workflow manager and all the scripts running:

$ cd src/
$ pip install -r requirements.txt

Install the R packages for the analyses:
$ R
$ install.packages("dplyr", "tidyr", "ggplot2", "

↪→ data.table", "gridExtra", "scales", "
↪→ patchwork", "RColorBrewer")

Artifact Execution

• Task T1: to generates the HPC scientific workflows:
$ cd experiments/workflows/
$ python3 generate_workflows.py

Notice that the following parameters are all modifiable:
service name, service namespace, container tag, con-
tainer url, volume mount name, volume mount path,
cpu request, memory request, cpu limit, memory limit,
volume name, pvc name, workflow data locality, work-
flow manager data locality, knative function url. The
generate workflows.py has a first example.

• Task T2: we use our workflow manager through two
different scripts:

– Serverless-based execution: the experiments on
serverless can be performed running the following bash
script:
$ cd experiments/src/
$ chmod +x run_all_wfbench.sh
$ ./run_all_wfbench.sh

Notice that this script runs a repetition of the following
command:
python3 serverless-workflow-wfbench.py -r <

↪→ workflow_description>.json <
↪→ workflow_name> <number_of_cpus> <
↪→ computational_paradigm>

Notice that the following parameters are all mod-
ifiable: workflow description, workflow name, num-
ber of cpus, computational paradigm. In particularly,
computational paradigm can be knative or local. As
an example:
python3 serverless-workflow-wfbench.py -r ../

↪→ workflows/wfcommons/SrasearchRecipe
↪→ -250-1000/SrasearchRecipe-250-1000.json
↪→ SrasearchRecipe-250-1000 1 knative

– Local-container-based execution: for running our
baseline experiments:
$ cd experiments/src/
$ chmod +x run_all_wfbench_local.sh
$ ./run_all_wfbench_local.sh

Notice that this script runs a repetition of similar
commands as mentioned above, setting the computa-
tional paradigm parameter to local.

To collect the metrics we need, on Task T2, the workflow
manager runs the following PCP command, for both
serverless-base and local-container-based executions:
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pmdumptext -d <separator> -f <date_format> -t <
↪→ timestamp> <metric_1> <metric_2> <
↪→ rapl_endpoint_1> <rapl_endpoint_2> <
↪→ file_to_be_saved.csv>

As an example:

pmdumptext -d \’,\’ -f \’%d/%m/%y %H:%M:%S\’ -t
↪→ 1sec kernel.all.cpu.user mem.util.used
↪→ denki.rapl.rate[\"0-package-0\"] denki.
↪→ rapl.rate[\"1-package-1\"] > ../../
↪→ wfbench/" + measurements_file_name + ’.
↪→ csv’

For a multi-node scenario, we run:

ssh -l <user_name> <node_address> "<pmdumptext
↪→ command>"

• Task T3: To do the analyses of our results:
– Graphs’ Visualization (DAGs) :

$ cd analysis/graphs_visualization/
$ python3 generate_visualization.py

Notice that all workflows generated should be at
./generated workflows/ and the results of this script is
going to be saved at ./generated workflows/png/ and
./generated workflows/pdf/.

– Metrics Analysis:

$ cd analysis/jupyter-notebook/
$ jupyter-notebook .

It will open the Jupyter-Notebook in a browser and
then there will be a button called ”runn all”.
Notice that the results from Task T2 should be
placed at ./wfbench/csv/<computational paradigm>,
and all the outputs are going to be generated at the
analysis/jupyter-notebook/ directory.

Artifact Analysis (incl. Outputs)

The expected results after task T3 are the Figures 3-7
of the paper, in addition to some other visualizations that
were used as support, but not selected to be presented. All
these figures should be present at /analysis/results/png and
/analysis/results/pdf. Analyzing these figures, it should be clear
that serverless-based executions show benefits from bare-metal
local-container-based executions in terms of power, CPU and
memory usage.

125


