
Zero-consistency root emulation
for unprivileged container image build

Reid Priedhorsky, Michael Jennings, Megan Phinney
High Performance Computing Division

Los Alamos National Laboratory
Los Alamos, NM, USA

{reidpr,mej,mphinney}@lanl.gov

Abstract—Do Linux distribution package managers need the
privileged operations they request to actually happen? Appar-
ently not, at least when building container images for HPC ap-
plications. We use this observation to implement a root emulation
mode using a Linux seccomp filter that intercepts some privileged
system calls, does nothing, and returns success to the calling
program. This approach provides no consistency whatsoever
but appears sufficient to build a wide selection of Dockerfiles,
including one that Docker itself cannot build, simplifying fully-
unprivileged workflows needed for HPC application containers.

I. INTRODUCTION

Scientific software for high-performance computing (HPC)
is increasingly deployed using Linux containers, which is
a technology to package an application along with all its
dependencies as a single unit called an image. A critical
requirement for many HPC centers, including Los Alamos, is
that user workflows must be fully unprivileged [1]; i.e., HPC
users cannot be given elevated access of any kind to production
resources. Within an unprivileged container, processes can
have an effective user ID (EUID) of 0 (i.e., root) in a con-
tainer and/or arbitrary capabilities, as well as access to some
normally-privileged system calls, but this greater privilege is
an illusion. Only unprivileged operations are actually available.

HPC container performance and reliability are typically
best served by building images on the same supercomputer(s)
targeted for deployment, due to their tightly specified archi-
tectures. This demands that building images, not just running
them, must be fully unprivileged. However, these builds almost
always use traditional Linux distribution package managers
such as dpkg(8)1 or rpm(8), which assume they are running
privileged, an assumption that has held for many years. While
future package managers may relax this assumption, a build
solution is needed for current distributions, which are in
use now and may persist well beyond end-of-support when
containerized.

This work was supported in part by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy (DOE)
Office of Science and the National Nuclear Security Administration (NNSA);
the Advanced Simulation and Computing Program (ASC); and the LANL
Institutional Computing Program, which is supported by the U.S. DOE’s
NNSA under contract 89233218CNA000001. LA-UR 24-24056.

1Notation foo(n) indicates the thing named foo in man pages section n.
§1 is user shell commands, §2 is system calls, §8 is administrator commands,
and there are others [2].

One way to bridge this gap is root emulation, which
replaces key privileged operations (e.g. chown(2) to change
file ownership) with similar-enough unprivileged ones, thus
fooling package managers into believing they are privileged.

Existing approaches maximize the consistency of the root-
emulated environment. For example, chown(2) could be inter-
cepted, and instead of making the actual system call, the re-
quest stored. Then, results of later stat(2) would be adjusted
to be consistent, i.e., the process sees the same fake ownership
that it set earlier. These tools must be either installed or
bind-mounted into the container, and they add complexity and
overhead while reducing compatibility.

Our insight is that consistency is not actually required
when building HPC application images. We can tell processes
simple lies instead of complex ones.

This paper describes a lightweight, non-consistent root
emulation mode based on seccomp filters, which was recently
introduced in Charliecloud, LANL’s lightweight, fully unprivi-
leged container implementation for HPC applications [3].2 We
install a seccomp kernel filter that intercepts privileged system
calls and simply returns success, without invoking the syscall
or any user-space emulation of it. This remarkably unsophisti-
cated root emulation appears workable for all images we tried;
it is compatible with all distributions and libc’s as well as
statically linked binaries; and it has no dependencies beyond
a C compiler and the Linux kernel, not even libseccomp [4].

II. FULLY UNPRIVILEGED (TYPE III) IMAGE BUILD
WITHOUT ROOT EMULATION?

We previously proposed a tripartite classification of con-
tainer implementations, based on the Linux namespaces
used [5], [6] and level of privilege needed to set up the
container [1]:

• Type I containers are the bare minimum, using the mount
namespace but not the user namespace.3 They require
privileged setup (root or CAP_SYS_ADMIN).

• Type II containers use mount and privileged user
namespaces. They also require privileged setup (root
or CAP_SETUID and CAP_SETGID). Many implementa-
tions call this type rootless because the main container

2All authors are members of the Charliecloud team, and our argument
should be considered in that context.

3The other namespaces do not affect our classification.

126979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00023

1 $ cat Dockerfile
2 FROM alpine:3.19
3 RUN apk add sl
4 $ ch-image build -t win --force=none .
5 1. FROM alpine:3.19
6 [...]
7 2. RUN.N apk add sl
8 copying image from cache ...
9 fetch https://dl-cdn.alpinelinux.org/alpine/v3.19/ma

10 fetch https://dl-cdn.alpinelinux.org/alpine/v3.19/co
11 (1/3) Installing ncurses-terminfo-base (6.4_p2023112
12 (2/3) Installing libncursesw (6.4_p20231125-r0)
13 (3/3) Installing sl (5.02-r1)
14 Executing busybox-1.36.1-r19.trigger
15 OK: 8 MiB in 18 packages
16 grown in 2 instructions: win

1 $ cat Dockerfile
2 FROM centos:7
3 RUN yum install -y openssh
4 $ ch-image build -t win --force=none .
5 1⁎ FROM centos:7
6 2. RUN.N yum install -y openssh
7 [...]
8 Installing : openssh-7.4p1-23.el7_9.x86_64 3/3
9 Error unpacking rpm package openssh-7.4p1-23.el7_9.x

10 error: unpacking [...] failed [...]: cpio: chown
11 [...]
12 something went wrong, rolling back ...
13 [...]
14 error: build failed: RUN command exited with 1

Fig. 1: Example Dockerfiles built with a Type III (fully
unprivileged) implementation and no root emulation. Terminal
output is right-truncated. (a) succeeded because no privileged
system calls were used, while (b) failed because rpm(8) tried
to change a file’s owner with privileged chown(2).

processes are unprivileged, but we believe this is a
misnomer because privileged helper programs (typically
newuidmap(1) and newgidmap(1)) are needed to set up
the container namespaces.

• Type III containers use mount and unprivileged user
namespaces; setup is unprivileged. Only Type III con-
tainers are fully unprivileged throughout the container
lifetime. Conversely, the benefit of Type II over Type III
is greater flexibility of users and groups within the
container.

It would be convenient for HPC if images could be built in
a Type III container naïvely, with no root emulation or other
special measures. This does sometimes work. Figure 1a shows
an example Dockerfile built with no root emulation; apk(8)
can install sl(1) [sic] with no privileged system calls. On
the other hand, in Figure 1b, rpm(8) failed to change a file’s
ownership with chown(2), a privileged operation disallowed
in an unprivileged container despite being container root.

This is why we need root emulation. What if chown(2) was
not really chown(2) but rather an unprivileged substitute?

1 $ fakeroot ./fakeroot.sh
2 + touch _file
3 + chown nobody _file
4 + mknod _dev c 1 3
5 + ls -lh _⁎
6 crw-r----- 1 root root 1, 3 Feb 10 18:09 _dev
7 -rw-r----- 1 nobody root 0 Feb 10 18:09 _file
8 $ ls -lh _⁎
9 -rw-r----- 1 reidpr reidpr 0 Feb 10 18:09 _dev

10 -rw-r----- 1 reidpr reidpr 0 Feb 10 18:09 _file

Fig. 2: Script that changes file ownership and then creates
a device file, both of which are privileged operations, under
fakeroot(1). These “succeed” because fakeroot(1) inter-
cepts the system calls and substitutes unprivileged userspace
emulations. Under fakeroot(1), ls(1) displays as expected
(device and nobody-owned file, lines 5–7) because the
stat(2) result is altered to match the prior emulations, but the
subsequent unwrapped ls(1) exposes the lies (lines 8–10).

III. RELATED WORK

Charliecloud is not the first to implement root emulation,
whether complex or simple. However, to our knowledge, in
2020 Charliecloud was the first to provide complex root emu-
lation emulation in the context of container image builders [1],
and in 2023 it was the first to provide simple emulation, as
described in this paper. Here we detail existing root emulation
work, with a focus on image build.

A. fakeroot(1)

fakeroot(1) is a program to run a command in a root-
emulated environment. It is not a perfect simulation but
rather just enough to work for its intended purpose, which
is building distribution packages, allowing “users to create
archives (tar, ar, .deb etc.) with files in them with root per-
missions/ownership” [7]. There are at least three fakeroot(1)
implementations [1, Table 1] that hook processes in two
different ways. LD_PRELOAD is a userspace mechanism that
lets fakeroot(1) intercept shared library function calls (not
syscalls); this is architecture-independent but cannot wrap stat-
ically linked executables. ptrace(2) is a kernel mechanism
that can intercept system calls (in addition to many other
things). It is architecture-dependent but can wrap statically
linked executables. We have encountered packages that one
implementation can install but others cannot.

All fakeroot(1)s maintain state in order to provide a
consistent emulated environment, e.g. so stat(2) is consistent
with prior chown(2), with a daemon and/or disk files. See
Figure 2 for an example of fakeroot(1) use.

Charliecloud was the first to implement fakeroot(1) in-
jection into container image builds. It does this by installing
fakeroot(1) into the image from package repositories of the
containerized distribution, which requires detailed configura-
tion for each supported distribution.

Figure 3 shows abbreviated output of Charliecloud in
this emulation mode: ch-image(1) detects a likely-privileged
command (apt-get(8)), installs the fakeroot package, and

127

1 $ ch-image build -t win --force=fakeroot .
2 1⁎ FROM debian:bookworm
3 2. RUN.F apt-get install -y openssh-server
4 --force=fakeroot: will use: debderiv: Debian 9+, Ub
5 --force=fakeroot: init step 1: checking: $ apt-conf
6 --force=fakeroot: init step 1: $ echo ’APT::Sandbox
7 --force=fakeroot: init step 2: checking: $ command
8 --force=fakeroot: init step 2: $ apt-get update &&
9 [...]

10 Setting up libfakeroot:amd64 (1.31-1.2) ...
11 Setting up fakeroot (1.31-1.2) ...
12 [...]
13 --force: RUN: new command: [’fakeroot’, ’/bin/sh’,
14 Reading package lists... Done
15 [...]
16 --force=fakeroot: modified 1 RUN instructions
17 grown in 2 instructions: win

Fig. 3: Charliecloud’s ch-image(1) installing OpenSSH with
auto-injected fakeroot(1). Note the complex diagnostics, in-
cluding installing a package (fakeroot) and its dependencies
that the user did not request.

then prepends “fakeroot” to RUN’s command. See our prior
paper [1] for further details on this mode.

Singularity [8], like Charliecloud, is a container implemen-
tation targeting HPC applications that supports image build.
The project forked in 2021 [9], [10]. One of the forks, App-
tainer, also supports root emulation via fakeroot(1), based on
Charliecloud’s implementation but with a key difference: the
host’s fakeroot(1) is bind-mounted into the container [11].
This trades the need to install it in the image for tighter
dependence between the host and container libc, but it does
not address the other drawbacks of fakeroot(1).

B. PRoot

Another stand-alone root emulator is PRoot, which uses
ptrace(2) to intercept system calls [12], avoiding libc com-
patibility issues and allowing the tool to wrap static exe-
cutables [13]. PRoot can in fact use seccomp filters, but for
a different purpose than Charliecloud: it is a performance
optimization that lets PRoot avoid being notified about system
calls it doesn’t need to intercept. However, the fundamental
constraints of a complex, state-maintaining tool remain.

SingularityCE [10], the other fork of Singularity, bind-
mounts the host’s proot(1) to provide root emulation for
image build, building on the lessons of fakeroot(1) by
Charliecloud and Apptainer [13] for an arguably better im-
plementation of complex root emulation.

C. fakechroot(1)

Like some fakeroot(1) implementations, fakechroot(1)
uses LD_PRELOAD to intercept libc function calls, the main
goal being to provide an unprivileged chroot(2) [14]. It also
provides a simple root emulation by substituting /bin/true
for a configurable set of executables. This is sufficient to
e.g. bootstrap a Debian distribution, but this executables-only
emulation surface is not enough for general image building.

1 void install_filter(void) {
2 struct sock_filter filter[] = {
3 // note: critical architecture code omitted
4 BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
5 offsetof(struct seccomp_data, nr)),
6 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_open, 2,0),
7 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_openat, 1,0),
8 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
9 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL_PROCESS)

10 };
11
12 struct sock_fprog prog = {
13 .len = sizeof(filter) / sizeof(filter[0]),
14 .filter = filter,
15 };
16
17 seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog);
18 }

Fig. 4: A skeleton seccomp filter to deny open(2) and
openat(2) to a process and its children. Adapted from [15].

IV. SECCOMP (FILTER MODE)

In this paper we are concerned with “filter mode” seccomp,4

introduced in Linux 3.5 in 2012 [15]. This lets a process install
a filter to manipulate the system calls of itself and its children.
This filter is a Berkeley Packet Filter (BPF)5 program run by
the kernel, and once installed it cannot be removed, i.e., it
binds program children whether they like it or not. Notably,
BPF does not have loops, so it can be verified for completion
by the kernel.

The BPF filter is run by the kernel upon each system call. It
has four inputs: (1) the system call number (not name!), which
varies by architecture; (2) the syscall’s arguments, (3) the
current architecture, which can vary even within a process,
and (4) the instruction pointer. An important limitation is that
BPF filters cannot dereference pointers. After its computation,
the filter returns the disposition of the system call, which falls
into three classes:

1) Do not execute the syscall, and one of (a) kill the thread
(Linux 3.5), (b) kill the process (4.14), (c) send SIGSYS
to the thread (3.5), or (d) return a specified errno (3.5).

2) Execute the syscall, and (e) log it first (4.14) or simply
(f) execute it normally (3.5).

3) Delegate the decision to a userspace process, either
with (g) ptrace(2) (3.5) or (h) a file descriptor (5.0),
which then chooses disposition a–f.

Figure 4 shows a BPF filter that prevents a process from
calling open(2) or openat(2), built directly as a C struct
using kernel macros, rather than e.g. libseccomp. The program
first loads the current syscall number info the accumulator
(line 4). It then compares that to the syscall numbers for
open(2) (line 5) and openat(2) (line 6); if either match, it
jumps to line 8, which directs the kernel to kill the calling
process (instead of executing the syscall). Otherwise, the

4Seccomp is short for secure computing, though its scope has expanded
considerably since naming.

5As the name implies, BPF was originally designed to manipulate network
packets but likewise has been expanded in scope.

128

program falls through to line 7 and the syscall executes
normally. Lines 11–16 install the filter program.

Several container implementations use seccomp filters.
Docker and Podman/Buildah have a filter specification fea-
ture, apparently intended as a simple allow/denylist for
syscalls [16]. distrobuilder, part of the LXC/LXD package,
has a filter configuration language that could likely implement
root emulation like Charliecloud’s, but because users “must be
root in order to run the distrobuilder tool” [17], that potential
capability is moot. Firejail is a tool to sandbox processes
using container-like technologies such as namespaces; it does
filter system calls using seccomp but not for root emula-
tion [18]. NsJail is a “light-weight process isolation tool” that
uses namespaces [19].6 It provides a seccomp configuration
language that appears flexible enough to implement root
emulation, but we are unaware of anyone having done so.

Finally and notably, Enroot is a small container runtime
that does provide a lightweight root-emulation seccomp filter
similar to Charliecloud’s: “[w]e use a seccomp filter to trap all
setuid-related syscalls, to make them succeed” [20]. However,
the filter is less complete than Charliecloud’s, and Enroot does
not provide a build capability, which is where the main root
emulation challenge lies.

V. CHARLIECLOUD’S SECCOMP FILTER

A. Filter program structure

Charliecloud’s zero-consistency root emulation installs a
seccomp filter to intercept certain privileged system calls and
fake their success. In pseudocode, our filter is:

1 if (privileged system call):
2 do nothing
3 return success

That is, from the point of view of a filtered process, these sys-
tem calls always succeed, but if the process does anything to
verify the actions requested, it will see that nothing happened.

The 29 privileged syscalls we filter fall into four classes:
1) File ownership (7 syscalls): chown(2), fchownat(2),

etc.
2) User, group, or capability manipulation (19):

setresuid(2), capset(2), etc.
3) File creation (2): mknod(2) and mknodat(2) can be

privileged or not. We examine the file type argument
before faking success (device file) or allowing the syscall
(other file types).

4) Self-test (1): kexec_load(2) reboots into a new kernel
and is unlikely to ever be needed by HPC applications,
so we use it to validate the filter after installation.

Charliecloud’s source code has a table listing the numbers
for each syscall on each of the six supported architectures.7

We translate this into a BPF program and install it with
two C functions totalling about 150 lines of code, including
comments.

6Though it resides in Google’s GitHub organization, NsJail’s readme states
that it “is NOT an official Google product” [emphasis in original].

7Some syscalls are not implemented on all architectures; for example,
arm64 lacks chown(2), relying on user-space code to translate its calls to
fchownat(2) instead.

1 $ cat Dockerfile
2 FROM alpine:3.19
3 RUN mknod _fifo p
4 RUN mknod _chardev c 1 3
5 RUN ls _⁎
6 $ ch-image build -t win .
7 1. FROM alpine:3.19
8 2. RUN.S mknod _fifo p
9 3. RUN.S mknod _chardev c 1 3

10 4. RUN.S ls _⁎
11 _fifo
12 --force=seccomp: modified 0 RUN instructions
13 grown in 4 instructions: win

Fig. 5: Successful seccomp root-emulation build of a Dock-
erfile that creates a FIFO (named pipe) and character device,
one that Docker itself is unable to build. Importantly, note that
while the build succeeded, the device file _chardev was not
actually created.

B. Image build example

Figure 5 shows a successful Charliecloud build using the
zero-consistency root emulation mode. We highlight this im-
age because it creates a device file — an operation that
is absolutely inappropriate for unprivileged users because it
allows direct hardware access. Docker cannot build this image,
failing eagerly at the device file creation attempt. Charliecloud
is instead lazy: any later attempt to access the non-existent
device will be prevented by the kernel. This fits our use case
because all device files HPC users need should already exist,
i.e., we assume the device file here is being created by some
incidental dependency, rather than something the application
actually cares about. Therefore, wait until an actual attempt at
violating the security boundary occurs before failing.

Specifically, “mknod _chardev c 1 3” succeeded (line 5).
We see on lines 6–7, however, that no file of any type called
_chardev was created. In our experience, neither package
managers nor HPC applications are affected by inconsistencies
like these.

To understand the filter in more detail, we can examine
a disassembly of the BPF filter, provided by the Ruby gem
seccomp-tools and shown in part in Figure 6. We can use
this to trace program flow of the two mknod(2) calls.

The program first loads the architecture code into the
accumulator (instruction 000), then compares it to arm64
(001). For this example, we are on x86-64, so the program
repeatedly tests architectures until arriving at instruction 128,
where it finally matches and we fall through to loading the
system call number (129).8 We then enter a jump table for
system calls; most of these analyze the call no further and jump
directly to instruction 149, which returns an “error” of zero
instead of executing the syscall, i.e., fake do-nothing success.
If the syscall is not one we intercept, we fall through the whole
table and finish at instruction 148, which allows the syscall to
execute normally.

8This program does have optimizations available. For example, we could
avoid the repeated architecture loads at the cost of slightly more complex
arithmetic during translation.

129

000 A = arch
001 if (A != ARCH_AARCH64) goto 19
[...]
019 A = arch
020 if (A != 0x40000028) goto 52
[... goto 85 ... 106 ... 127 ...]
127 A = arch
128 if (A != ARCH_X86_64) goto 148
129 A = sys_number
130 if (A == capset) goto 149
131 if (A == chown) goto 149
[... other system calls ...]
145 if (A == mknod) goto 150
146 if (A == mknodat) goto 0152
147 goto 0148
148 return ALLOW
149 return ERRNO(0)
150 A = args[1]
151 goto 0153
152 A = args[2]
153 A &= 0xf000
154 if (A == 8192) goto 0157
155 if (A == 24576) goto 0157
156 return ALLOW
157 return ERRNO(0)

Fig. 6: Excerpt of Charliecloud’s seccomp program relevant to
Figure 5, disassembled using the seccomp-tools Ruby gem.

In this case, the syscall is mknod(2), so we jump from
instruction 145 to 150, which loads the second argument of the
system call, which is a constant specifying what type of file
to created. Instructions 153–155 test whether it’s a character
(8192 == S_IFCHR) or block (24576 == S_IFBLK) device; if
so, we fake success on instruction 157; if not, the system call
proceeds on instruction 156.

C. Assumption failure: Debian’s apt(8) is more careful

An exception to the assumption that package managers don’t
care about consistency is Debian’s apt(8), which by default
drops privileges for downloading packages over HTTP(S) and
also verifies that they were dropped correctly. This validation
fails under our seccomp filter. We work around the problem
awkwardly by detecting apt(8) and apt-get(8) in RUN
instructions and injecting -o APT::Sandbox::User=root into
their command lines, which disables privilege dropping for
download.

D. Performance evaluation

To properly evaluate the utility of our seccomp-based root
emulation, users and sysadmins will need to understand its
performance trade-offs, if any.

Using Charliecloud commit ac2190f, we built ten images
from Charliecloud’s examples and test suite with each of
Charliecloud’s three root emulation modes (none, fakeroot, and
seccomp) as well as Docker 25.0.1 privileged (Type I) build,
all with build cache turned off. We used a virtual machine in
LANL’s VMware vSphere cloud with 12 Intel Xeon cores and
32.0 GiB of RAM. Storage was a 4.00 TiB BTRFS filesystem

backed by vSphere block devices. We ran each build 13 times
and report median build times.

Table I summarizes our results. Mean speedup of seccomp
mode over fakeroot was 1.12, no root emulation 1.02, and
Docker 1.05. Excluding image mpihello, detailed below,
speedup over fakeroot was 1.13, no root emulation 1.03,
and Docker 1.14. That is, (1) Charliecloud’s seccomp-based
root emulation mode appears as fast or faster than a mature
privileged alternative (Docker), and (2) directly comparable
builds with and without seccomp filters, i.e. Charliecloud’s
none vs. seccomp, show that the seccomp filter imposes no
meaningful performance penalty.

There is one image that only seccomp mode can build.
Similarly to Figure 5, seccomp uses mknod(2) to create a
device file; this is rejected by the other three modes. That
is, Charliecloud’s seccomp root emulation mode is both com-
parably performant and more capable.

The MPI-related images build on each other. The OpenMPI
base image sequence is almalinux_8ch → libfabric →
openmpi; lammps and mpihello are then based on openmpi.
This raises some quirks in the experiment. First, one would
expect that because none mode failed to build almalinux_8ch,
the beginning of the chain, the other four MPI images should
also fail to build, but they succeed. This is because when
Charliecloud’s cache is disabled, an image in the process of
building is simply abandoned in place if the build fails, and
then later builds with that as base image copy the partially
built image as a starting point without validation. Apparently
in this case, the failed base image was good enough for its
descendants to build, though we did not test running. Second,
this full copy of the base image explains the bad performance
of Charliecloud compared to Docker on mpihello. This is a
small Hello World application, so Charliecloud spends most
of its build time copying the base image, rather than simply
setting up an overlay like Docker. We expect enabling the
cache would alleviate this deficit.

VI. DISCUSSION

We present a novel root emulation mode based on the
observation that distribution package managers and similar
tools rarely need their privileged requests to be actually carried
out (for HPC application container image build), but rather
are satisfied to be simply told what they want to hear. We
have implemented a seccomp filter for some privileged system
calls that, instead of executing the syscall, does nothing and
returns success to the userspace program. While limited to
identity and files, this simple, zero-consistency root emulation
performs well and is sufficient to build all the container images
we tested, including one that Docker could not.

We do know of exceptions — builds that call
unminimize(8) or trigger certain systemd scripts —
but these both seem to be implementation hassles rather than
something fundamental about our approach.

Alternately, one can use a complex, consistent root emula-
tion using fakeroot(1) or proot(1). Simple and complex
both allow image build with a fully unprivileged Type III
container implementation, a critical requirement for HPC

130

image description Docker none fakeroot seccomp

distroless Python interpreter plus a hello world program 1.4 0.99 0.93 1.1
quick Alpine 3.17 base plus one package and dependencies 2.8 2.1 2.6 1.7
seccomp Alpine 3.17 base plus C program that exercises mknod(2) 3.4
debian_11ch Debian 11 base plus one package and dependencies 9.1 13 8.9
mpihello Hello World MPI C program 3.1 9.9 10 9.8
almalinux_8ch AlmaLinux 8 base plus various OS and compiled packages 150 150 130
nvidia Ubuntu 20.04 plus CUDA from nVidia’s repo; two stages 220 220 210
lammps LAMMPS MPI-based MD code 320 340 330 330
libfabric libfabric and various related libraries 320 310 340 330
openmpi OpenMPI 4.1.4 350 340 340 340

TABLE I: Time in seconds to build each of the ten test images under Docker and Charliecloud’s three root emulation modes,
to two significant figures. Cell color indicates performance relative to the seccomp mode: red is faster while blue is slower, i.e.
Charliecloud’s seccomp mode prefers blue. Missing numbers mean the build could not complete. Seccomp mode is comparable
to or faster than the alternatives, with one exception (mpihello under Docker) discussed in the text.

application containers. In our view, however, the simple,
inconsistent seccomp method of root emulation has a number
of advantages:

1) Overhead. The seccomp method imposes a relatively
light overhead [21], [22] of its filter on every system
call (not just those filtered), while the consistent method
requires user-space emulation of system calls, making an
extra program and possibly its shared libraries available to
the container build, and state maintenance using a daemon
process. In the case of Charliecloud, the fakeroot(1)-
based root emulation imposes around 10–12% perfor-
mance penalty.

2) Simplicity. The seccomp method has no user-space com-
ponent and does nothing to actually emulate any system
calls; further, “emulation” is complete once the filter is
installed (though see apt(8) workaround above). Also,
because it does not maintain state, the seccomp method
intercepts fewer system calls.

3) Compatibility. The seccomp method is agnostic to libc
and static/dynamic linking, and mostly agnostic to dis-
tribution, the exception being apt(8) above, though
these properties are shared by PRoot and fakeroot(1)
implementations based on ptrace(2). Fewer intercepted
system calls and no syscalls actually emulated has com-
patibility benefit as well.

On the other hand, the complex emulation is consistent
on dimensions relevant to package management: a process
under emulation can make changes to identity or privileged file
metadata and have the emulated changes reflected back later.
When this does matter for image build, simpler workarounds
are available, e.g. for apt(8) above.

Future work includes (1) an optional wider set of emulated
syscalls, such as setxattr(2), which may allow systemd to
be installed;9 (2) evaluate adding just a little consistency,
for user and groups IDs only, to remove the workaround
for apt(8) explained above; (3) identify and characterize
images the approach does not build correctly, and fix it to
the extent practical; (4) deeper analysis of failure modes, e.g.
in Figure 1b it’s actually cpio(1) failing, not rpm(8); and
(5) more detailed performance testing.

9You might ask: “Why do I want systemd in my containers?” Indeed, you
probably don’t, but it tends to be pulled in as a dependency.

REFERENCES

[1] R. Priedhorsky, R. S. Canon, T. Randles, and A. J. Younge, “Minimizing
privilege for building HPC containers,” in Proc. SC, Nov. 2021.

[2] J. W. Eaton, R. Faith, G. WIlford, F. Polacco, and C. Waton, “man(1),”
Man page, Sep. 2023. [Online]. Available: https://man7.org/linux/man-
pages/man1/man.1.html

[3] R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged containers
for user-defined software stacks in HPC,” in Supercomputing, 2017.

[4] P. Moore and others, “libseccomp,” The libseccomp Project, Apr. 2024.
[Online]. Available: https://github.com/seccomp/libseccomp

[5] M. Kerrisk, “Namespaces in operation, part 1: Namespaces overview,”
Linux Weekly News, Jan. 2013. [Online]. Available: https://lwn.net/
Articles/531114/

[6] ——, “Namespaces in operation, part 5: User namespaces,” Linux
Weekly News, Feb. 2013. [Online]. Available: https://lwn.net/Articles/
532593/

[7] J. Dassen, j. witteveen, and C. Adams, “fakeroot(1),” Man page,
Aug. 2021. [Online]. Available: https://manpages.debian.org/bullseye/
fakeroot/fakeroot.1.en.html

[8] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PLOS ONE, vol. 12, no. 5, May
2017.

[9] Apptainer project, “Community announcement,” Nov. 2021. [On-
line]. Available: https://apptainer.org/news/community-announcement-
20211130/

[10] Sylabs Inc., “SingularityCE is Singularity,” Jun. 2022. [Online].
Available: https://sylabs.io/2022/06/singularityce-is-singularity/

[11] D. Dykstra, “Apptainer without Setuid,” Aug. 2022.
[12] C. Vincent et al., “PRoot — chroot, mount –bind, and binfmt_misc

without privilege/setup,” Jan. 2022. [Online]. Available: https://proot-
me.github.io/

[13] D. Trudgian, “proot based non-root / non –fakeroot builds,” Aug. 2022.
[Online]. Available: https://github.com/sylabs/singularity/issues/880

[14] P. Roszatycki, “fakechroot,” Mar. 2019. [Online]. Available: https:
//github.com/dex4er/fakechroot/blob/2.20.1/man/fakechroot.pod

[15] M. Kerrisk, “Seccomp,” Jan. 2024. [Online]. Available: https://man7.
org/training/download/splc_seccomp_slides-mkerrisk-man7.org.pdf

[16] Docker Inc., “Seccomp security profiles for Docker,” May 2023.
[Online]. Available: https://docs.docker.com/engine/security/seccomp/

[17] distrobuilder contributors, “distrobuilder documentation,” Apr. 2023.
[Online]. Available: https://linuxcontainers.org/distrobuilder/docs/latest/

[18] “Features,” Dec. 2015. [Online]. Available: https://firejail.wordpress.
com/features-3

[19] R. Swiecki et al., “nsjail,” Apr. 2024. [Online]. Available: https:
//github.com/google/nsjail

[20] F. Abecassis and J. Calmels, “Distributed HPC applications with
unprivileged containers,” Feb. 2020. [Online]. Available: https:
//archive.fosdem.org/2020/schedule/event/containers_hpc_unprivileged/

[21] M. Larabel, “Seccomp filters get a very nice speed-up with Linux 5.11,”
Dec. 2020. [Online]. Available: https://www.phoronix.com/news/Linux-
5.11-SECCOMP-Performance

[22] Zatoichi, “Zatoichi’s Engineering Blog,” Nov. 2017. [Online]. Available:
https://zatoichi-engineer.github.io/2017/11/06/seccomp-bpf.html

131

APPENDIX A
REPRODUCIBILITY

A. Software

1) Charliecloud commit ac2190f.10

2) Docker 25.0.1. Storage path will need to be configured in /etc/docker/daemon.json.
3) seccomp-tools Ruby gem version 1.6.1.
4) Python environment described in Listing 1. We used micromamba to install it.

B. Figures

Most of the figures are terminal transcripts using the input given. Figures 2 and 4 are self-contained. Figure 6 is the result
of the command “seccomp-tools dump -c ’ch-run --seccomp alpine:3.19 -- true’”.

C. Performance experiment

The workflow uses two scripts, buildem (Listing 2) and plotem (Listing 3). Several paths within the scripts will need to
be changed to match your system. Place them in a new directory; we’ll refer to it as perf-eval.

Input Dockerfiles are from the Charliecloud source code. Several will need auxiliary files, also from Charliecloud. Place
them in perf-eval/examples. Also create an empty directory perf-eval/out. See Listing 4.

Change directory to perf-eval and execute ./buildem foo.csv; this took 60–90 minutes for us. We ran the 13 iterations
described in a Bash seq(1) loop overnight.

Once this is complete, move the CSV files into subdirectory out. Then run ./plotem, which analyzes the data (just a few
seconds) and produces a LaTeX file out.tex that is included into the paper to produce Table I. It also prints the corresponding
dataframes on stdout, which may be easier to compare to the paper.

Listing 1: environment.yml
1 name: spe
2 channels:
3 - conda-forge
4 - nodefaults
5 dependencies:
6 # Python version
7 - python==3.12.5
8 # Conda packages
9 - freezegun=1.5.0

10 - matplotlib==3.9.1
11 - pandas==2.2.2
12 - seaborn==0.13.2
13 # Non-explicit dependencies

Listing 2: buildem
1 #!/usr/bin/env python3
2
3 import csv
4 import datetime
5 import glob
6 import os.path
7 import subprocess
8 import sys
9

10
11 def main():
12 out_path = sys.argv[1]
13 if (len(sys.argv) > 2):
14 df_paths = sys.argv[2:]
15 else:
16 df_paths = sorted(glob.glob("⁎⁎/⁎.dockerfile", recursive=True)
17 + glob.glob("⁎⁎/Dockerfile⁎", recursive=True))
18
19 out = Out_CSV(out_path)
20 INFO("⁎⁎⁎ opened output: %s" % (out))

10https://github.com/hpc/charliecloud/tree/ac2190f

132

21
22 for df_path in df_paths:
23 df = Dockerfile(df_path)
24 INFO("⁎⁎⁎ dockerfile: %s" % df)
25 for name in globals():
26 if (name[:2] == "T_"):
27 i = globals()[name](df)
28 INFO("⁎⁎ builder: %s" % i)
29 out.write_build(i, ⁎i.build())
30
31 out.close()
32 INFO("⁎⁎⁎ done")
33
34
35 class Dockerfile:
36
37 __slots__ = ("path",
38 "name")
39
40 def __init__(self, path):
41 self.path = path
42 cs = self.path.split("/")
43 if (cs[-1] == "Dockerfile"):
44 self.name = cs[-2]
45 else:
46 self.name = os.path.splitext(cs[-1])[1][1:]
47
48 def __str__(self):
49 return "%s@%s" % (self.name, self.path)
50
51 @property
52 def context(self):
53 return os.path.split(self.path)[0]
54
55
56 class Out_CSV:
57
58 def __init__(self, path):
59 self.path = path
60 self.fp = open(path, "a", newline="")
61 self.csv = csv.writer(self.fp)
62
63 def close(self):
64 self.fp.close()
65
66 def write_build(self, test, exit_code, t_build):
67 INFO("writing result: %s, exit %d" % (t_build, exit_code))
68 time_str = datetime.datetime.now().isoformat(timespec="milliseconds")
69 self.csv.writerow([time_str, test.builder_name, test.df.name,
70 exit_code, t_build.total_seconds()])
71 self.fp.flush()
72
73 def __str__(self):
74 return self.path
75
76
77 class Test:
78
79 __slots__ = ("builder_name",
80 "df")
81
82 def __init__(self, df):
83 self.df = df
84
85 def __str__(self):
86 return "%s: %s" % (self.builder_name, self.df)
87
88 def build(self):
89 INFO("executing: %s" % self.cmd)

133

90 t_start = datetime.datetime.now()
91 cp = subprocess.run(self.cmd)
92 t_end = datetime.datetime.now()
93 return (cp.returncode, t_end - t_start)
94
95
96 class Charliecloud(Test):
97
98 __slots__ = ("force_mode")
99

100 @property
101 def cmd(self):
102 return ["ch-image", "build",
103 "--storage", "/scratch/reidpr.ch_" + self.builder_name,
104 "--no-cache", "--force", self.force_mode,
105 "-t", self.df.name, "-f", self.df.path, self.df.context]
106
107 class T_Charliecloud_None(Charliecloud):
108 builder_name = "ch.none"
109 force_mode = "none"
110
111 class T_Charliecloud_Fakeroot(Charliecloud):
112 builder_name = "ch.fakr"
113 force_mode = "fakeroot"
114
115 class T_Charliecloud_Seccomp(Charliecloud):
116 builder_name = "ch.seco"
117 force_mode = "seccomp"
118
119 class T_Docker(Test):
120
121 builder_name = "docker"
122
123 @property
124 def cmd(self):
125 return ["sudo", "docker", "build",
126 "--no-cache",
127 "-t", self.df.name, "-f", self.df.path, self.df.context]
128
129 def INFO(msg):
130 if (sys.stderr.isatty()):
131 color_start = "\033[38;5;207m"
132 color_stop = "\033[0m"
133 else:
134 color_start = ""
135 color_stop = ""
136 time_str = datetime.datetime.now().strftime("%m/%d %H:%M:%S.%f")[:-3]
137 print("%s%s %s%s" % (color_start, time_str, msg, color_stop),
138 file=sys.stderr)
139
140
141 if (__name__ == "__main__"):
142 main()

Listing 3: plotem
1 #!/usr/bin/env python3
2
3 import glob
4 import os
5 import math
6
7 import freezegun
8 import matplotlib as mpl
9 import pandas as pd

10 import seaborn as sns
11
12 # Configure.
13 pd.options.mode.copy_on_write = True

134

14 #pd.options.display.max_columns = None
15
16 # Reproducible output.
17 os.environ["SOURCE_DATE_EPOCH"] = "0"
18 FREEZE_TIME = "1994-03-01"
19 freezer = freezegun.freeze_time(FREEZE_TIME)
20 freezer.start()
21
22 # Configure plots.
23
24 # Load the data.
25 print("loading data ...")
26 dfs = list()
27 for path in glob.glob("./out/⁎.csv",):
28 df = pd.read_csv(path,
29 names=["t_end", "builder", "image", "fail", "t"],
30 parse_dates=["t_end"],
31 index_col=["image", "builder", "t_end"])
32 dfs.append(df)
33 #print(df)
34 builds_all = pd.concat(dfs)
35 print("loaded %d builds" % len(builds_all))
36
37 # delete builds that failed
38 builds = builds_all[builds_all["fail"] == 0].drop(columns=["fail"])
39 print("kept %d builds that succeeded" % len(builds))
40
41 # compute median and tidy
42 median = builds.groupby(["image", "builder"]) \
43 .median() \
44 .unstack() \
45 .droplevel(0, axis="columns") \
46 .sort_values("ch.seco") \
47 .reindex(columns=["docker", "ch.none", "ch.fakr", "ch.seco"])
48 print(median)
49
50 # compute normalized median
51 median_norm = median.div(median.loc[:, "ch.seco"], axis="rows")
52 print(median_norm)
53
54 # mean speedup of seccomp
55 print("MEAN SPEEDUP:")
56 print(median_norm.mean())
57 print("MEAN SPEEDUP WITHOUT mpihello:") # which is weird
58 print(median_norm.drop(index=["mpihello"]).mean())
59
60 # add description column
61 median.insert(0, "description",
62 ["Python interpreter plus a hello world program",
63 "Alpine 3.17 base plus one package and dependencies",
64 "Alpine 3.17 base plus C program that exercises mknod(2)",
65 "Debian 11 base plus one package and dependencies",
66 "Hello World MPI C program",
67 "AlmaLinux 8 base plus various OS and compiled packages",
68 "Ubuntu 20.04 plus CUDA from nVidia’s repo; two stages",
69 "LAMMPS MPI-based MD code",
70 "libfabric and various related libraries",
71 "OpenMPI 4.1.4"])
72 #print(median)
73
74 # dump LaTeX table
75 norm=mpl.colors.Normalize(-1, 1)
76 cmap=mpl.colors.LinearSegmentedColormap.from_list(
77 "a", sns.color_palette("RdBu", 13)[2:-2])#.reversed()
78 bg_map = mpl.cm.ScalarMappable(norm=norm, cmap=cmap)
79 def P(text):
80 print(text, file=fp)
81 def BG(f):
82 return "%s,%s,%s" % bg_map.to_rgba(math.log2(f))[:3]

135

83 with open("out.tex", "wt") as fp:
84 # note: hard to \input body of table only; see:
85 # https://tex.stackexchange.com/questions/641441
86 # https://stackoverflow.com/questions/26212089
87 P(r"""\begin{tabular}{llSSSS}
88 \toprule
89 \multicolumn{1}{c}{\textbf{image}}
90 & \multicolumn{1}{c}{\textbf{description}}
91 & \textbf{Docker}
92 & \textbf{none}
93 & \textbf{fakeroot}
94 & \textbf{seccomp}
95 \\
96 \midrule""")
97 for i in range(median.shape[0]): # rows
98 row = median.iloc[i, :]
99 P(r"\code{%s} & %s" % (row.name, row.iat[0]))

100 for j in range(1, median.shape[1]): # columns
101 t = row.iat[j]
102 t_norm = median_norm.iat[i, j-1]
103 if (math.isnan(t)):
104 P(r"&")
105 else:
106 P(r"& \cellcolor[rgb]{%s} %f" % (BG(t_norm), t))
107 P(r"\\")
108 P(r"\bottomrule")
109 P(r"\end{tabular}")

Listing 4: File locations
1 $ ls -R perf-eval
2 perf-eval:
3 buildem examples out
4
5 perf-eval/examples:
6 distroless Dockerfile.libfabric Dockerfile.quick seccomp
7 Dockerfile.almalinux_8ch Dockerfile.nvidia lammps
8 Dockerfile.debian_11ch Dockerfile.openmpi mpihello
9

10 perf-eval/examples/distroless:
11 Dockerfile hello.py
12
13 perf-eval/examples/lammps:
14 Dockerfile melt.patch simple.patch
15
16 perf-eval/examples/mpihello:
17 Dockerfile hello.c Makefile slurm.sh
18
19 perf-eval/examples/seccomp:
20 Dockerfile mknods.c

136

