Compiler-Aided Correctness Checking of
CUDA-Aware MPI Applications

Alexander Hiick*, Tim Ziegler*, Simon Schwitanski®, Joachim Jenke' and Christian Bischof*
*Technical University Darmstadt, Darmstadt, Germany
{alexander.hueck, christian.bischof} @tu-darmstadt.de
tim.ziegler @stud.tu-darmstadt.de
TRWTH Aachen University, Aachen, Germany
{schwitanski, jenke} @itc.rwth-aachen.de

Abstract—Hybrid MPI + X models, combining the Message
Passing Interface (MPI) with node-level parallel programming
models, increase complexity and introduce additional correctness
issues. This work addresses the challenges of detecting data
races in hybrid CUDA-aware MPI applications due to the
asynchronous and non-blocking nature of CUDA and MPI APIs.
We introduce CuSan, an LLVM compiler extension, and runtime
that tracks CUDA-specific concurrency, synchronization, and
memory access semantics. We integrate CuSan with MUST, a
dynamic MPI correctness tool, and ThreadSanitizer (TSan), a
thread-level data race detector. MUST with TSan can already
detect concurrency issues for multi-threaded MPI codes. Together
with CuSan, these tools allow for comprehensive correctness
checking of concurrency issues in CUDA-aware MPI applications.
Our evaluation of two mini-apps reveals runtime overhead of
CuSan ranging from 6x to 36x, depending on the amount
of memory tracked by TSan, compared to the uninstrumented
version. Memory overhead consistently remains under 1.8x.
CuSan is available at https://github.com/tudasc/cusan.

Index Terms—MPI, Correctness, CUDA, Data Race, Thread-
Sanitizer, LLVM

I. INTRODUCTION

For efficiency, the Message Passing Interface (MPI, [1]) is
often combined with node-level parallel programming mod-
els [2], [3]. This is commonly referred to as the hybrid MPI +
X model, where X typically stands for OpenMP but can also
refer to, e.g., CUDA [4].

However, MPI defines a low-level interface that is error-
prone. Some dormant MPI bugs have only been uncovered
after years [5], [6]. The hybrid model further increases code
complexity. The combination of two programming paradigms
poses correctness issues stemming from MPI [7], [8] and
from, e.g., OpenMP [9], [10], resulting in a new set of
issues [11]. Data races, such as those caused by OpenMP
threads accessing memory during MPI communication, occur
when these concurrent executors perform conflicting memory
accesses (at least one being a write) without proper synchro-
nization. To effectively detect such data races, MPI correctness
tools [5], [6], [12]-[14] must have a holistic understanding of
the program’s behavior, observing all memory accesses, syn-
chronization mechanisms, and concurrency semantics across
all levels of parallelism. Tools that only observe a subset,
such as by only intercepting MPI calls during runtime, will
find some issues but not all [11], [15].
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In this work, we present CuSan, a tool designed to ad-
dress the inherent challenges of data race detection in hybrid
CUDA-aware MPI applications [16]. While CUDA-aware MPI
libraries [17], [18] streamline communication by allowing
direct use of device pointers (eliminating the need for explicit
host-device memory transfers), they introduce complexities in
ensuring correct synchronization. The asynchronous APIs of
both CUDA and non-blocking MPI communication places the
burden on users to manually manage data dependencies and
synchronize operations [19], a process that is error-prone and
can lead to data races. CuSan builds upon the capabilities
of two existing correctness tools, namely (i) ThreadSani-
tizer (TSan, [20], [21]), a dynamic data race detector for
shared-memory programs, and (ii)) MUST [13], a dynamic
MPI correctness checker, which was already integrated with
TSan [22]. We extend TSan to understand the synchronization
semantics of CUDA operations by using TSan’s annotation
API, to ultimately facilitate the data race analysis in the context
of the combined semantics of CUDA and MPIL.

CuSan instruments CUDA-related code to track relevant
memory accesses and synchronization events, exposing this
information to TSan. MUST provides additional information
about MPI (non-blocking) operations, allowing TSan to rea-
son about the overall synchronization state of the program
and detect unsynchronized access to device memory. This
approach enables the detection of data races that would be
missed by tools focused only on MPI or CUDA. Additionally,
CuSan depends on TypeART, another tool used by MUST, to
track memory allocations and their associated datatypes [23]-
[25]. We extend TypeART to monitor CUDA-related memory
allocations, providing CuSan with the necessary data length
information to expose device memory access patterns to TSan.
In summary, we make the following key contributions:

o Development of CuSan, an LLVM compiler extension and
runtime, for analyzing and instrumenting CUDA codes to
track CUDA domain-specific memory accesses and synchro-
nization semantics.

« Extension of TypeART to track device memory allocations
to facilitate analysis of memory access semantics.

o Integration of CuSan with MUST, TypeART and TSan, to
combine MPI semantics for data race analysis of CUDA-



aware MPI applications.

The rest of the paper is structured as follows. Section II dis-
cusses the tools required to implement our CUDA-aware MPI
sanitizer. In particular, we discuss (i) TSan, (ii) MUST and its
integration with TSan for detecting concurrency issues in MPI,
and (iii) TypeART, a tool for tracking memory allocations
for MPI datatype safety. Section III introduces the CUDA-
aware MPI hybrid model and discusses its synchronization
requirements. Section IV covers CuSan’s implementation. In
Section V, we evaluate our tool with two mini-apps us-
ing CUDA-aware MPI. Section VI discusses the results and
presents future work. Section VII concludes our work.

II. BACKGROUND

This section gives a brief overview of the required tooling
to build a CUDA-aware MPI sanitizer that integrates with the
MPI correctness checker MUST.

TSan and the enabling of its API for data race detec-
tion w.r.t. CUDA are discussed in Section II-A. MUST and
its ThreadSanitizer integration is discussed in Section II-B.
Finally, the TypeART tool for tracking type information of
memory allocations is discussed in Section II-C.

A. ThreadSanitizer

ThreadSanitizer (TSan, [20]) is packaged with Clang [21]
and consists of a compiler pass and an analysis runtime library
for thread-level data race analysis. The compiler pass adds
calls to the runtime library to track memory accesses and
function entry/exit (for stack traces). The runtime library uses
shadow memory to track memory access patterns and detect
potential data races. Using function interception for various
pthread and C++ threading functions, the runtime tracks thread
synchronization. This allows TSan to establish happens-before
relationships for data race analysis. A data race occurs when
two conflicting operations on the same memory location, such
as a read and a write, are executed concurrently without any
synchronization. A happens-before relationship between such
two operations ensures that one operation is guaranteed to
complete before the other begins. In that context, for any
new memory access, TSan checks the shadow memory for
potentially conflicting memory accesses. The happens-before
relation with the previous memory access is determined by
comparing the logical time of the memory access with the
logical time recorded for the last synchronization with the
accessing thread.

TSan provides an annotation API for users to man-
ually expose unknown synchronization or access seman-
tics to keep the internal bookkeeping accurate. Any
synchronization can be annotated as a pair consist-
ing of a signal (AnnotateHappensBefore) and a wait
(AnnotateHappensAfter), respectively also termed release
and acquire. To build the connection, the annotation functions
accept a memory address as a key argument. TSan uses this
key to identify the synchronization clock to store or load the
vector of logical clocks. Likewise, memory accesses can be
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manually annotated with, e.g., tsan_write_range, passing
a pointer and its access length (analogous for read operations).

Finally, TSan provides the abstraction of fibers to model
user-defined concurrency [26]. MUST [22] and Archer [27]
have adopted this abstraction to model the concurrency of
OpenMP tasks and non-blocking MPI communication. Fibers
can be instantiated by the user. Using TSan API calls, the
fiber context of the executing OS thread can then be explicitly
switched during the execution, modelling the concurrency of
non-blocking MPI communication with MPI-specific fibers.
Such fiber switches do not imply a synchronization.

B. MUST

For detecting MPI-related concurrency issues, MUST [13]
uses TSan to observe memory operations of the application
and combines them with the semantics of MPI calls.

a) ThreadSanitizer Integration: MPI communication
presents a challenge for TSan due to two key factors: (i) De-
velopers link against pre-compiled MPI libraries, making it
impossible to instrument them with TSan’s compiler pass.
(i1) In typical HPC environments, network adapters can di-
rectly access communication buffers via DMA (Direct Mem-
ory Access), bypassing the normal load/store instructions that
TSan would usually monitor.

To overcome these limitations, MUST takes the following
approach. While intercepting an MPI communication call,
MUST annotates the respective memory access semantics
of MPI within TSan. For multi-threaded programs, these
annotations are sufficient for TSan to detect data races between
MPI calls or between MPI calls and local memory accesses
by different threads.

b) Non-Blocking MPI Communication: Non-blocking
MPI communication is typically used to overlap communi-
cation with computation for better overall performance. In
these cases, data races might occur even within the same
thread. MUST handles such races by creating a TSan fiber per
non-blocking MPI communication call, annotating the buffer
accesses to this fiber and synchronizing the fiber during the
completion call, see Fig. 1

(1) @ Host Thread
—_— I
MPI_lrecv(buf, ..., &req); MPI Irecv(buf, ..., &req)
compute(buf[1...n]); Fiber

MPI_Wait(&req, ...); compute(buf)
Write(buf) «....... p

| Read/Write(buf)
44—

Concurrent Region
of MPI_Irecv

<) Datarace

Wait(req)

Fig. 1. (1) Non-blocking MPI calls can create data races if the user
accesses a buffer between the initiation (Irecv) and completion (Wait) of
a communication. (2) MUST models the concurrency using TSan fibers,
enabling detection of data races within these inherently concurrent region.



C. TypeART

To detect MPI datatype-related issues, TypeART [23]-[25],
an LLVM compiler extension, allows MUST to query type
information of the type-less void+ buffers passed to MPI calls.

MUST’s TypeART integration is illustrated in Fig. 2. Con-
sider the MPI function MPI_Send (const wvoid+ buf, int
MPI_Datatype type, ...). Without TypeART,
MUST can neither check if the buffer arguments memory
layout is compatible with that of the declared MPI dataype
nor check if the count argument exceeds the allocation size.

count,

(Hybrid) MPI Application \
gAIIIoc Frlee

Intercepted
MPI Calls

- Serialized

o

Compile-time | TypeART Address
el Runtime Runtime
Type Info

Fig. 2. TypeART as an extension to MUST, adapted from [24]. During
compilation, TypeART instruments memory allocations and extracts their
type information (1). A runtime tracks these allocation-related events and
stores information (type, runtime allocation size) in a lookup table (2). For
every intercepted MPI call (3), MUST queries the address of the type-less
buffer using TypeART’s runtime (4). The resulting allocation information is
compared to the MPI datatype passed to the MPI call.

Compiler Extension: The compiler pass statically collects
MPI-relevant memory allocations (heap, stack and globals)
in the target code’s LLVM intermediate representation (IR).
Subsequently, our pass instruments these allocations and se-
rializes the allocated type layouts. Each callback’s arguments
are (i) the allocated memory address, (ii) the runtime allocation
extent, and (iii) a generated unique type id, identifying the type
(layout) of the allocation. Memory de-allocation operations
are tracked to keep the allocation metadata consistent with the
program state.

IT1I. CUDA-AWARE MPI

We introduce the relevant CUDA semantics for this work
and discuss how these apply to CUDA-aware MPI.

The CUDA API allows for asynchronous operations, where
kernel launches return control immediately to the host while
execution happens on the device. Concurrency is expressed
using CUDA streams, each enqueuing a sequence of op-
erations (FIFO order), such as kernels, see Section III-A.
Synchronization is required to ensure completion of CUDA
operations w.r.t. the host. This can be achieved through explicit
synchronization calls, see Section III-B1, or implicit behavior
(such as device memory transfer), see Section III-B2.

Currently, CUDA-aware MPI libraries [17], [18] are not
integrated with these CUDA stream semantics. Hence, these
libraries only facilitate communication of device pointers
without the need for host-related memory transfers. To express
a data dependence between a stream and an MPI call, hence,
requires explicit synchronization by the user. This applies to
both non-blocking MPI or asynchronous CUDA calls. We
discuss these issues in Section III-D.
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A. CUDA Stream Concurrency Semantics

Streams allow for concurrent execution of device operations
to maximize GPU utilization. They are created and managed
by the user. By default, there is no automatic synchronization
between different streams. A special default stream always
exists. It has specific synchronization behavior when used
alongside user-defined streams, see [28, Section 3] [29]. Mix-
ing the default stream with user-defined streams creates logical
barriers that impact the order of kernel execution, see Fig. 3:
(i) Kernels on the default stream block subsequent kernels on
other streams. (ii) Kernels on other streams must complete
before kernels on the default stream begin. This behavior can
be circumvented by explicitly marking streams non-blocking
on creation time, or exclusively using user-defined streams in
a code. If not otherwise specified, the default stream is used
for kernels.

P Logical Barriers

Stream 1 -‘ K1
jo)
9
% |Def. Stream | Ko
Q
Stream 2 K2

Host

Sync pe«| MPI_Call |-+
Issue Ordering

Fig. 3. Default stream semantic example. KO waits on K1 completion, and K2
waits on KO completion. If a user synchronizes on a stream before an MPI call,
we must consider legacy stream semantics and the particular synchronization
target. For instance, after a host synchronization on K2, K1 and KO also
completed.

B. CUDA Synchronization Semantics

Synchronization w.r.t. the host can be ensured with explicit
synchronization API calls or implicit synchronization points,
such as memory transfers. Whether the latter is synchronous
w.r.t. the host depends on several factors, such as where the
memory resides and which direction the memory is moved to.

1) Explicit Synchronization Calls: Explicit synchronization
routines work on different granularities:

e cudaDeviceSynchronize: Blocks host until all streams
completed on a CUDA device.

e cudaStreamSynchronize: Blocks
mands on a stream completed.

e cudaEventSynchronize: Blocks host until the specified
event on a stream occured. CUDA events are markers on a
stream that can capture completion of certain events on that
stream. They are explicitly placed by the user at a specific
point on a target stream and allow fine-grained control over
execution ordering.

host until all com-

Additionally, cudaStreamWaitEvent is used to synchro-
nize between streams based on some event. Further,
cudaStreamQuery can be used to query the completion status
of a stream. Hence, this call can potentially be used as a
blocking ‘busy-wait’, looping until it succeeds. Hence, this
call must be considered for synchronization.



2) Implicit Synchronization Calls: Some of the CUDA
API calls have implicit synchronization behavior, particularly
memory operations:

e cudaMemcpy: Copies data between host and device. Gener-
ally synchronous with respect to the host. An async variant
exists that is generally asynchronous w.r.t. host.

e cudaMemset: Sets memory range to a specific value. An
async variant exists. However, both are generally asyn-
chronous w.r.t. host.

If the CUDA documentation states may be (a)synchronous,
we typically interpret this pessimistically in our implementa-
tion for the purpose of data race detection.

Calls on the default stream may also be synchronous and
can block the host until preceding operations (e.g., preceding
kernel launches) complete, similar to Fig. 3. Likewise, memory
management calls like cudaFree synchronize with the host
across all streams [30, Appendix F] (async versions exist).

In general, functions denoted with “async” are asynchronous
w.r.t. the host, while non-async CUDA functions can be
considered synchronous. However, the exact behavior depends
on factors like the memory type and transfer direction (as
detailed in the CUDA documentation, see [28, Section 2]).
We track these aspects for our data race analysis.

C. CUDA Memory Semantics

The type of memory allocation influences (implicit) syn-
chronization behavior, see Section III-B2. For instance, page-
able memory (e.g., malloc) and pinned (page-locked) mem-
ory (e.g., cudaHostAlloc) exhibit different synchronization
characteristics with cudaMemset: The latter synchronizes with
the host, while the former does not. Hence, we need to track
the allocation kind to accurately reason about implicit syn-
chronization points in CUDA operations. Additionally, CUDA-
managed memory (cudaMallocManaged) requires explicit
synchronization. While the CUDA driver automatically mi-
grates managed memory between the host and device as
necessary, operations on this memory must be synchronized
to ensure a consistent memory view. In summary, the implicit
synchronization semantics are complex and even depend on
the memory type used.

D. CUDA-aware MPI Hybrid Model

CUDA-aware MPI libraries can eliminate the need for extra
copy operations by the user, as they are able to directly
access device memory pointers. To that end, they inter-
nally rely on the CUDA-specific unified virtual addressing
(UVA, [31, Section 6.14]) design. UVA encodes information
about the pointer memory location, allowing to differenti-
ate between host and device memory with the CUDA API
call cuPointerGetAttribute. Internally, these libraries can
then execute device-specific communication implementations.

The UVA-design keeps the MPI interface unchanged, as
needed information is passed with the buffer pointer. However,
users cannot expose further CUDA semantics such as streams
to the library. While CUDA expresses data dependences using
the stream concept, MPI represents a gap that must be filled by
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1 cudaMalloc(&d_data, size * sizeof(int));
2 if (world_rank == 0) {
3 kernel< < <...>>>(d_data, size);
cudaDeviceSynchronize(); // Blocks until kernel completes
MPI_Send(d_data, size, MPI_INT, 1, ...); / Send device data
} else if (world_rank == 1) {
MPI_Irecv(d_data, ..., &request); // Recv device data
MPI_Wait(&request, ...); // Blocks until Irecv completes

4
5
6
7
8
9 kernel_2<<<...>>>(d_data, size);
0

}

Fig. 4. CUDA-aware MPI example with explicit synchronization. Without
synchronization in line 4, the kernel may still run on device while the
subsequent send operation is executed on the host. Likewise, the wait in line
8 ensures the non-blocking Irecv completes before the kernel invocation.

the user through explicit synchronization iff there exists a data
dependence between MPI and a stream computation. Hence,
as shown in Fig. 4, we must consider two cases: (i) GPU
operations followed by dependent MPI calls must explicitly
synchronize, and, (ii) likewise, with a non-blocking MPI
call followed by a dependent GPU operation, MPI semantics
require an explicit wait before proceeding.

Several proposals aim to bridge the gap between MPI and
CUDA. Some extend MPI with explicit stream awareness [32],
[33], while others introduce new APIs built on MPI as a
communication layer [34], [35]. Other approaches explore
alternatives to the UVA-design [19], [36], but we focus on
the standard CUDA-aware MPI libraries for our work.

IV. IMPLEMENTATION OF A CUDA-AWARE SANITIZER

We model the aforementioned CUDA concurrency char-
acteristics by intercepting relevant CUDA API calls in a
target code and exposing them to TSan with our CuSan tool.
The interaction of CuSan, MUST, TypeART and TSan when
checking CUDA-aware MPI applications is shown in Fig. 5.
We compile a CUDA-aware MPI application with Clang/L-
LVM, which is able to compile CUDA codes [37] similar
to NVIDIA’s nvcc, additionally invoking CuSan’s compiler
pass. This process also inserts TSan instrumentation in the
user code. The application is executed with MUST, which
intercepts the MPI calls during runtime. CuSan and MUST
call TSan’s API with the relevant concurrency semantics of

CUDA-aware MPI Application ‘

T T T
CUDA API Alloc  Free

T
o Intercepted
% MPI Calls
B ad
Address
- TypeART
£ CuSan A .
3 E Runtime Runtime
-< T Type Info
* CUDA Semantics MPI Semantics

@ ThreadSanitizer Data Race Analysis ‘

Fig. 5. CuSan with MUST. The MPI application is instrumented with our
extensions (and TSan). 1) TSan tracks user host code memory accesses
relevant for CUDA managed memory or MPI buffer accesses. 2) CuSan
provides TSan with the particular CUDA semantics for the data race analysis.
3) Likewise, MUST provides TSan with MPI semantics. MUST and CuSan
use TypeART for datatype analysis and CUDA allocation size queries,
respectively. 4) TSan combines this information for data race analysis.



CUDA and MPI, respectively. Thus, TSan is able to detect
data races if any are present.

We base our analysis work on TSan’s fiber implementation,
as described in Section II-A. Section IV-A discusses how we
use fibers to represent the concurrent execution of a CUDA
stream, how we annotate CUDA calls with happens-before
synchronization and memory-related annotations. Section IV-B
discusses our compiler extension which adds the required
callbacks for our runtime analysis. Our implementation is
based on Clang 14 and CUDA 11.5.

A. CuSan Runtime Race Detection

Our runtime integrates with TSan by using CUDA API
callbacks introduced through our instrumentation (see Sec-
tion IV-B). This enables us to precisely map CUDA-related
events to TSan’s concurrency model.

Within this model, each CUDA stream is represented as
a distinct TSan fiber, mirroring the independent execution
context of the device relative to the host code. Similarly,
MUST extends TSan’s concurrency model to encompass MPI
communication. Non-blocking MPI operations are modeled
as TSan fibers, capturing their asynchronous nature w.r.t. the
host, see Section II-B. For blocking MPI calls, it is sufficient
for MUST to annotate the memory access on the main TSan
host thread.

Together, these extensions allow TSan to monitor the syn-
chronization state of both MPI and CUDA operations, enabling
CUDA-aware MPI data race detection. For instance, to prevent
data races, each CUDA stream that writes to memory involved
in MPI communication must be synchronized before the
dependent MPI call. If a CUDA stream accesses memory
without explicit synchronization using TSan’s happens-before
annotations, and an MPI call accesses the same location, a
data race is detected if at least one operation is a write. Fig. 6
illustrates examples of both MPI-to-CUDA and CUDA-to-MPI
data race scenarios modeled using this approach. Many CUDA
stream fibers and MPI fibers may exist in highly concurrent
CUDA-aware MPI applications.

a) Tracking Streams (and Events) with TSan fibers: Our
runtime instantiates a context per CUDA device, containing
(i) a lookup table for each stream to its fiber, (ii) a lookup
table for CUDA events to its stream, (iii) a lookup for memory
creation attributes (see Section III-C), (iv) and reference to the
host (CPU) fiber. The default stream is always tracked, user-
defined streams are tracked on demand at creation time. We
track if a stream was created with a non-blocking attribute.

b) Kernel calls: We highlight the necessary steps of
the data race analysis during an intercepted kernel call. To
that end, we require (i) kernel argument references, (ii) their
memory access mode (read/write), (iii) and the stream the
kernel is run on. We execute the following TSan-related calls
in order, (i) switch to the fiber of the kernel stream, (ii) for
all kernel argument memory regions, mark these as read/write
based on our static code analysis and TypeART for querying
the dynamic extent (e.g., tsan_write_range), (iii) starts
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Isend(buf, ..., &eq)
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Fiber kernel<<<...>>>(buf) Fibar

kernel<<<...>>>(buf) Sgﬁz;“

Read(buf) <-.. R4 Read(buf)
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deviceSynchronize
Wait(&req, ...) deviceSynchronize
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Concurrent Region of MPI
Ml Concurrent Region of CUDA Kernel

Fig. 6. Fiber interaction between MPI and CUDA kernel invocations. A:
An MPI_TIsend call is intercepted by MUST, which uses its internal TSan
fiber reference to mark a read operation on buf. If a kernel is invoked before
MPI_Wait, CuSan switches to its fiber reference for that stream to mark
a write on buf, leading TSan to detect a data race. B: Similar data race
scenario during a kernel execution with a blocking MPI_Recwv which does
not necessitate an extra MPI fiber. Other interleavings are possible.

a happens-before arc (AnnotateHappenBefore), (iv) and,
finally, switch back to the CPU fiber.

c) Explicit Synchronization: Synchronization terminates
a happens-before arc (AnnotateHappensAfter) and is ex-
ecuted for each supported explicit and implicit CUDA syn-
chronization call, see Section III-B. For a specific stream or
event-related synchronization, we terminate on that stream. For
a cudaDeviceSynchronize call, we iterate over all existing
streams to signal synchronization on each.

d) Implicit Synchronization: CUDA’s memory operations
access memory on some stream and may also be a synchronous
operation w.r.t. host. Hence, we must mark the respective
memory region’s access mode (like with kernel calls) and
optionally synchronize on the stream/device. For details on
when they may synchronize, see Section III-B2.

e) Legacy Default Stream Synchronization: Special care
has to be taken when user-defined streams and the default
stream is used in a target code, see Section III-A. When a
program synchronizes on the default stream, we terminate
the happens-before arc on all blocking streams as they must
finish before the synchronization call returns to host. Likewise,
synchronization on a user-defined stream may terminate the
arc of other streams, as described in Fig. 3. Synchronization
on non-blocking streams does not exhibit this behavior.

f) Managed memory allocations: With managed mem-
ory, a user may access such allocations in user code outside
of CUDA and MPI calls. TSan’s compiler pass already instru-
ments these appropriately for its analysis.

B. CuSan Compiler Pass

Clang’s CUDA compilation is split into device code and
host code compilation, respectively. Host code relies on the
results of the device code compilation, see Fig. 7.

Device code generation is additionally running our analysis
w.r.t. kernel memory accesses to determine if a kernel launch
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Fig. 7. Simplified view of the Clang/LLVM CUDA compilation process, for
details see [37]. 1) Clang first compiles the device-specific code. 2) While
the device code is compiled to a fat binary, we analyze each kernel w.r.t.
read/write memory access semantics of the arguments. 3) Subsequently, the
host code is compiled. 4) We instrument (CUDA) memory allocations with
TypeART and, with CuSan, relevant CUDA API calls. For kernel calls we
use the device code-collected memory access data. 5) Finally, the executable
is linked against our runtime for the added callbacks.

CUDA
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reads or writes to a device pointer, see Section IV-B1. We use
this analysis data during the host code compilation, adding
instrumentation before, e.g., a kernel launch call, to give our
runtime the necessary memory access data, see Section IV-B2.

1) Analyzing Kernel Memory Accesses: To mark the access
of device memory regions, we need to analyze the particular
access mode of each kernel argument. To that end, we apply
a conservative interprocedural forward-dataflow analysis of
the arguments of a kernel, as nested kernel calls may exist.
For each argument, we return a read, write, or read/write
attribute, see Fig. 8.

1 void kernel_nested(float: y, float+ x, int tid) { y[tid] = x[tid]; }
2 void kernel(float: d_a, float: d_b) {

3 int tid = threadIdx.x + blockIdx.x * blockDim.x;

4 kernel_nested(d_a, d_b, tid);

5

}

Fig. 8. Example of two relevant cases: (i) The analysis follows the device
pointer for d_a along its data flow, and reaches the function call to
kernel_nested. The pointer is passed as the first argument, as such
the analysis continues with the data flow of the first parameter y of the callee
kernel_nested and detects a write operation. (ii) For d_, the aliasing
pointer x, on the other hand, is only read. In summary, d_a and y are marked
write, whereas d_Db and x are marked read for each kernel, respectively.

2) Instrumentation of the CUDA API: The instrumenta-
tion of the relevant CUDA API is straightforward. For each
supported CUDA call, we add a callback to our runtime
in the LLVM IR before the CUDA call. As arguments, we
pass relevant information such as (i) kernel arguments and
their memory access attributes, (ii) the stream arguments
for stream-based concurrency tracking, (iii) event IDs for
event-based synchronization, or (iv) memory movement at-
tributes relevant for synchronization behavior, depending on
the specific API call. We exemplify instrumentation of a
CUDA kernel call in Fig. 9.

C. Extending TypeART

TypeART’s extension for CUDA is straightforward, (i) we
extend the compiler extension to handle the separated com-
pilation of device and host code, and (ii) we instrument all
memory allocations related to CUDA, such as cudaMalloc
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1 // Device:

2 void kernel(float: d_a, float= d_b) { ... }

3 // Host:

4 void device_stub_kernel(float+ d_a, float= d_b) {

// 1. list of arguments, 2. list of memory attribs, 3. stream:
_cusan_kernel_register({d_a, d_b}, {w, r}, &a_stream);
cudaLaunchKernel(..., {d_a, d_b}, ..., a_stream);

}

O 03N W

Fig. 9. Pseudo code of a CUDA kernel call and our instrumentation.
A host-side kernel invocation causes the creation of a kernel stub func-
tion in LLVM that assembles the required arguments for the call to
cudaLaunchKernel (line 8), see [28, Section 6.7]. We take relevant
arguments, and look up the read/write argument attributes for the called kernel,
and pass it to our callback (line 7).

or cudaFree. During runtime, MUST and CuSan query type
information and allocation sizes, respectively. Based on UVA,
we can differentiate between host and device memory pointers.

V. EVALUATION

Our evaluation focuses on performance overheads of
(1) TSan, (ii) MUST, (iii) CuSan and (iv) the combination
thereof compared to the unmodified application. The latter
is henceforth called vanilla. CuSan and MUST are always
executed with TSan enabled. Only CuSan uses TypeART,
required for querying device pointer allocation sizes. MUST
is configured to only check for data races of (non-blocking)
MPI communication. Our benchmark framework is available
at https://github.com/tudasc/cusan-tests.

Benchmark setup: The benchmarks were run on two com-
pute nodes of the Lichtenberg HPC cluster of TU Darmstadt,
using a NVIDIA Tesla V100 for each MPI process. We use the
Clang compiler 14, OpenMPI 4.1.6 and CUDA version 11.8
with arch=sm_70. Default optimization flags (-O2/-O3) are
used with added debug information for MUST’s diagnostics.
Benchmark values are the average for one process over 4 runs
(with an additional warmup run that is not counted).

Benchmark applications: We evaluate our implementa-
tion based on two mini-apps, namely a C Jacobi Solver [38]
and TeaLeaf [39], a C++ heat conduction solver. Both solvers
work on a discretized domain and exchange boundary values
with CUDA-aware MPI calls. Jacobi uses blocking MPI send-
recv operations whereas Tealeaf uses non-blocking calls.
Modifications were made to the build system, as nvcc uses
different CUDA-specific flags than Clang.

A. Runtime and Memory Overheads

1) Runtime: Fig. 10 shows the induced runtime overhead
of the correctness tools. For Jacobi, TSan and MUST add an
acceptable overhead of about 2x to 5x compared to vanilla.
CuSan, however, adds a factor of 36x overhead. This is
due to the large domain size which has to be tracked by
TSan with each kernel invocation. This tracking is expensive,
see Section V-B for more details. The combination of MUST
& CuSan adds additional overhead.

Tealeaf’s model, on the other hand, is a smaller domain
and, hence, exhibits overall lower overheads. TSan’s overhead
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Fig. 10. The relative runtime overhead w.r.t. vanilla. Vanilla runtime: 1.35 s
and 0.75 s for Jacobi and TeaLeaf, respectively.

is almost at the level of vanilla. MUST’s startup cost adds
some overhead due to the low runtime of the problem model.
MUST & CuSan slows down the execution about 7x as fibers
for both non-blocking MPI and CUDA are required, adding
more overhead to the execution.

TABLE 1 shows event counters reported by CuSan w.r.t.
intercepted CUDA calls and their resulting TSan-related API
calls for a process. A fiber is created per CUDA stream.
Per kernel call, multiple pointers may be annotated as read
or write using TSan. AnnotateHappensBefore events occur
more often than AnnotateHappensAfter as we handle default
stream semantics of kernel calls and implicit synchronization
points like cudaMemcpy. Starting a happens-before arc on a
kernel with default stream also starts one for each other stream
(as default operations block all succeeding stream operations
until the kernel is completed). Likewise, this applies to, e.g.,
cudaMemcpy as it is executed on the default stream and,
hence, has the same default stream synchronization semantics.
The terminating happens-after events occur for (i) operations
on the default stream that have an implicit barrier for all
other streams (see Fig. 3), (ii) Synchronization calls (iii) and
Memcpy operations. This is obvious for Tealeaf: as it only
uses the default stream the first does not apply, and hence it
has 632 happens-after events which is the number of Memcpy
and Synchronization calls. The tsan_read/write_range
sizes are significantly larger with Jacobi compared to TeaLeaf.
This is the leading factor for performance overhead, and is
discussed in more detail in Section V-B.

TABLE I
JACOBI AND TEALEAF CUDA AND TSAN RUNTIME EVENT COUNTERS
FOR ONE MPI PROCESS AS REPORTED BY CUSAN.

Metric Jacobi  TeaLeaf
Stream 2 1
< Memset 2 36
& Memepy 602 102
O Synchronization calls 900 530
Kernel calls 1,200 767
Switch To Fiber 3,622 1,882
AnnotateHappensBefore 1,804 905
= AnnotateHappensAfter 1,515 632
E Memory Read Range 2,102 623
Memory Write Range 2,403 1,074
Memory Read Size [avg KB] 19,705.62 15.98
Memory Write Size [avg KB] | 16,421.35 17.58
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Fig. 11. The relative memory overhead of a single MPI process w.r.t. vanilla.
Vanilla RSS: 311 MB and 283 MB for Jacobi and Tealeaf, respectively.

2) Memory: Fig. 11 shows the induced memory overhead
of the correctness tools. To that end, we query the resident set
size (RSS) at the invocation time of MPI_Finalize.

Here, CuSan adds most memory overhead as the tracking
of CUDA device pointers within TSan represents the majority
of memory usage for these CUDA-aware MPI applications.

B. Jacobi Solver Scaling Test

CuSan has an overhead factor of about 36 for the Jacobi
solver for our tested model size. This is due to the high
amount of memory that is tracked for each kernel invocation.
In our testing, completely removing memory annotations but
keeping the rest of our instrumentation brings the overhead
down to almost vanilla. Currently, for each kernel call, we must
annotate the access semantics of the whole device pointers
memory range with TSan for our data race analysis. The
more memory tracked with TSan, the more runtime overhead
is induced, see Fig. 12. As illustrated, runtime overhead of
CuSan scales approximately with the amount of memory that
is tracked by TSan (due to our CUDA annotations). Reducing
the tracked memory by, e.g., reducing the domain size, hence
reduces runtime overhead.
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Fig. 12. Jacobi relative runtime overhead w.r.t. vanilla based on the global
domain size. The right y-axis shows the total sum of tracked memory
access operations for two MPI processes, i.e., total bytes tracked with
tsan_write_range and tsan_read_range calls, respectively.

VI. DIscuUsSION

We discuss primary limitations of CuSan. A particular
challenge is to verify behavior of the CUDA API relevant
to data race detection. To that end, our current scale of
CUDA API support is limited to a manually verified set w.r.t.
synchronization behavior, see Section III-B.



A. CUDA API Coverage

The CuSan implementation focuses on explicit synchroniza-
tion and key implicit synchronization points (like memory
copies) and the default stream semantics for CUDA-aware
MPI, see Section III. Our implementation is currently based on
documentation of CUDA 11.5, with implicit synchronization
behavior verified by our test suite, see Section VI-C. Others
have noted unclear documentation or undocumented behaviors
with CUDA synchronization [40]. Therefore, it is crucial
to verify particular concurrency behavior for each supported
CUDA feature within CuSan. Future work aims to extend the
synchronization model to cover a broader range of CUDA API
calls based on practical usage patterns of other CUDA-aware
MPI applications.

B. Per-thread Default Stream Support

CuSan currently assumes legacy default stream semantics
and single-threaded host code execution. Future work will
explicitly support both legacy and per-thread default stream
modes. The latter provides each host thread with a default
stream that does not have the same blocking characteristics
as with legacy. However, using a mix of per-thread default
stream and legacy default stream would still have the same
blocking characteristics [28, Section 3]: “The per-thread de-
fault stream is not a non-blocking stream and will synchronize
with the legacy default stream if both are used in a pro-
gram.”. In addition, explicit synchronization semantics, such
as cudaDeviceSynchronize may only block on already
submitted kernels on streams. While one thread calls the
synchronization, other threads could still submit work on
streams that start before the synchronization finishes [40].

C. Correctness Test Suite

While our focus was primarily on the technical aspects
of CUDA-related race detection, we developed a test suite
containing small-scale codes used to evaluate CuSan. This test
suite includes both manually verified correct and incorrect (i.e.,
containing data races) examples of CUDA-aware MPI usage.
The purpose is to create a (i) test harness to verify CuSan’s
race detection capabilities, and (ii) feature documentation, to
demonstrate supported CUDA features and their particular
behavior as described in the previous sections. Hence, for now,
all tests are correctly classified by CuSan. The code is available
at https://github.com/tudasc/cusan-tests/tree/main/testsuite.

D. CuSan Overhead

Tracking CUDA device pointer semantics with TSan intro-
duces significant overhead (around 36x for the Jacobi solver
evaluation). While TSan overhead is stated to be typically
around 5x-15x [21], higher overheads have been reported
for other scenarios [15], [22], [41], [42]. In Section V-B, we
have shown that overhead in CuSan directly correlates with
the amount of memory access tracking. In the future, CuSan
could implement analyses to limit memory access tracking
by identifying and focusing on the boundary regions of data
exchanged via MPI, rather than tracking entire device pointer
allocations.
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E. CUDA Correctness Tools

A comparable approach to CuSan exists within Py-
Torch [43], focused on detecting unsynchronized tensor ac-
cesses. It tracks stream synchronizations and tensor memory
accesses, analyzing the synchronization state for potential
data races at each kernel launch. However, this effort is
limited to the PyTorch Python API and CUDA-only races. In
contrast, CuSan can find races in C and C++ codes, including
unsynchronized CUDA managed memory access, or CUDA-
aware MPI applications (in combination with MUST). Other
correctness tools focus on identifying errors like kernel thread-
level synchronization issues or memory leaks [44], [45].

VII. CONCLUSION

For efficiency, MPI is combined with node-level parallel
programming models like CUDA. CUDA-aware MPI libraries
facilitate direct communication of device memory, eliminating
the need for manual copying. However, this hybrid model adds
complexity and presents significant correctness challenges,
as both CUDA and MPI operate asynchronously w.r.t. the
host. In such models, data-dependent operations between asyn-
chronous MPI and CUDA calls require careful synchroniza-
tion by the user. Users must synchronize CUDA operations
before initiating dependent MPI calls and also ensure that
non-blocking MPI calls are completed before starting related
CUDA operations. This is error-prone.

To address these challenges, this paper introduced CuSan,
a tool that enables synchronization detection in CUDA-aware
MPI applications. CuSan uses ThreadSanitizer (TSan) as the
underlying data race detector, exposing CUDAs particular
memory access and synchronization semantics to its annota-
tion API. The inherent concurrency of CUDA-stream based ex-
ecutions are modelled using TSan fibers. To find concurrency
issues with non-blocking MPI communication, the dynamic
MPI correctness checker MUST already integrates with TSan
fibers. With CuSan and MUST, the concurrency semantics
of CUDA streams and non-blocking MPI communications is
properly exposed to TSan for its data race analysis.

Our evaluation on two mini-apps shows runtime overhead
factors of CuSan ranging from 6 to 36, depending on the
model size. The overhead is directly related to the amount of
memory marked for access semantics tracking in TSan. Hence,
smaller model runs should be preferred for data race analysis.
Memory overhead is consistently below 1.8 x.

In summary, we believe CuSan aids users develop data-
race-free CUDA-aware MPI applications. In the future, we will
extend CUDA API support and also look into other accelerator
models. CuSan is available at https://github.com/tudasc/cusan.
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ARTIFACT DESCRIPTION

The following descriptions explain how to set up our CuSan
and MUST toolchain for evaluation. Our test environment is
available at: https://github.com/tudasc/cusan-tests

Software and Hardware Requirements

To evaluate CuSan, we tested these software packages:

« CUDA toolkit 11.5 and 11.8
o« CUDA-aware OpenMPI 4.1.4 and 4.1.6
¢ Clang/LLVM 14.0.6, Python 3.10, Git 2.40, CMake 3.20

Our test suite, see Section VI-C, additionally needs:

e llvm-lit (available with pipx)

« FileCheck binary (comes with LLVM)

The following GPUs were evaluated for compatibility
NVIDIA Tesla T4, NVIDIA Tesla V100 and NVIDIA Tesla
H100. Each code was compiled with arch=sm_70.

ThreadSanitizer Suppressions: When using TSan with
these libraries, false positive may occur. To that end, we use
suppression lists for TSan that avoid these. Our custom sup-
pression lists are tailored to Lichtenberg (TU Darmstadt) and
CLAIX-2023 (RWTH Aachen) HPC clusters. Unfortunately,
they may require changes for any particular HPC cluster.

Lichtenberg and CLAIX modules: We provide a list of
manually loaded modules for each cluster, other dependencies
are available in PATH. Lichtenberg, followed by CLAIX:

1)
2)

gcc/11.2.0
cuda/11.8

3) openmpi/4.1.6
4) git/2.40.0

5) python/3.10.10
6) clang/14.0.6

1) GCCcore/.11.3.0 8) libpciaccess/0.16 15) OpenMPI/4.1.4

)
2) zlib/1.2.12 9) hwloc/2.7.1 16) gompi/2022a
3) binutils/2.38 10) OpenSSL/1.1 17) CUDA/11.6.0
4) GCC/11.3.0 11) libevent/2.1.12 18) GDRCopy/2.3
5) numactl/2.0.14 12) UCX/1.12.1 19) UCX-CUDA/1.12.1-
6) Xz/5.2.5 13) PMIx/4.1.2 CUDA-11.6.0
7) libxml2/2.9.13 14) UCC/1.0.0 20) clang/l4-release

Prerequisites for the Test Environment

After the test environment repository was cloned, we need
to set up CuSan and MUST as prerequisites. To that end, we
provide scripts that download and compile these codes auto-
matically. The scripts expect the appropriate software modules
to be available/loaded. At the end, environment variables, as
per the scripts direction, have to be set for MUST and CuSan.
These will be used by the test environment initialization.
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1 $ git clone —branch v1.0 https://github.com/tudasc/cusan—tests

2 $ cd cusan—tests

3 # Setup CuSan, the script will instruct how to set CUSAN_PATH:
4 $ /support/cusan—bootstrap.sh

5 $ export CUSAN_PATH=...

6 # Setup MUST, the script will instruct how to set MUST_PATH:
7 $ ./support/must—bootstrap.sh

8 $ export MUST_PATH=...

Initializing the Test Environment

With the prerequisites installed, the actual test environment
can be initialized. We use CMake for this.

1 # Assume we are in root folder of cusan—tests.

2 $ mkdir build && cd build

3 # Setup scripts for evaluation, should detect CuSan and MUST:
4 $ cmake ..

5 # Build the mini—apps. Vanilla, TSan, CuSan versions:

6 $ make jacobi—all-build

7 $ make tealeaf—all-build

Executing the Test Suite

We have a test suite consisting of unit tests with correct
and incorrect usage of CUDA. These tests are executed with
Ilvm-lit and FileCheck.

1 # Assume we are in the build folder
2 $ make check—cutests

This should print (unordered) output like:

1 PASS: CuSanTest :: cuda—to—mpi/send_mca_user_malloc_w_r.c (1 of 49)

2 PASS: CuSanTest :: cuda—to—mpi/send_ds_def_managed_r_r.c (2 of 49)

3 PASS: CuSanTest :: cuda—to—mpi/send_mca_user_malloc_w_r_nok.c (3 of 49)
4 ..

Executing the Mini-Apps

The mini-apps Jacobi and Tealeaf can be executed directly
on a node or submitted to the Slurm workload manager. For
the latter, our batch scripts are only implemented for the
particularities of the Lichtenberg cluster at TU Darmstadt and,
thus, need adaption for other systems.

Executing directly on the node: We assume that the
test environment was initialized. The following illustrates
execution with Jacobi (analogous for Tealeaf).

1 # Assume we are in the build folder, vanilla:
2 $ make jacobi—vanilla—run

3 # Run MUST & TSan instrumented version
4 $ make jacobi—must—run

5 # Run CuSan instrumented version

6 $ make jacobi-run

Executing with Slurm: The initialization step generated
make targets to submit to Slurm. However, the scripts need
to be adapted for a particular HPC cluster. To that end, go
to each mini-app folder and adapt sbatch.sh and sbatch-
scale.sh for your cluster environment.

1 # Assume we are in the build folder

2 # Benchmark runtime and memory

3 $ make jacobi—sbatch

4 $ make tealeaf—sbatch

5 # Benchmark scaling for different domain sizes
6 $ make jacobi—scale




