
SZOps: Scalar Operations for Error-bounded Lossy
Compressor for Scientific Data

Tripti Agarwal∗, Sheng Di†, Jiajun Huang‡, Yafan Huang §, Ganesh Gopalakrishnan∗,
Robert Underwood†, Kai Zhao¶, Xin Liang∥, Guanpeng Li†, Franck Cappello†

∗University of Utah, Salt Lake City, UT, USA
†Argonne National Laboratory, Lemont, IL, USA
‡University of California, Riverside, CA, USA

§University of Iowa, Iowa City, IA, USA
¶Florida State University, Tallahassee, FL, USA
∥University of Kentucky, Lexington, KY, USA

tripti.agarwal@utah.edu, sdi1@anl.gov, jhuan380@ucr.edu, yafan-huang@uiowa.edu, ganesh@cs.utah.edu,
runderwood@anl.gov, kzhao@cs.fsu.edu, xliang@uky.edu, guanpeng-li@uiowa.edu, cappello@mcs.anl.gov

Abstract—Error-bounded lossy compression has been a critical
technique to significantly reduce the sheer amounts of simulation
datasets for high-performance computing (HPC) scientific appli-
cations while effectively controlling the data distortion based on
user-specified error bound. In many real-world use cases, users
must perform computational operations on the compressed data.
However, none of the existing error-bounded lossy compressors
support operations, inevitably resulting in undesired decompres-
sion costs. In this paper, we propose a novel error-bounded
lossy compressor (called SZOps), which supports not only error-
bounding features but efficient computations (including negation,
scalar addition, scalar multiplication, mean, variance, etc.) on the
compressed data without the complete decompression step, which
is the first attempt to the best of our knowledge. We develop sev-
eral optimization strategies to maximize the overall compression
ratio and execution performance. We evaluate SZOps compared
to other state-of-the-art lossy compressors based on multiple real-
world scientific application datasets.

Index Terms—Error-bounded Lossy Compression, Scientific
Application

I. INTRODUCTION

Today’s scientific applications tend to be running on ex-
tremely large execution scales, which may easily produce
sheer amounts of simulation datasets that need to be kept
in memory or stored in disks with limited storage capacity.
Climate simulations, for example, may produce 200+ TB
of data within 16 seconds [1], and Fusion simulations can
generate over 200 PB of data in a single run [2]. Such a
large volume of simulation datasets may cause serious issues
in data storage and transfer because of the limited storage
space and data movement bandwidth (such as network, I/O,
and memory).

Error-bounded lossy compression [3]–[10] has been pro-
posed for years to resolve the above issues, especially be-
cause it can get fairly high compression ratios while strictly
controlling the data distortion based on user-required error
bound. For example, SZ and ZFP have been effective in

Corresponding author: Sheng Di, Mathematics and Computer Science
Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL
60439, USA

significantly improving the I/O data writing performance,
as shown in [11]. MDZ [12] can be used to substantially
reduce the storage size for Molecular Dynamics simulations
while preserving the radio distribution function (RDF) very
well. Wu et al. [13] developed an efficient lossy compression
algorithm that can effectively compress the memory footprint
for quantum computing simulations at runtime, which can
significantly lower the requirement of memory capacity. Error-
bounded lossy compression (e.g., Ocelot [14]) has also been
used to improve the data transfer on a wide area network
(WAN). Some general-purpose lossy compressors [8], [15] can
significantly reduce the scientific data size, though they may
suffer relatively low compression speed. FAZ, for example, can
compress large turbulence simulation data (Miranda [16]) and
seismic data (RTM [17]) by 93.6× and 514×, respectively,
at the relative error bound of 10−4 (a.k.a., 1E-4). Such
compressors are very helpful in the use-case with very limited
storage capacity or data transfer bandwidth.

In addition to the above use cases which mainly make
use of lossy compression to reduce storage size or mitigate
data transfer cost, quite a few emerging use cases require
performing certain operations on top of the compressed data.
The existing compression methods, however, do not support
performing various operations on the compressed data, so the
users have to decompress the full dataset before executing the
operations, inevitably introducing a high execution cost. For
example, quantum circuit simulation [13]) may produce an
extremely large amount of data to keep in memory, so it needs
to compress the data to control the memory footprint. The data
stored in the compressed format may need to be decompressed
upon the need of simulation at runtime, which requires extra
decompression steps inevitably for the traditional compressors.
If a compressor supports performing operations on the com-
pressed data, the extra decompression cost can be saved or
minimized, which can thus improve the overall performance
in turn.

In this paper, we develop a compression mechanism al-
lowing to perform various arithmetic operations (such as

260979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00042

negation, scalar addition, and scalar multiplication) and re-
ductions (such as mean, variance and standard-deviation) on
the error-bounded compressed datasets without expensive full
decompression.

As mentioned previously, operations on error-bounded lossy
compression is very helpful in many emerging use cases such
as reducing memory footprint and avoiding expensive decom-
pression costs because of avoiding the full decompression
step. For example, using lossy compression to reduce the
communication cost for accelerating the overall MPI collective
operation performance [18]. In the existing solutions, each
process participating in the collaborative operation needs to
fully decompress the compressed data received from another
process, execute an arithmetic aggregation/reduction operation
(such as addition), and then perform another compression on
the aggregated data. This results in higher decompression time
and more memory footprint, which can be reduced by applying
operations directly compressed data.

Developing an efficient operation mechanism on error-
bounded lossy compression is very challenging because of
diverse compressor designs. In general, each existing error-
bounded lossy compressor involves multiple steps from the
data decorrelation to lossless encoding. For example, ZFP
decorrelates the data by a blockwise near-orthogonal transform
and SZ leverages various data prediction methods to do it. In
order to reach high compression ratios, the lossy compressors
often depend on sophisticated lossless encoders. For instance,
ZFP adopts an embedded encoding and SZ chooses to use
Huffman encoding + Zstd [19]. Supporting the arithmetic
operations in the presence of encoding techniques is quite non-
trivial.

Our proposed novel error-bounded lossy compression mech-
anism supports scalar operations, which is the first attempt in
the error-bounded lossy compression community to the best of
our knowledge. The fundamental idea is designing an efficient,
lightweight compression pipeline that takes into account the
execution of potential operations on the compressed data, and
also minimizes the required steps and cost in the decompres-
sion in terms of performing the user-specified operations. We
summarize the key contributions as follows:

• We develop an efficient error-bounded lossy compression
method, which supports scalar operations on compressed
data.

• We carefully optimize the pipeline to support various
arithmetic operations (negation, scalar addition, scalar
subtraction, scalar multiplication, mean, variance and
standard deviation) on compressed datasets without the
full decompression.

• We perform a comprehensive evaluation based on multi-
ple real-world scientific datasets for our compressor to
show that our compressor can improve the execution
performance ranging from 2.17× to more than 206×
when compared with traditional workflow for various
scalar operations across different datasets.

The remainder of the paper is organized as follows. Section
II discusses the related works. We formulate the research

problem in Section III. We present the compression pipeline in
Section IV. We describe the scalar operations integrated with
the compression as well as the optimizations in Section V. In
Section VI, we provide the evaluation results as well as the
analysis. In the end, we conclude the paper with a vision of
the future work in Section VII.

II. RELATED WORK

Error-bounded lossy compressors, such as ZFP [6] and SZ
[3], [4], are often used for scientific data compression and
can achieve a high compression ratio such as 50 or more,
while strictly controlling the data distortion. None of the lossy
compression techniques, however, were built with the goal of
operations on compressed data. That is, if the users want to
operate on data that has been compressed, they have to first
fully decompress the data and then perform the operation.
This will inevitably introduce undesired execution costs and
memory overhead.

There exist some compression techniques that support op-
erations like Blaz [20] and PyBlaz [21]. Blaz is a simple
compressor that can only support 2-D arrays and can perform
simple operations such as scalar addition, matrix addition, and
multiplication of scalar. Since Blaz is a single-threaded se-
quential code, PyBlaz was built to support a more sophisticated
compression setting. PyBlaz can support arbitrary dimensional
data along with a lot more operations and measures. However,
none of the above works provide a guarantee of compression
error boundness for both the compression pipeline and opera-
tion built on top of them.

In our work, we mainly work with error-bounded lossy
compressors, hence we provide a detailed literature survey of
such compressors. These state-of-the-art error-bounded lossy
compressors can be split into three models.

Prediction-based lossy compression model. This compres-
sion model generally involves three key stages: data prediction,
quantization, and lossless compression. The typical examples
include SZ1 [3], SZ2 [4], SZ3 [22], [23], and FPZIP [24]. SZ2,
for example, adopts a hybrid prediction method combining
Lorenzo predictor [25] and linear regression. The biggest
advantage of the prediction-based lossy compression model
is that it can be easily/efficiently customized by changing
the specific solutions for each stage to adapt to different
application datasets or use-cases [8], [12], [26]–[28]. MDZ
[12], for example, is a error-bounded lossy compressor tailored
based on Molecular Dynamics (MD) datasets under the SZ
prediction-based framework. CliZ [27] is an efficient error-
bounded prediction-based lossy compressor optimized for cli-
mate datasets based on the climate data properties/features.

Transform-based lossy compression model. The key idea of
this compression model is performing data transform (such
as wavelet transform) to convert the raw dataset to another
coefficient dataset. ZFP [6] and SPERR [15] are two examples
that uses this technique. This step can effectively decorrelate
the raw dataset, such that a large majority of the data values are
very close to 0. Then, an encoding method would be applied
to significantly reduce the data size. ZFP, for example, applies

261

a so-called big-plane-based embedded encoding method [6]
which stores only necessary bits with respect to user-required
error bounds; SPERR performs a set partitioning embedded
block coding algorithm (called SPECK [29]) to shrink the
coefficient data size.

Higher-order singular value decomposition (HOSVD) based
compression model. HOSVD [30], [31] decomposes the data
(i.e., a tensor) to a set of matrices and a small core tensor, with
well-preserved L2 normal error. By combining HOSVD and
Tucker decomposition with other techniques such as bit-plane,
run-length, and/or Core tensor arithmetic coding, the data size
could be significantly reduced.

To the best of our knowledge, none of the existing error-
bounded lossy compressors support direct operations. In this
paper, we fill this gap by proposing a novel error-bounded
lossy compressor namely, SZOps that can perform scalar
operations and scalar reductions in a compressed data domain.
Throughout the rest of the text, the term scalar operations is
employed when referring to both scalar operations and scalar
reductions collectively.. Nonetheless, when explicitly referring
to reduction operations, the distinct term scalar reductions will
be utilized to ensure clarity and precision.

III. PROBLEM FORMULATION

We formulate the research problem as follows. Given a
raw dataset (denoted by Dr), we denote the corresponding
compressed data as c and the decompressed dataset as D̂c.
For a error-bounded lossy compressor with operations (such as
SZOps), it would perform the user-required scalar operation on
the compressed data, leading to a new compressed data stream
(denoted by z), whose corresponding decompressed dataset is
denoted as D̂z . Basically, we focus on two types of operations:
univariate operation (denoted f (·), such as negation or adding
a constant) and univariate reductions (denoted r(·) such as
mean, standard deviation of input compressed data).

Figure 1 illustrates the entire workflow for the two types
of operations. In the traditional workflow (see Figure 1 (a)),
the user needs to get the decompressed dataset (D̂c) based
on the compressed data stream (c) before operating f(·) or
r(·). In comparison, the compression (i.e., marked as the
new workflows in the figure) allows users to execute this
operation on top of the compressed data format (c) without
fully decompressing c.

Based on the two types of operations: univariate and multi-
variate, the output can also be split into two types as follows.

• Compression-as-output: the output is another compressed
data stream (z) with the specific operations already ap-
plied on top of the decompressed data – illustrated as the
blue workflow in Figure 1.

• Computation-as-output: the output is a result based on
a computation applied on the dataset (such as the mean,
standard deviation or maximum value) – illustrated as the
magenta workflow in Figure 1.

The key objective of the research is to develop an efficient
error-bounded compressor, which can avoid the expensive full
data decompression when performing various operations on

Uncompressed or decompressed
data

Compressed
data

SZOps compression Data flow

(a) Legend

Compression based on the
scalar operation

Regular
compression

Regular
decompression

Regular
decompression

New
workflow

(b) Scalar Operation Workflow (Compression-as-output)

Regular
compression

Compression based on the
scalar reduction

Regular
decompression

Reduction results
(generally, stats)

New
workflow

(c) Scalar Reduction Workflow (Computation-as-output)

Fig. 1. Workflow For SZOps Compression

TABLE I
NOTATIONS USED IN SZOPS PIPELINE AND ITS OPERATIONS.

Notation Description
Dr Raw Data
c Compressed Data
D̂c Decompressed Data
z Operated Compressed Data
D̂z Operated Decompressed Data
f(·) univariate operation
r(·) univariate reductions
ϵ user-defined error bound
A block 1 of some Dr (block size = m’×n’)
OA Outlier of block A
ςA Sign array of block A
ϱA Quantized array for block A
PA Predicted array of block A
CA Bits for compressed block A

top of the compressed data. It is worth noting that com-
pletely avoiding decoding during the operation or reduction
is impossible. Instead, our design motivation/objective is to
minimize the decoding work as much as possible by keeping
only necessary steps concerning scalar operations.

Table I summarizes all notations used in the paper, which
helps discuss the design of our designed SZOps and scalar
operations and reductions explained in Section IV and Section
V.

IV. DESIGN OVERVIEW

The SZOps mainly aims to support operations while still re-
specting error-bound features and expecting to reach relatively
high compression ratios and high compression/decompression
performance. Towards this end, we substantially improve the
cuSZp compression pipeline [32] (which was initially de-
signed for only GPU) by developing a new multi-threaded
CPU version (we call it SZp) and enabling it to support

262

operations. Compared with classic SZ’s original design [3],
[4], our compression pipeline features higher compression
and decompression speed, also being much more suitable
for operations on compressed data, although with gracefully
degraded compression ratios.

A. Compression Pipeline
SZOps is a floating-point data compressor consisting of

three main steps: Quantization (QZ), Decorrelation (LZ), and
Blockwise Fixed length byte Encoding (BF), as shown in
Figure 2.

Blockwise Fixed-length byte
encoding

Recording Compressed
Data

Input raw data
for block Description

Record the qunatized integer bin
for each floating-point value in
the block

Record the outlier of each block

Save signs of each element in
the block

Record as constant if all
elements in the block are zero

Outliers are saves as fixed
length bytes
Constant block are represented
with one bit
Block data saved as fixed length
bytes

QZ

LZ

BF

Compute quantized value for
each element in the block.

Perform 1D Lorenzo operation
on each block element.

Save the signs of each element
separately and mark the constant
blocks with 1 bit.

Find the maximum number of
bits required by an element in
the block say . Assign bits to
each lorenzoed value in the
block. Store the outlier, signs
and compressed data in form of
bytes

Output

QZ LZ BFQuantization Decorrelation

Fig. 2. SZOps compression pipeline (workflow). Decompression of SZOps
is the inverse of all the steps.

In what follows, we describe the SZOps pipeline using 2D
arrays, Dr, which can be extended to other dimensions (e.g.,
1D and 3D) easily. Without loss of generality, the 2D array
consists of m × n elements/data points. We split the dataset
into blocks, and the block size is set to m′×n′, which results
in a total of m

m′ × n
n′ blocks of Dr. These blocks are denoted as

D1
r , D

2
r , . . . , D

m
m′ × n

n′
r , for array Dr which can be compressed

independently. For simplicity, without loss of generality, we
describe our the compression pipeline using one specific block
(D1

r) from the dataset, respectively (as shown in Figure 2). We
denote the elements in D1

r as A = ai, where i = m′ × n′ is
the number of elements in the block and set the user-defined
absolute error bound to ϵ.

We now explain each step of SZOps using block A, with a
few more new defined notations wherever necessary.

1) Quantization (QZ): This step converts the entire dataset
into integers based on the user-defined error bound (ϵ).
The quantized value (a.k.a., quantization bin number) is
given by the Formula (1).

ϱiA =
⌊
ai+ϵ
2×ϵ

⌋
(1)

, where ai is the i-th floating-point value in block A
and ⌊⌋ is a floor function. This step converts all the

floating-point data into integer numbers (i.e., quantization
bin numbers) because the transformed data are easier to
process by lossless encoders such as Huffman encoding.
Note that the data reproduced based on the quantization
bins during the inversion of this step are not the same as
the original data, and the data loss is limited within the
error bound.

2) Decorrelation (LZ): In this step, we exploit that most
scientific data are spatially adjacent-correlated (meaning
that the data close to each other or within a region have
similar value ranges). Hence, we apply a 1-D Lorenzo
operator [33] on each block given in Formula (2). This
helps in further decorrelating the integer values to reduce
the necessary bits to store. We further store the outlier
(first value of each block) separately, represented as OA.

Pi
A = ϱiA − ϱi−1

A ∀i ̸= 0

Pi
A = ϱiA − 0 if = 0

(2)

We use an example to explain decorrelation further.
Suppose the block size for a 2-D input (Dr) is 2 × 2
and we have the following data values in the block A
= {-0.025, -0.025, -0.051, -0.052}. Then, the quantized
integers for each value are ϱA = {−1,−1,−3,−3}. A
1D Lorenzo predictor (subtracting each value from its
corresponding previous neighbor) is applied on the on
ϱA, resulting in predicted values PA = {0, 0,−2, 0} and
the outlier OA = −1.
We store the sign of each element separately, which
removes the ambiguity that can occur during the succeed-
ing lossless encoding step, i.e., fixed-length encoding.
Positive numbers are represented with a bit value of 0,
and negative are represented with a bit value of 1. Hence,
PA={0, 0, 2, 0}, OA=−1, and ςA = {0, 0, 1, 0}, where
ςA is the sign array for block A.

3) Blockwise Fixed-length byte encoding (BF): The data
obtained from the prediction PA is converted into bits
using a fixed-length encoding technique. In this method,
the maximum number of bits required for an integer in
a given block A is calculated, and then all the numbers
are stored with the same number of bits, represented by
CA. This reduces the number of bits (converted to bytes)
required to store all the elements.
In the above example, for predicted array PA =
{0, 0, 2, 0}, the maximum number of bits taken by the
block is 2 bits by integer 2, hence the entire block can be
represented with 8 bits, i.e CA = (00001000)2 = (8)16.
Note that if all the elements in a PA (except for the
outlier OA) have integer value 0 for any block Ai, we
indicate such a block as a constant block and represent
it with bit 0.
Finally, the compressed data is stored as follows: Fixed-
length for each block followed by outlier for each block
OAj

, followed by sign bits for each element of all blocks
ςiAj

and then the compressed bits of each block CAj
,

263

Constant
block

Fixed-
length
for each
block

Sign bit for
element in
each block

Compressed bytes for
each block

Outlier
for

each
block

Fig. 3. Representation of compressed data

where is j = {1, 2, . . . , { m
m′ × n

n′ }}. Figure 3 shows a
simple compressed data representation.

B. Workflow for Operations on Compressed data

The compression and decompression pipelines of SZOps are
shown in Figure 4. The traditional workflow operation per-
forms the full decompression (i.e., decompress the fixed-length
encoded bytes for each block, then the inverse of Lorenzo
operation, and finally the inverse of the quantization step). The
desired operation is then applied to the decompressed data, and
full compression, including quantization, Lorenzo, and block-
wise fixed-length encoding, is again applied to the operated
data to obtain the compressed format. In the SZOps operation
workflow, the main idea is avoiding the full decompression
and full compression on the operated data as discussed above
in the traditional workflow. This involves skipping the steps
of decompression and corresponding compression as required
so that the operated compressed data is same as the operated
compressed data obtained using traditional workflow.

DBF DLZ DQZ QZ LZ BF

Full Decompression Full Compression

(a) Traditional Workflow

DBF DLZ LZ BF

Partial Decompression Partial Compression

1 1

2 2 2 2

No Decompression No Compression

(b) Scalar Operation/Reduction Workflow

DBF

DLZ

DQZ

BF

LZ

QZ

Compressed input for block Operated compressed output for
block

Decompressed blockwise fixed length encoding Blockwise fixed length encoding

Decompressed blockwise Lorenzo operation

Decompressed Quantization

Blockwise Lorenzo operation

Quantization

Fig. 4. Illustration of tradition workflow vs. SZOpz workflow for different
scalar operations/reductions.

Depending on the datasets and operations, there are two
different ways of performing the operations.

1 Directly performing operations on the input compressed
data. Operations like negation and addition of scalar on
compressed data can be performed in a fully compressed
space because the compressed data consists of signs and
outliers saved separately, which can be used to calculate these
operations.

2 Performing operations by first decompressing data using
an inverse of blockwise fixed length encoding and inverting
the Lorenzo operation. Operations such as multiplication of

TABLE II
LIST OF OPERATIONS IN SZOPS, ALONG WITH THE TYPE OF OPERATION
AND THE RESULT TYPE OBTAINED AFTER THE OPERATION IS APPLIED.
NOTE THAT, ALL THE OPERATIONS FOLLOW THE ERROR-BOUNDNESS.

THIS IS BECAUSE NONE OF THE OPERATIONS APPLY INVERSE
QUANTIZATION ON THE INPUT COMPRESSED DATA.

Type Operation Result Type
Univariate Operation Negation Compression-as-output
Univariate Operation Scalar addition Compression-as-output
Univariate Operation Scalar subtraction Compression-as-output
Univariate Operation Scalar multiplication Compression-as-output
Univariate Reduction Mean Computation-as-output
Univariate Reduction Variance Computation-as-output
Univariate Reduction Standard Deviation Computation-as-output

scalar, mean, variance, standard deviation, use this workflow,
and the operated data obtained is again compressed back by
applying the Lorenzo operator and then performing blockwise
fixed-length encoding. Details of how each of the operations
is performed are explained in Section V.

V. OPERATIONS AND REDUCTIONS FOR SZOPS

In this section, we discuss the different operations we devel-
oped in SZOps. In the following, we still mainly describe our
design based on the blocks (A) from the compressed dataset
without loss of generality. After applying quantization and
prediction, we obtain specific metadata: the outlier for block
A, denoted as OA, the predicted value that are represented
as array PA, and the sign elements represented as array ςA,
respectively. We also use intermediate quantized values for
some of the operations and denote the quantized value as ϱA.
Note that these quantized and predicted values are integers,
which are subsequently stored as bytes using a fixed-length
byte encoding scheme.

Using the above notations (also summarized in Table I),
we explain different scalar operations supported by SZOps
(listed in Table II) along with examples wherever necessary.
Some operations are derivable from other operations; hence,
we discuss those operations briefly.

A. Scalar Operations

Scalar Operations are point-wise operations that are per-
formed on each element of the compressed dataset (or matrix).
We describe each scalar operation available in SZOps here in
detail.

1) Negation: Negation operation [34] is a unary operation
and is solely dependent on reversing the signs of the
data (saved explicitly in our compressed data), making
the operation in fully compressed space1. Consider a
single block array A, then the negation operation is
performed as follows: Invert the signs of each element
in the array ςA to obtain the inverted signs, ¬ςA. This is
done by applying a logical NOT operation (¬) element-
wise: ¬ςA = {¬ςa0 ,¬ςa1 , ...,¬ςa{m′×n′}−1

}.
2) Scalar Addition: The scalar addition [34] involves

adding a constant scalar value to an input array. In our

1Fully compressed space means that the compressed bits saved in our
compressed data are not even partially decompressed

264

compressor, this is done by calculating the quantized bin
index of the scalar s based on the user-defined error (let
the quantized bin index be ϱs) and then by adding the
scalar value to the outliers O of each block. Since we
save the O separately, this operation is also performed in
a fully-compressed space.
Suppose we want to add a value say 0.67 to A. The
quantized bin value for s = 0.67 will be ϱs = 33. Hence
adding ϱs to the outlier of A i.e. OA + ϱs = −1+ 33 =
32. Finally, the metadata for the scalar addition will result
in OA = 32, PA = {0, 0, 1, 0} and ςA = {1, 1, 0, 1}.

3) Scalar Subtraction: Scalar subtraction [34] involves
subtracting a scalar value (s) from the matrix. This is
similar to scalar addition, but here the scalar quantized
value (ϱs) is deducted from the outliers O of each block.
This operation is also performed in full compressed space.

4) Scalar Multiplication: Scalar multiplication [34] in-
volves multiplying an element in a matrix. Since the
values in the matrix obtained are predicted values and
the prediction is made based on addition operations, it is
impossible to perform multiplication without exact quan-
tized values for each block. Hence, we revert the matrix
for multiplication to obtain the corresponding quantized
values denoted as ϱA. We then get the quantized value of
the scalar s as ϱs and multiply it with ϱA. These are then
reversed into compressed form to obtain a compressed
scalar multiplied matrix. As we do have to decompress
the data for scalar multiplication partially, this operation
is performed in partially decompressed space1.
Suppose we want to multiply a scalar value s =
3.14 by A. The quantized bin value for s will be
ϱs = 157. Multiplying ϱs to the quantized values for
the block ϱA = {−1,−1,−3,−3} results in ϱA =
{−157,−157,−471,−471} which is then divided by
error produced by quantization of scalar value (2 × ϵ).
The metadata for this scalar multiplication will be ϱA =
{−3,−3,−9,−9}. Finally, the compressed data will have
OA = −3, PA = {0, 0, 6, 0} and ςA = {0, 0, 1, 0}.

B. Univariate Reductions

Univariate reductions are the operations performed on one
compressed data (or matrix), which results in a single floating-
point value. We describe each reduction available in SZOps
here in detail.

1) Mean: Mean [35] is calculated as the sum of all the
elements in the matrix divided by the total number of
elements. The quantized values of the block (ϱA1) are
summed together to get block-wise addition. These block-
wise additions are then divided by the total number of
elements (m×n) to obtain the mean of the entire matrix.
This process produces a final decompressed mean value
instead of compressed data. Note that the same kernel
can be used to calculate block-wise means by adding the

1Partially decompressed space is defined as space, where the entire
decompression pipeline is not performed instead some steps of decompression,
are performed to obtain the desired results.

quantized elements ϱAi
where i = m

m′ × n
n′ of each block

and dividing each block by the number of elements in the
block (m′ × n′).
Suppose, we want to find the mean of A1 where the
quantized values ϱA1 = {−1,−1,−3,−3}. These values
are then added together, resulting in −8, which is then
divided by the number of elements (here m′ × n′ = 4)
and then finally multiplied by 2× ϵ to get the final mean
value of −0.04.

2) Variance: Variance [36] is similar to the mean operation.
Still, each quantized value is first subtracted from the
mean of the matrix, and then the obtained value is squared
and added to get block-wise additions. The block-wise
additions are then summed together and divided by the
total number of elements (m× n) to obtain the variance
of the entire matrix.

3) Standard Deviation: Standard deviation [37] operation
is similar to variance operation, which is calculated by
taking the square root of the variance of the compressed
data.

VI. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we evaluate the performance of SZOps for
different operations using 4 scientific applications across dif-
ferent domains (Section VI-A). We evaluate time performance
breakdown (Section VI-B1), throughput (Section VI-B2), and
compression ratio (Section VI-B3) based on these datasets
with error bound of 1E-4. We show the significant performance
improvement of SZOps operations over the traditional com-
pression + operation workflow operated based on SZp, which
is an outstanding ultra-fast error-bounded lossy compressor
[32].

A. Experimental Setup

1) Platforms: All the experiments are performed on a
machine with the following specifications: Each node has one
AMD Ryzen 5 3600 processor with 6 cores and 12 threads,
and 128 GB of DRAM. Each node on the system consists
of 12 logical CPUs, and our multi-threaded code uses all 12
logical CPUs per node.

2) Datasets: The datasets used for experiments are four
varied types of floating-point scientific data, as listed in Table
III. These datasets are taken from Scientific Data Reduction
Benchmarks [38] from various domains, i.e., weather simu-
lation (Hurricane ISABEL [39]), climate simulation (CESM-
ATM) [40], climate simulation (SCALE-LETKF) [41], and
turbulence simulation Data (Miranda [16]). They are com-
monly used to evaluate different lossy compressors available
in various works of literature [5], [22], [32].

3) Evaluation Metrics: For evaluating the scalar operations
provided in SZOps, we perform time cost analysis, throughput
analysis, and calculate the compression ratios. Below are the
details of these evaluation metrics.

• Time Cost (in seconds) helps determine the runtime a
compressor takes to perform a compression or decom-
pression in a compressor. In SZOps, we measure the time

265

TABLE III
SCIENTIFIC SIMULATION REAL-WORLD DATA USED IN THE EVALUATION.

Datasets # of fields Dimension Data size
Hurricane 7 500× 500× 100 1.25GB

CESM-ATM 5 3600× 1800 1.47GB
SCALE-LETKF 12 98× 1200× 1200 4.9GB

Miranda 7 256× 384× 384 1.87GB

cost by one or more kernels for its execution; hence, the
total time is the sum of the time cost by each kernel
execution. For a traditional workflow of SZp, the time
cost to operate is the sum of decompression time, the time
taken to operate, and the compression time to compress
the operated data.

• Throughput (GB/s) helps determine the gigabytes of
data that a compressor can process in the entire process:
total data divided by the time cost to process that data.

• Compression Ratio is the ratio of original data size to
the compressed data size. The compression ratio indicates
how powerful the compressor is, shrinking the original
data without losing the relevant information. In our
compressor, this pertinent information is the user’s error
bound (ϵ). We will show that our SZOps has even higher
compression ratios than SZp. This is because there is no
extra storage overhead in our operations of compression
design, and our design can compress the blocks with
outliers more effectively.

B. Performance Evaluation

First, we evaluate the overall performance of the tradi-
tional compression+operation+decompression workflow based
on multiple state-of-the-art error-bounded lossy compressors
(including SZp, SZ2, SZ3, SZx and ZFP). As shown in Table
IV, SZp significantly outperforms all other compressors (about
1.5× speedups over the second-best one – SZx). The key
reason is that SZp has the highest throughput in both com-
pression and decompression from among all the compressors
here, and the compression/decompression cost is the major
bottleneck of the whole workflow, despite lower compression
ratios compared with other compressors (as shown later VII).
Since SZp is the best compressor for the traditional workflow,
we mainly compare our SZOps with SZp in the following text,
without loss of generality.

TABLE IV
THROUGHPUT (MB/SEC) FOR DIFFERENT OPERATIONS ON HURRICANE

DATASET USING MULTIPLE COMPRESSORS WITH ϵ=1E-4. THIS
EXPERIMENT IS PERFORMED BY FIRST PERFORMING COMPRESSION ON
THE DATA, THEN DECOMPRESSING THE DATA, AND FINALLY APPLYING

DIFFERENT OPERATIONS ON THE DECOMPRESSED DATA.

Operations SZp SZ2 SZ3 SZx ZFP
Negation 384 100 81 264 108

Scalar addition 358 99 80 251 105
Scalar subtraction 369 99 81 257 106

Scalar multiplication 366 99 81 255 106
Mean 381 100 81 262 107

Variance 287 92 76 214 98
Standard Deviation 294 93 77 218 99

1) Time Cost: We evaluate the runtime for each operation
in SZOps and compare the results with SZp. For SZOps, the
time taken by each operation is calculated for the four datasets
(Table III). For SZp, we perform the following tests:

• For scalar operation: decompression of compressed data
+ operations + compression.

• For scalar reduction: decompression of compressed data
+ operation.

The time taken by each step in SZp is added to obtain the
end-to-end time each operation takes. We measure the time
for each field of the four datasets using the absolute error
bounds of 1E-4.

We observe in Figure 5 that the time cost by SZOps
reductions (blue color) is significantly lower (except for
computation-as-output for specific examples) than the time
taken by operations performed using SZp, i.e., the total time
cost on decompression, operation, and compression steps
(shown with orange, green, and red colors). The time re-
quired for scalar operations (compression-as-output) is less
as compared to the traditional SZp pipeline. This efficiency
is attributed to the utilization of kernel operations from
SZOps, which involve either partial decompression or no
decompression for certain operations such as negation, scalar
addition, and scalar subtraction (see table V). As a result, the
overhead of decompression and subsequent compression time
are substnatially reduced or even completely eliminated.

Note performing SZOps reduction operations might not
always be faster than the traditional method. However, it
still saves memory as we do not have to perform complete
decompression and store all the data in the memory to perform
reduction operations.

2) Throughput Analysis: We evaluate the throughput of
SZOps and compare it with SZp for different operations. We
measure the end-to-end throughput of SZp for each operation
using the absolute error-bound 1E-4 for each field of the four
datasets. We also evaluate the kernel throughput of SZOps
using the same absolute error bound and compare it with the
end-to-end throughput of SZp. We observe in Figure 6 that

TABLE V
REASONS TO PERFORMANCE IMPROVEMENT FOR DIFFERENT OPERATIONS

Operations Reason

Scalar operations No decompression
(partial decompression + constant blocks

only for scalar multiplication)
Scalar Reductions constant blocks + integer data operations

the throughput of SZOps (shown with navy blue color) is
higher than the end-to-end throughput of SZp (shown with
yellow color). This is because we execute all operations within
fully or partially compressed spaces while also excluding
constant block computations. As a result, time is saved during
the data decompression. Hence, more data can be processed
per unit of time, increasing the throughput of SZOps. The
throughput of reduction operations (computation-as-output) is
lowest amongst other scalar operations. This difference arises
from the prominent dependence of reduction operations on

266

(a) Hurricane (b) CESM-ATM

(c) SCALE LETKF (d) Miranda

Fig. 5. The time cost of various operations, including Decompression (orange), Operation (green), and Compression (red) times for SZp, as well as the
total time (blue) for SZOps, is compared using absolute error bounds (ϵ) of 1E-4. The total time of SZOps encompasses the kernel time taken by different
operations, including partial decompression and partial compression time taken by certain operations, as detailed in Section IV-B. Each bar is color-coded to
represent the time taken for a specific operation, as demonstrated in (a). <time taken> (- value %) on each blue bar represents the time taken by SZOps
operation and the percentage decrease in SZOps’s operation time in comparison to the corresponding SZp’s operation time, respectively, for different datasets.

the number of constant blocks (see Table VI). These constant
blocks contain zero values, enabling their exclusion during
computation.

TABLE VI
TOTAL BLOCKS AND CONSTANT BLOCKS IN EACH DATASET OVER ALL THE

FIELDS FOR ERROR BOUND (ϵ) 1E-2.

Datasets Const. blocks Total blocks % (Const./Total)
Hurricane 360827 2734375 13%

CESM-ATM 7817 506250 1.5%
SCALE-LETKF 1071863 26460000 4%

Miranda 593722 4128768 14%

3) Compression Ratio: In Table VII, we evaluate the com-
pression ratios for different compressors using an absolute
error bound of 1E-4. SZOps outperforms SZp in terms of
compression ratio but falls behind SZ, SZ3, and ZFP. The
higher compression ratios of SZ, SZ3, and ZFP can be
attributed to their advanced data decorrelation techniques, such
as dynamic interpolation and orthogonal transform, and their
effective lossless-encoding methods, such as Huffman/Zstd
[19] and embedded coding [6]. The SZOps may have a higher
compression ratio than SZp does, mainly because SZOps reor-

ganizes the outliers in the pipeline (see Figure 2), making the
linear recurrence decoding steps for combining the compressed
data for each block easier. This improvement eliminates the
need to store compressed byte length limits per block, a
significant limitation in SZp’s compression efficiency [42]. It
is worth noting that although SZOps has lower compression
ratios than other modern compressors such as SZ, SZ3 and
ZFP, it exhibits substantially higher throughputs on various
operations (see Figure 6 and Table IV): 2×-200×, which
is critical to the online execution performance of large-scale
scientific applications.

TABLE VII
AVERAGE COMPRESSION RATIOS FOR DIFFERENT SCIENTIFIC SIMULATION

DATA USING DIFFERENT COMPRESSORS.

Datasets SZOps SZp SZ SZ3 SZx ZFP
Hurricane 2.78 1.59 8.83 10 3.6 4.4

CESM-ATM 2.68 2.33 6.48 5.0 2.17 3.01
SCALE-LETKF 17.02 15.21 360.65 205.74 37.13 69.48

Miranda 6.19 4.97 24.64 27.70 5.11 8.78

267

(a) Hurricane (b) CESM-ATM

(c) SCALE LETKF (d) Miranda

Fig. 6. Kernel throughput for SZOps and end-to-end throughput for SZp using absolute error bound (ϵ) 1E-4. The performance throughput ratio of each
SZOps operation with respect to SZp is shown above each blue bar.

VII. CONCLUSION AND FUTURE WORK

We propose SZOps, an error-bounded lossy compressor that
can perform scalar operations in compressed space. SZOps
consists of a seven lightweight scalar operation and reductions.
To the best of our knowledge, this is the first attempt to de-
velop an efficient error-bounded lossy compressor that support
compression in terms of diverse types of scalar operations. We
perform experiments with real-world datasets, and show that
SZOps can achieve higher throughput and better performance
than a SZp while providing reasonable compression ratios.

In the future, we will add more operations, like multi-
variate operations, distance measures, similarity measures, and
compositions to make the tool more powerful.

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing
Research (ASCR), under contract DE-AC02-06CH11357, and
supported by the National Science Foundation under OAC
Grants 2003709, 2104023, 2311875, 2330367, 2311756, and
2313122, and CCF under Grants 2403379, 2346394, 2426055,
2217154, 2124100, and 1956106. The experimental resource
for this paper was provided by the Laboratory Computing

Resource Center on the Bebop cluster at Argonne National
Laboratory.

REFERENCES

[1] J. E. Kay and et al., “The community earth system model (cesm) large
ensemble project: A community resource for studying climate change
in the presence of internal climate variability,” Bulletin of the American
Meteorological Society, vol. 96, no. 8, pp. 1333 – 1349, 2015.

[2] “Team at princeton plasma physics laboratory employs doe supercom-
puters to understand heat-load width requirements of future-iter device,”
2021.

[3] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in IEEE International Parallel and Distributed Processing
Symposium, 2016, pp. 730–739.

[4] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 2017, pp. 1129–1139.

[5] K. Zhao, S. Di, X. Liang, S. Li, D. Tao, Z. Chen, and F. Cappello, “Sig-
nificantly improving lossy compression for hpc datasets with second-
order prediction and parameter optimization,” in Proceedings of the 29th
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 89–100.

[6] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[7] D. Tao, S. Di, Z. Chen, and F. Cappello, “In-depth exploration of single-
snapshot lossy compression techniques for n-body simulations,” in 2017

268

IEEE International Conference on Big Data (Big Data), 2017, pp. 486–
493.

[8] J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Faz: A
flexible auto-tuned modular error-bounded compression framework for
scientific data,” in Proceedings of the 37th International Conference on
Supercomputing, ser. ICS ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 1–13.

[9] X. Yu, S. Di, K. Zhao, J. Tian, D. Tao, X. Liang, and F. Cappello,
“Ultrafast error-bounded lossy compression for scientific datasets,” in
Proceedings of the 31st International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 159–171.
[Online]. Available: https://doi.org/10.1145/3502181.3531473

[10] J. Huang, J. Liu, S. Di, Y. Zhai, Z. Jian, S. Wu, K. Zhao, Z. Chen,
Y. Guo, and F. Cappello, “Exploring wavelet transform usages for
error-bounded scientific data compression,” in 2023 IEEE International
Conference on Big Data (BigData), 2023, pp. 4233–4239.

[11] X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, and F. Cappello,
“Improving performance of data dumping with lossy compression for
scientific simulation,” in 2019 IEEE International Conference on Cluster
Computing (CLUSTER), 2019, pp. 1–11.

[12] K. Zhao, S. Di, D. Perez, X. Liang, Z. Chen, and F. Cappello, “Mdz:
An efficient error-bounded lossy compressor for molecular dynamics,” in
2022 IEEE 38th International Conference on Data Engineering (ICDE),
2022, pp. 27–40.

[13] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using data
compression,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3295500.3356155

[14] Y. Liu, S. Di, K. Chard, I. Foster, and F. Cappello, “Optimizing
scientific data transfer on globus with error-bounded lossy compression,”
in IEEE International Conference on Distributed Computing Systems
(IEEE ICDCS2023), 2023.

[15] S. Li, P. Lindstrom, and J. Clyne, “Lossy scientific data compression
with sperr,” in 2023 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). IEEE, 2023, pp. 1007–1017.

[16] B. J. Olson and J. Greenough, “Large eddy simulation requirements for
the Richtmyer-Meshkov instability,” Physics of Fluids, vol. 26, no. 4, p.
044103, 04 2014. [Online]. Available: https://doi.org/10.1063/1.4871396

[17] E. Robein, “Eage e-lecture: Reverse time migration: How does it work,
when to use it,” https://youtu.be/ywdML8ndYeQ, November 15, 2016.

[18] J. Huang, S. Di, X. Yu, Y. Zhai, Z. Zhang, J. Liu, X. Lu, K. Raffenetti,
H. Zhou, K. Zhao, Z. Chen, F. Cappello, Y. Guo, and R. Thakur,
“An optimized error-controlled mpi collective framework integrated with
lossy compression,” in 2024 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2024, pp. 752–764.

[19] Y. Collet, “Zstandard – real-time data compression algorithm,”
http://facebook.github.io/zstd/, 2015.

[20] M. Martel, “Compressed matrix computations,” 2022.
[21] T. Agarwal, H. Dam, P. Sadayappan, G. Gopalakrishnan, D. B. Khal-

ifa, and M. Martel, “What operations can be performed directly on
compressed arrays, and with what error?” in Proceedings of the SC
’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, ser. SC-W ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 254–262.

[22] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE), 2021, pp. 1643–1654.

[23] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao et al., “Sz3: A modular framework
for composing prediction-based error-bounded lossy compressors,” IEEE
Transactions on Big Data, vol. 9, no. 2, pp. 485–498, 2022.

[24] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[25] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core
compression and decompression of large n-dimensional scalar fields,”
in Computer Graphics Forum, vol. 22, no. 3. Wiley Online Library,
2003, pp. 343–348.

[26] J. Liu, S. Di, K. Zhao, X. Liang, S. Jin, Z. Jian, J. Huang, S. Wu,
Z. Chen, and F. Cappello, “High-performance effective scientific

error-bounded lossy compression with auto-tuned multi-component
interpolation,” Proc. ACM Manag. Data, vol. 2, no. 1, mar 2024.
[Online]. Available: https://doi.org/10.1145/3639259

[27] Z. Jian, S. Di, J. Liu, K. Zhao, X. Liang, H. Xu, R. Underwood,
S. Wu, J. Huang, Z. Chen, and F. Cappello, “Cliz: Optimizing
lossy compression for climate datasets with adaptive fine-tuned data
prediction,” in 2024 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). Los Alamitos, CA, USA: IEEE
Computer Society, may 2024, pp. 417–429. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/IPDPS57955.2024.00044

[28] D. Wang, J. Pulido, P. Grosset, J. Tian, S. Jin, H. Tang, J. Sexton,
S. Di, K. Zhao, B. Fang, Z. Lukić, F. Cappello, J. Ahrens, and
D. Tao, “Amric: A novel in situ lossy compression framework for
efficient i/o in adaptive mesh refinement applications,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’23. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3581784.3613212

[29] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-
complexity image coding with a set-partitioning embedded block coder,”
IEEE transactions on circuits and systems for video technology, vol. 14,
no. 11, pp. 1219–1235, 2004.

[30] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “TTHRESH: Tensor
compression for multidimensional visual data,” IEEE transactions on
visualization and computer graphics, vol. 26, no. 9, pp. 2891–2903,
2019.

[31] G. Ballard, A. Klinvex, and T. G. Kolda, “Tuckermpi: A parallel
c++/mpi software package for large-scale data compression via the
tucker tensor decomposition,” ACM Trans. Math. Softw., vol. 46, no. 2,
jun 2020. [Online]. Available: https://doi.org/10.1145/3378445

[32] Y. Huang, S. Di, X. Yu, G. Li, and F. Cappello, “Cuszp: An ultra-fast
gpu error-bounded lossy compression framework with optimized end-to-
end performance,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’23. NY, USA: Association for Computing Machinery, 2023.

[33] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core
compression and decompression of large n-dimensional scalar fields,”
Computer Graphics Forum, vol. 22, no. 3, pp. 343–348, 2003.

[34] R. Bronson, Theory and problems of matrix operations. The McGraw
Hill Companies,, 1989.

[35] L. Underhill and D. Bradfield, Introstat. Juta and Company Ltd, 1996.
[36] L. Wasserman, All of statistics: a concise course in statistical inference.

Springer, 2004, vol. 26.
[37] J. M. Bland and D. G. Altman, “Measurement error.” BMJ: British

medical journal, vol. 312, no. 7047, p. 1654, 1996.
[38] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and

F. Cappello, “SDRBench: Scientific data reduction benchmark for lossy
compressors,” in 2020 IEEE International Conference on Big Data (Big
Data), 2020, pp. 2716–2724.

[39] “Ieee visualization 2004 contest data set – hurricane isabel,”
http://vis.computer.org/vis2004contest/data.html, 2004.

[40] J. W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J.
Kushner, J.-F. Lamarque, W. G. Large, D. Lawrence, K. Lindsay et al.,
“The community earth system model: a framework for collaborative
research,” Bulletin of the American Meteorological Society, vol. 94,
no. 9, pp. 1339–1360, 2013.

[41] SCALE-LETKF simulation, https://github.com/SCALE-LETKF-
RIKEN/scale-letkf/tree/5.4.5-v1, 2023, online.

[42] A. N. Laboratory, “Szp-a lossy error-bounded compression library for
compression of floating-point data using openmp acceleration.” 2023.

269

