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Abstract—We propose a systematic approach that leverages
automatic differentiation (AD) to scrutinize every element within
variables (e.g., arrays) necessary for checkpointing. This allows us
to identify critical and uncritical elements and eliminate uncritical
elements from checkpointing. Specifically, we inspect every single
element within a variable necessary for checkpointing with an
AD tool to determine whether the element has an impact on the
application output (numerical results) or not. We validate our
approach with all benchmarks from the NAS Parallel Benchmark
(NPB) suite. We successfully visualize the distribution of critical
and uncritical elements within a variable with respect to its binary
impact (yes or no) on the application output. We find patterns and
distributions of critical and uncritical elements quite interesting.
We find that all elements that have no impact on the output
are not engaged in computation; it is not the fact that those
elements are involved in computation but have no impact on the
output. Finally, the evaluation of NPB benchmarks shows that
our approach saves storage for checkpointing by up to 19%.

I. INTRODUCTION

As High Performance Computing (HPC) systems continue
to advance in both scale and complexity, failures are observed
at a higher frequency at leadership HPC systems [9], [12], [14]–
[19], [26], which affects system reliability significantly. On the
other hand, HPC systems are constrained in terms of storage
capacity. Although the storage capacity is growing rapidly, the
datasets are also ever-growing in size and speed [49], [50]. For
example, the digital twin of earth workflow running on Summit
at Oak Ridge National Laboratory can generate over 500 TB
of data every 15 minutes [40]. As a consequence, effective
storage management continues to be a critical challenge.

In response, we investigate application-level C/R ap-
proaches [2], [20], [36] and aim to reduce the application states
(i.e., variables) necessary for checkpointing. Checkpoint/Restart
is an essential fault-tolerant approach that stores the running
state of the programs periodically and restarts from the latest
stored state, which advances system reliability upon failures.
However, the storage consumption of C/R checkpoints can be
very large without careful inspection. For example, system-
level C/R methods (e.g., BLCR [20]) save all corresponding
system state which leads to notable storage consumption.
Moreover, at the application level, a variable like a high-
dimensional tensor can incur substantial costs in terms of

storage consumption. (e.g., the GPT-3 model which is a tensor
that can take 700 GB [7] if fully checkpointed). However,
based on our observation, not every element within the variable
participates in computation or can impact the result even if
involved in computation.

Our goal is to identify the critical/uncritical elements within
the variables necessary for checkpointing. An uncritical element
is defined as an element that has no impact on the output; and
vice versa. In particular, we propose an effective approach that
uses AD to scrutinize every element within a variable (e.g.,
arrays) and determine whether it is critical or uncritical. This
allows uncritical elements to be eliminated from checkpointing
for storage efficiency. Automatic differentiation (AD) is a
technology that computes the derivative of the programs.
We further visualize the distribution of the critical/uncritical
elements within each variable for checkpointing. We also
attempt to find the reason why they become critical/uncritical
by delving into the source code and algorithm. We find that
in some cases the critical/uncritical elements are determined
by the algorithms. For example, some elements are declared
and initialized but not engaged in computation because of the
algorithm (e.g., sampling). In other cases, uncritical elements
are caused by imperfect programming. For instance, extra space
is allocated in the declaration but not engaged in computation.
Finally, we evaluate our approach on the NPB [1] benchmark
suite and the results show that by eliminating uncritical
elements from checkpointing the storage for checkpointing
is reduced by an average of 13% and up to 19%.

In this paper, our contributions are listed as follows:

• A novel method that can identify critical elements within
variables necessary for checkpointing that have an impact
on the execution output without checkpointing the entire
variable.

• Visualization of the distribution of critical-uncritical
elements within variables necessary for checkpointing
and investigation into its relation to the source code and
algorithm.

• Evaluation of the proposed method on the NAS Parallel
Benchmarks (NPB) [1] benchmarks.
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II. BACKGROUND

A. Checkpoint/Restart

Checkpoint/Restart has become a representative of fault-
tolerant measures to address system failures throughout the
years. Checkpoint/Restart enables programs to store the running
state to checkpoint files at a specific interval, and recover from
the latest storage once a failure occurs. Due to the different
resilience requirements of users, the frequency of checkpointing
varies in different HPC applications.

However, as HPC systems grow in scale, size, and complex-
ity, the occurrence of system failures is observed more fre-
quently. To cope with this, the frequency of writing checkpoints
has been increasingly higher, which makes the checkpointing
overhead higher than ever. On the other hand, the amount of
data and the number of variables for checkpointing are growing
which can also have a significant impact on performance.

Various C/R libraries have been created for various purposes
through the years [6], [22], [25], [34]–[36], [39], [42]. Michel
et al. [41] presented a C/R package that supports automated
generation of the store and restore for the checkpointed object
type. Moody et al. [32] developed a scalable checkpoint/restart
(SCR) library, a multi-level checkpoint system that can save
checkpoints to the computing node’s RAM, Flash, disk, and
parallel file system. Hargrove et al. [20] created the Berkeley
Lab Checkpoint/Restart (BLCR) library, which provides system-
level checkpointing for the Linux kernel. Gholami et al. [13]
combined XOR and partner checkpointing to develop a stable
and efficient C/R approach. Vasavada et al. [46] proposed a
page-based incremental checkpoint approach by which memory
writes are tracked by trapping dirty pages to be saved. The Fault
Tolerant Interface (FTI) [2] is a three-level checkpoint scheme
with a topology-aware Reed-Solomon encoding integration.
In contrast, in this work, we further delve into the variables
necessary for checkpointing to identify critical and uncritical
elements for checkpointing.

B. Automatic differentiation

Automatic differentiation (AD) [38] is used for computing
the derivative of a function. Automatic differentiation is widely
employed in many fields [8], [11], [23], [28], [43], [44] , such
as partial differential equation (PDE) solutions [4], stability
analysis [27], uncertainty quantification (UQ) [48], silent data
corruption (SDC) prediction [29]. Paszke et al. [37] provide
a library that aims at rapid research on various machine-
learning models, an automatic differentiation module of Pytorch.
Minkov et al. [30] use an automatic differentiation library
to optimize the ultrasmall cavity’s quality factor and the
dispersion of a photonic crystal waveguide. Krieken et al. [24]
propose a stochastic automatic differentiation framework that
minimizes the gradient estimates’ variance. Virmaux et al. [47]
provide an algorithm working with automatic differentiation,
which benefits the computations for extending and improving
estimation methods. Crooks [5] provides a study on the
optimization of quantum circuits using automatic differentiation
for the maximum cut problem.

Fig. 1: An example of AD workflow. a is a constant.

AD considers a computer program as a function, which
is a combination of a series of basic arithmetic operations
that are regarded as primitive functions. AD computes the
derivative of the primitive functions to compute the derivative
of the output to the program. In this process the chain rule of
differential calculus was used, so that the program can compute
the derivative of the desired target. For example, a function
looks like:

F = f(y) = f(u(x), v(x)) (1)

Assume that we want to compute the derivative df
dx . There

are two main strategies of AD tools: forward mode and reverse
mode. The forward mode computes du

dx and dv
dx at first, then

computes dy
du and dy

dv , finally computes df
dx based on the chain

rule. On the contrary, the reverse mode computes df
dy and then

dy
du and dy

dv .
We give an example of the reverse mode of AD in Figure 1.

In reverse mode, AD first sweeps through the forward execution
and obtains the information about the program such as variables,
branches, and iterations. With the information obtained, AD
computes the partial derivative of each operation and calculates
the final derivative by the chain rule.

There are different AD tools like ADIC [3], Tapenade [21],
OpenAD [45], Enzyme [33], etc. Enzyme [33] is an LLVM
compiler-based AD tool that performs reverse mode. Enzyme
is a state-of-the-art AD tool that supports various optimizations
on different hardware platforms and programming models. We
thus use it and leverage AD to pinpoint critical and uncritical
elements within the variables necessary for checkpointing.

III. APPROACH

Our goal is to identify uncritical elements within selected
variables necessary for checkpointing that have no impact on the
output and critical elements that impact the output. A variable is
defined as a memory location that is paired with an associated
symbolic name. This symbolic name is then referenced in the
source code and invoked during execution. For example, a float-
point type array arr declared by double arr[5] is a variable
and arr[0] is an element. An uncritical element is defined as
an element that has zero impact on the output; and vice versa.
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Fig. 2: Derivatives with different encapsulations

Specifically, we want to pinpoint, given an element x,
whether it has an impact on the output or not. Leveraging
AD, we can calculate the derivative of the output with
respect to the element x. The binary impact of each element
is determined by its derivative with respect to the output. If
the derivative is zero, we believe it has no impact; otherwise,
it has an impact.

The main computational loop (the outermost loop within the
main function) may be encapsulated within a specific function
or it may be an independent loop structure code block within
the main function. To enable AD to analyze the impact of each
element within a variable on the output, it is essential to 1)
identify the code region that includes the variable as input,
the computation the variable is involved, and the output; 2)
adjust the code region (required by Enzyme), encapsulated by
a function, where the variable in question is made as input
parameter; the output is returned. This step is crucial because
the results of AD can vary using distinguished encapsulations.
When the analysis scope defined for AD changes, the derivative
can be different. Figure 2 illustrates an example of distinct
encapsulations. When the encapsulation is specified in lines
7-8 (blue box), the derivative of variable out with respect to a
is 1. When the encapsulation is specified in lines 6-8 (red box),
the derivative dout

da = dc
da + db

da = 5. We assume that no failure
occurs during AD analysis, the result of AD can guide future
C/R practice. For each different input, we need to perform AD
again.

IV. EVALUATION

We evaluate our approach with the NPB [1] benchmarks (the
C version by Seoul National University). First, we determine
the variables necessary for checkpointing in each benchmark.
Second, the proposed AD approach is used to identify criti-
cal/uncritical elements within checkpointing variables. Third,
we visualize the distributions of the critical/uncritical elements
within each variable necessary for checkpointing. Finally, we
verify the AD results.

A. Variables necessary for checkpointing

All the variables necessary for checkpointing in the bench-
marks are determined using AutoCheck [10], an automatic tool
to identify variables for checkpointing, following principles
defined by the recent work of Fu et al. [9]. They are listed in

TABLE I: Identified variables necessary for checkpointing. All
the variable sizes are determined by the input class of S which
is easier to visualize.

Benchmark Variables and their data types
BT double u[12][13][13][5], int step
SP double u[12][13][13][5], int step
MG double u[46480], double r[46480], int it
CG double x[1402], int it
LU double u[12][13][13][5], double rho i[12][13][13],

double qs[12][13][13], double rsd[12][13][13][5],
int istep

FT dcomplex y[64][64][65], dcomplex sums[6], int kt
EP double sx, double sy, double q[10], int k
IS int passed verification, int key array[65536],

int bucket ptrs[512], int iteration

Table I. We consider all of them in our study. The variables
are described as follows:

BT and SP: u is the solution to the nonlinear partial
differential equations (PDEs); step is the main loop index.

MG: u is the solution to the three-dimensional discrete
Poisson equation; r is the residual of the equation; it is the
main loop index.

CG: x is the input vector of the linear system of equations;
it is the main loop index.

LU: u is the solution to the nonlinear partial differential
equations (PDEs); rho i is the relaxation factor in the Sym-
metric Successive Over-Relaxation method; qs is a variable for
computing the flux differences; rsd is a variable for computing
the final residual; istep is the main loop index.

FT: y is the output signal of Fast Fourier Transform at
frequency domain; sums aggregates the sums computed from
all iterations; y and sums are of custom data type dcomplex,
containing two attributes, real of double and imag of
double. kt is the main loop index.

EP: sx and sy are the sums of independent Gaussian deviates
at the X and Y dimensions respectively; q is the number of
pairs of coordinates at X and Y ; k is the main loop index.

IS: passed verification is the verification counter;
key array is the array that stores the keys of bucket sort;
bucket ptrs is the pointer of the ‘bucket’ in bucket sort;
iteration is the main loop index.

B. Automatic differentiation analysis

BT [1]: BT is one of the NPB benchmarks that implements
a Block Tri-diagonal solver to tackle three sets of equations.
For BT, there are two variables necessary for checkpointing,
a four-dimensional array u and an integer step. step is the
index of the main loop. step is a scalar that has an impact on
the output as it is necessary for checkpointing. Its impact is
obvious as the index variable of a for-loop. u contains 10,140
elements with the input class of S. We calculate the derivative
at each element of u by AD to pinpoint their impact on the
output. There are 8640 critical elements (there is impact) and
1500 uncritical elements (no impact). The uncritical elements
are accounted for 14.8% of the total elements within u.

To further understand the distribution of critical and un-
critical elements, we aim to visualize the distribution of
critical-uncritical elements. This is very challenging as u is a
12× 13× 13× 5 four-dimensional array. Fortunately, we find
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Fig. 3: A typical critical-uncritical distribution in NPB
benchmarks(red: critical, blue: uncritical). Variables
following this distribution: u(BT ), u(SP ), u[x][y][z][0](LU),
u[x][y][z][1](LU), u[x][y][z][2](LU), u[x][y][z][3](LU),
rho i(LU), qs(LU), rsd(LU)

Fig. 4: A code snippet of the function error norm in BT

that u can be decomposed into five three-dimensional arrays
of 12× 13× 13. We find that all five three-dimensional arrays
share the same critical-uncritical distribution pattern. We show
one of the three-dimensional arrays in Figure 3.

The critical-uncritical distribution is quite interesting, in
which uncritical elements are represented in blue and critical
elements are represented in red; the uncritical elements are
distributed on the two surfaces of the cube at y = 12 and
z = 12; the remaining elements are critical.

We attempt to understand the underlying logic of the
distribution by making connections to the source code and
algorithm. After digging into the source code, we find that
the error norm function is the one that creates the specific
critical-uncritical distribution in u. The error norm function
can be found at Line 41 in the error.c file of the BT source
code. We provide the part of the source code of error norm
that operates on u in Figure 4, where u is used at Line 10.
We observe that the range variables, grid points[0] (see Line
5), grid points[1] (see Line 3), and grid points[2] (see Line
1), all have a value of 12. Given fixed m, recalling that u is
u[12][13][13][5] while the access range is from zero to 11 for

Fig. 5: Critical-uncritical distribution of array u in MG. The red
bar represents 39304 continuous critical elements in the data
structure, followed by the 7176 continuous uncritical elements.

k, j, and i, we observe that the elements are not used at j = 12
and i = 12, mapping to axes Y and Z in Figure 3. Therefore,
the elements at y = 12 and z = 12 are uncritical because they
did not participate in computation. This is an interesting finding
when uncritical elements are caused by imperfect coding.

SP [1]: SP is a Scalar Pentadiagonal solver similar to
BT . The analysis process is similar to BT because of the
similar code structure to BT . The two variables necessary for
checkpointing in SP are the same as BT , a four-dimensional
array u, and an integer step. We find the exactly same critical-
uncritical distribution in u as we found in u in BT. Again, the
error norm function operates on u and creates the particular
critical-uncritical distribution in u. SP invokes the same
function error norm at Line 41 in error.c, which is the
exactly same as is invoked in BT . step is the index of the
main loop that is needed for checkpointing.

MG [1]: The MultiGrid algorithm employs the V-cycle
multigrid method to efficiently solve a three-dimensional
discrete Poisson equation. Our method is evaluated on MG
of NPB benchmarks with the input class of S. The variables
necessary for checkpointing in this program are integer it,
array u of 46480 elements, and array r of 46480 elements. it,
the index of the main loop, is critical for checkpointing.

We find 7176 uncritical elements in u and 10543 uncritical
elements in r, respectively, accounting for 15.3% and 22.4%
of all the elements. We find that the variable u is transformed
into a 34 × 34 × 34 three-dimensional array in MG to be
used in the computation. In effect, there are only 34× 34× 34
elements of u participating in the computation.

We visualize the critical-uncritical distribution of u in Figure
5, which shows that there are 39304 (34×34×34) continuous
critical elements, followed by 7176 continuous uncritical ones
within array u. However, r has a more complex pattern of
critical-uncritical distribution as the invoked elements are
triggered by an integer array ir. Figure 6 shows a repetitive
pattern as part of the critical-uncritical distribution of r.

CG [1]: The Conjugate Gradient method utilizes the con-
jugate gradient and inverse iteration methods as a solution
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Fig. 6: Critical-uncritical distribution of of array r in MG. The
bars represent a certain pattern followed by a blue bar of 35
uncritical elements.

Fig. 7: Critical-uncritical distribution of array x in CG. The
red bar represents 1400 continuous critical elements in the data
structure, followed by the 2 continuous uncritical elements.

to linear equations. There are two variables necessary for
checkpointing in CG: an integer it that is the index of the
main loop, and an array x of length 1402. Figure 7 shows
the distribution of critical-uncritical regions of x in CG. The
first 1400 continuous elements are critical, and the remaining
2 elements are uncritical. x is first read as an input and then
updated (written) within the main loop. After delving into the
source code, we find that x has a size of NA+ 2, in which
NA is a macro that has the value of 1400 for the S class, and
only the first NA elements participate in computation. it is
required for checkpointing.

LU [1]: LU is the Lower-Upper Symmetric Gauss-Seidel
solver, which is a numerical method to solve linear systems
of equations. There are five array variables necessary for
checkpointing in LU, which are u, rho i, qs, rsd, and istep.
istep is the index of the main loop necessary for checkpointing.

u: There are 10140 elements in array u, in which 1628
elements are uncritical, accounting for 16% of all elements.
The variable u here is slightly different from u in BT and
SP , although they are in the same data type and size (i.e.,
double u[12][13][13][5]). There are five 12 × 13 × 13 3D
arrays in u. We find that each of the first four 12× 13× 13
3D arrays follows the critical-uncritical distribution in Figure 3

Fig. 8: Critical-uncritical distribution of u[x][y][z][4] in LU
(red: critical, blue: uncritical)

exactly. However, the fifth, u[x][y][z][4], follows a different
critical-uncritical distribution shown in Figure 8.

After delving into the source code, we find that u[x][y][z][4]
participates in multiple discontinuous computations unlike
u[x][y][z][0−3] that is utilized in separate computations akin to
Figure 4. We find that the components of u[x][y][z][4] used in
multiple discontinuous computations are u[1− 10][1− 10][0−
11][4], u[1− 10][0− 11][1− 10][4], and u[0− 11][1− 10][1−
10][4], which constitute the critical (red) area in Figure 8. We
also find that there are 128 more uncritical elements (on the
edges) not participating in computation compared with the
critical-uncritical distribution in Figure 3.
rho i and qs: We find that there are 300 uncritical out of

2028 elements in rho i. Particularly, there are 12×12×12 out
of 12× 13× 13 elements participating in computation, which
leads to the same critical-uncritical distribution in Figure 3. It
is the same case for qs.
rsd: rsd is the same as u in BT: they are in the same size

and participate in the same computation that results in the
same critical-uncritical distribution (Figure 3).

FT [1]: FT executes a 3D Fast Fourier Transform on a grid
of three-dimensional points. There are three variables necessary
for checkpointing in FT : a 64 × 64 × 65 three-dimensional
array y, containing 266,240 elements, and each element is a
custom data structure dcomplex with two attributes imag and
real of floating point type; a dcomplex array sums of length
6; and an integer kt. kt is the index of the main loop required
for checkpointing.
y: we find 4096 uncritical of all 266240 elements. Figure

9 shows the critical-uncritical distribution, in which only the
top layer (in blue) at k = 64 does not participate (not used) in
computation. This is due to imperfect coding, which can be
avoided not only for code safety but also for efficient usage
of memory and storage and also for checkpointing efficiency.
sums: sums stores the result computed at each iteration of

the main loop. Therefore, it is critical to write it to storage to
avoid loss of computed results upon a failure.

EP [1]: The embarrassingly parallel (EP) generates a pair
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Fig. 9: Critical-uncritical distribution of y in FT

of random numbers that follow a normal distribution. The
variables necessary for checkpointing are floating-point sx and
sy, array q, and integer k. Both sx and sy are write-after-read
which is necessary for checkpointing. k is the index of the main
loop that is required for checkpointing. q stores the output at
each iteration of the main loop, so we must write it to storage
to avoid recomputation upon a failure.

IS [1]: IS is a bucket sorting method specifically de-
signed for sorting small integers. The variables necessary for
checkpointing in IS are integer passed verification, integer
iteration, integer arrays key array, and bucket ptrs.

Again, passed verification is write-after-read, which is
necessary for checkpointing. iteration is the index of the
main loop that is a critical variable for checkpointing. Like
iteration, key array and bucket ptrs store the indexes for
other arrays which makes them critical for checkpointing.

Benchmark(variable) Uncritical Total Uncritical rate

BT(u) 1500 10140 14.8%
SP(u) 1500 10140 14.8%
MG(u) 7176 46480 15.4%
MG(r) 10543 46480 22.7%
CG(x) 2 1402 0.1%
LU(qs) 300 2028 14.8%
LU(rsd) 300 2028 14.8%

LU(rho i) 1500 10140 14.8%
LU(u) 1628 10140 16.0%
FT(y) 4096 266240 1.5%

TABLE II: Number of uncritical elements
We summarize the number of uncritical elements along

with the respective percentage they represent in relation to the
total elements for all variables necessary for checkpointing in
Table II.

C. Verifying AD results

To verify that the uncritical elements detected by AD are not
needed and the critical elements are critical for checkpointing,
we implement a homemade checkpointing library that writes
only critical elements to checkpoint files. In contrast to
comprehensive C/R libraries, such as SCR [31], our homemade
C/R library only supports C/R by writing checkpoints to a
local file and restarting the execution from the latest checkpoint

Benchmark Original Optimized Storage saved

BT 79.4kb 67.7kb 14.8%
SP 79.4kb 67.7kb 14.8%
MG 727kb 588kb 19.1%
CG 10.9kb 10.9kb 0.1%
LU 191kb 161kb 15.7%
FT 4161kb 4097kb 1%

TABLE III: Storage consumption for checkpointing
file. This C/R library is basic but sufficient for verifying the
identified variables’ correctness using our methodology. All
NPB benchmarks have their own verification phase, which uses
a margin of error to determine if the computation is successful
or failed. We rely on their verification to determine the AD
result’s correctness. In principle, the uncritical elements should
not impact the computation correctness even if their values
are altered by system failures. On the other hand, the critical
elements must impact the execution output, and the verification
is expected to fail if they cannot recover from failures. It turned
out that, all benchmarks restarted successfully and passed
the verification upon only checkpointing the critical elements.
This demonstrates the effectiveness of the AD analysis for
scrutinizing variables for checkpointing.

D. Storage for checkpointing
We show the comparison of checkpointing storage before

and after eliminating uncritical elements in Table III. As it
shows, the storage saved is consistent with the uncritical rate
in Table II.

V. DISCUSSION

The uncritical elements for checkpointing we find in the NAS
Parallel Benchmark suite are not involved in the computation,
which is mostly caused by programming defects (i.e., extra
space is allocated in the declaration but not engaged in
computation). Those programming defects can be avoided not
only for high-quality code and code safety but for efficient
usage of memory and storage and also for high-performance
checkpointing.

VI. CONCLUSION

We propose a systematic approach that utilizes automatic
differentiation (AD) to meticulously examine each element
within variables, such as arrays, for checkpointing. This enables
us to distinguish between critical and uncritical elements and
exclude the latter from the checkpointing process. To be more
specific, our method involves a thorough inspection of each
individual element within a variable using an AD tool to
determine its impact on the application output. We validate
our approach using all benchmarks from the NAS Parallel
Benchmark (NPB) suite. The patterns and distributions of
critical and uncritical elements pique our interest. We find
that uncritical elements are not engaged in computation at
all. It is not the case that they participate in computation but
have no impact on the output. Finally, the evaluation of our
approach on NPB benchmarks reveals reduction in storage
consumption for checkpointing. For future work, we aim to
apply the methodology to real-world scientific or computational
problems to assess its practical utility and impact.
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