A Scalable Training-Free Diffusion Model for
Uncertainty Quantification

Ali Haisam Muhammad Rafid
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA, USA
haisamrafid @vt.edu

Siming Liang Feng Bao

Jungi Yin Yuwei Geng

National Center of Computational Science Department of Mathematics
Oak Ridge National Laboratory
Oak Ridge, TN, USA

University of South Carolina
Columbia, SC, USA
yinj@ornl.gov ygeng @email.sc.edu

Lili Ju Guannan Zhang”

Department of Mathematics Department of Mathematics Department of Mathematics Computer Science and Math Division

Florida State University
Tallahassee, FL, USA
sliang @fsu.edu

Tallahassee, FL, USA
fbao@fsu.edu

Abstract—Generative artificial intelligence extends beyond its
success in image/text synthesis, proving itself a powerful uncer-
tainty quantification (UQ) technique through its capability to
sample from complex high-dimensional probability distributions.
However, existing methods often require a complicated training
process, which greatly hinders their applications to real-world
UQ problems, especially in dynamic UQ tasks where the target
probability distribution evolves rapidly with time. To alleviate this
challenge, we have developed a scalable, training-free score-based
diffusion model for high-dimensional sampling. We incorporate
a parallel-in-time method into our diffusion model to use a large
number of GPUs to solve the backward stochastic differential
equation and generate new samples of the target distribution.
Moreover, we also distribute the computation of the large
matrix subtraction used by the training-free score estimator
onto multiple GPUs available across all nodes. Compared to
existing methods, our approach completely avoids training the
score function, making it capable of adapting to rapid changes in
the target probability distribution. We showcase the remarkable
strong and weak scaling capabilities of the proposed method on
the Frontier supercomputer, as well as its uncertainty reduction
capability in hurricane predictions when coupled with AI-based
foundation models.

I. INTRODUCTION

Generative artificial intelligence (AI) extends beyond its
success in image/text synthesis, proving itself a powerful un-
certainty quantification (UQ) technique through its capability
of learning complex high-dimensional probability distribu-
tions. Density estimation is a fundamental problem in UQ,
involving approximating a probability density function (PDF)
of a given set of observation data and generating an unlimited

This manuscript has been authored by UT-Battelle, LLC, under contract
DE-AC05-000R22725 with the US Department of Energy (DOE). The US
government retains and the publisher, by accepting the article for publica-
tion, acknowledges that the US government retains a nonexclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for US government purposes. DOE
will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan.

* Corresponding author

979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00057

Florida State University University of South Carolina
Columbia, SC, USA

380

Oak Ridge National Laboratory
Oak Ridge, TN, USA

ju@math.sc.edu zhangg @ornl.gov

amount of samples from the target PDF. This process helps
to uncover the underlying structure and distribution of the
data, which is critical to a variety of UQ tasks including
stochastic optimization, Bayesian inference and data assimi-
lation. Generative models, leveraging the expressive power of
deep neural networks, have revolutionized various domains, in-
cluding image synthesis, image denoising, anomaly detection,
and natural language processing. Prominent generative model-
ing techniques include variational auto-encoders (VAEs) [13],
generative adversarial networks (GANs) [9], normalizing flows
[14], [26], and diffusion models [2], [19], [23]-[25]. Each of
these methods offers unique strengths and has contributed to
significant advancements in the field.

Despite their success, training generative models for UQ,
particularly in an unsupervised manner, presents several chal-
lenges. GANSs, for instance, often suffer from issues such as
mode collapse, vanishing gradients, and training instability.
Normalizing flows, on the other hand, face computational
inefficiency due to the determinant calculation of the Jaco-
bian matrix. Even though using specifically designed bijec-
tive neural network architectures can accelerate the Jacobian
computation, the bijective architectures often impose a sig-
nificant constraint to the expressive power of the resulting
normalizing flow model. Score-based diffusion models, while
promising, also encounter difficulties related to training the
score function needed for solving the backward stochastic
process. The performance of diffusion models could dramati-
cally deteriorate when the target PDF is dynamically updated,
e.g., in the context of data assimilation. To avoid training the
score function, the authors in [17] proposed a novel training-
free score estimation scheme that uses Monte Carlo (MC)
estimator to directly approximate the closed form of the score
function. Avoiding training the score function makes it easier
to integrate diffusion models into a general UQ framework,
especially for solving dynamic UQ problems where the target
PDF evolves over time.

However, there are a couple of computational challenges
associated with the training-free diffusion model that need
to be addressed by exploiting high-performance computing
(HPC). First, to ensure the accuracy in UQ, we need to reach
the convergence in solving the backward stochastic differential
equation (SDE) of the diffusion model with a large number of
time steps. The sequential nature of traditional time stepping
schemes makes it a very inefficient process. Second, the
estimation of the score function requires a large and dense
matrix operations. When the dimension of the target random
variable is very large (e.g., on the order of O(107) for the
example in Figure 4), a single GPU does not have sufficient
memory to perform the matrix operations, such that multiple
GPUs are needed.

We address the aforementioned challenges by developing a
scalable implementation of the training-free diffusion model.
Our algorithm has two key components. The first is to im-
plement a parallel-in-time method, specifically the Parareal
algorithm [16], to accelerate the time-to-solution in solving
the backward SDE of the diffusion model. The Parareal
algorithm is a numerical method used to solve time-dependent
differential equations by enabling parallel computation across
multiple time steps. It achieves this by dividing the overall time
domain into smaller subintervals, solving them concurrently
using a coarse predictor and iteratively refining with a fine
corrector to enhance accuracy and efficiency. With Parareal,
we can distribute the computational burden of solving the
backward SDE onto many GPUs on a supercomputer. The
second component is to distribute the computation of the
large matrix subtraction used by the MC-based score estimator
onto multiple GPUs available across all nodes. Each GPU
receives a corresponding chunk for further calculation. The
score is then calculated on each GPU for the chunk assigned
to that GPU. After computation, the results are concatenated
on the main GPU. We showcase the remarkable strong and
weak scaling capabilities of the proposed method on the
Frontier supercomputer, as well as its uncertainty reduction
capability in hurricane predictions when coupling with Al-
based foundation models, e.g., FourCastNet [15].

A. Related work

Generative models, particularly Generative Adversarial Net-
works (GANs) and Diffusion Models, have significantly ad-
vanced the field of machine learning by enabling the gen-
eration of realistic data. However, the scalability of these
models—defined as their ability to maintain performance
while increasing the scale of data and model size—remains a
critical research area. As GANs scale, they often suffer from
mode collapse, where the generator produces limited varieties
of outputs. Larger GANs are harder to train due to issues
like vanishing gradients and the need for careful balancing
between the generator and discriminator. The iterative nature
of diffusion models, which often requires hundreds or thou-
sands of steps, makes them computationally expensive. As the
model size and data dimensionality increase, the training and
inference time can grow significantly.

381

Some solutions to the scalability issue have been proposed
in the literature. Progressive Growing of GANs (ProGAN)
[12] is an approach that starts with low-resolution images and
gradually increases the resolution, allowing the model to learn
finer details incrementally. BigGAN [4] introduced techniques
like class-conditional generation and spectral normalization
to stabilize training and improve scalability. Recently, Lada-
GAN [20] was proposed that uses novel transformer blocks
for both the generator and the discriminator, which reduces
the computational complexity and the instability of training
GAN. [6] discussed improving diffusion models’ architecture,
focusing on reducing the number of parameters while main-
taining performance. They introduced improvements such as
attention mechanisms and residual connections, optimizing the
model’s efficiency. [23] introduced a score-based generative
model framework that leverages continuous-time stochastic
differential equations (SDEs) for more efficient sampling. This
approach reduces the number of denoising steps, lowering
memory and computation requirements.

II. PROBLEM SETTING

One central task in UQ is high-dimensional sampling, i.e.,
drawing samples from a high-dimensional unknown distribu-
tion. Specifically, we aim to learn how to generate an unlimited
number of samples for a target d-dimensional random variable,
denoted as

X eR? and X ~ px(x), (1)

where px () is the PDF of the random variable X. We will
achieve this task using generative Al models. In the context
of UQ, a generative Al model defines a transport map

X =F(Y) with Y € R?,)

from a reference variable Y, following the standard nor-
mal distribution, to the target random variable X. Once the
transport model is built, we can generate unlimited number
of samples of X by firstly sampling Y from the standard
normal distribution and then passing these samples through
the transport map F'(y).

How to construct the transport model F' in Eq. (2) has been
extensively studied in the machine learning community using
normalizing flow models [5], [7], [10], [11], [14], [21], [22],
where F'(y) is defined as a bijective neural network. The draw-
back of this approach is the necessity for specially designed
reversible architectures for F(y) to efficiently perform back-
propagation through the computation of |det(D(F~!(x)))|.
The score-based diffusion models overcome such drawback
by using stochastic processes to construct the transport map
F'in Eq. (2), such that bijective neural networks are no longer
needed. However, the score-based diffusion model still re-
quires a fairly complicated training process, i.e., using a neural
network to learn the score function. This may be important
to the quality of generated images in image synthesis, but
not necessary in solving the sampling problem for UQ tasks.
Moreover, many UQ tasks, e.g., data assimilation, requires
frequent update of the transport map F' in Eq. (2) because

the target PDF px () is also time-dependent. In this case, the
performance of existing diffusion models will be dramatically
hindered by the inefficient training process. We will address
this challenge by using a training-free diffusion model that can
be scaled on modern GPU-bases supercomputers like Frontier.

III. METHODOLOGY

A. Training-free diffusion models

The score-based diffusion model defines the transport be-
tween the target random variable X and the standard normal
random variable Y in Eq. (2) using two SDEs. The transport

from X to Y is defined by the following forward SDE:
dZy = b(t) Zydt + o (t)dWy, 3)

where W, is the standard Brownian motion. In this work, the
coefficients b(t) and o(t) are defined by

_dlogay) o dfE _dogar)

be) = B, g2 = UL o TEMW
where the functions «(¢) and 3(t) are defined by

a;=1—t and 57 =t,)

for ¢ € [0,1]. This choice of b(t) and o(¢) ensures that the
forward SDE in Eq. (3) can transport any distribution of X to
the standard normal distribution Y when letting Zy = X, i.e.,
let the initial state Z, be the target random variable [18].
The map F' is in the opposite direction from the forward
SDE, which is defined by the backward SDE of the form

dZ, = [b(t)Z, — o2(1)S(Z,, O)]dt + o()dW, (6

where 71 =Y, Zy = X, ﬁ/t is the backward Brownian
motion and S(Z;,t) is the score function of the form

S(Zi,t) = Vieg(Q(Zy, 1)), Q)

with Q(Z;,t) being the PDF of the state Z; in Eq. (3). When
the score function is known, we can generate samples of the
target random variable X by first generating samples from the
standard normal distribution and pushing the samples through
the backward SDE. Therefore, the key task in constructing a
diffusion model is to approximate the score function in Eq. (7).
Instead of using a neural network to learn the score function,
we use the training-free score approximation based on the
following closed-form representation of the score function:

S(Zu,t) =V.log (/ Q(Zt|Z0)Q(Z0)dZO)

[22 20)Q(Z0)dZ

(®)
Q2| Zy)Q(24)dZ;,
Zy — oy 2
—— [F w2 Z0)Q)0
i
where the weight function w(Z, Zy) is defined by

w(Zy, Zo) = Q(Zi| Zo)/ [Q(Z:| Z})Q(Z})dZ] satisfying the
condition [w(Z;, Zy)Q(Zo)dZy = 1. Then, the integrals in
Eq. (8) can be approximated by MC estimation with the

382

samples from the target PDF, i.e., Q(Zy) in Eq. (8) (See [17]
for detailed derivation of the MC estimator). To speedup the
solution of backward SDE in Eq. (6), we need to overcome
two challenges:

o Sequential time-stepping solver for the SDE in Eq. (6).
To ensure the accuracy in UQ, we need to reach the
convergence in solving the backward SDE with a large
number of time steps. The sequential nature of traditional
time stepping scheme makes it a very inefficient process.

o Large dense-matrix operation in score estimation. The
estimation of the score function requires a large matrix-
matrix subtraction, i.e., Zy — oy Zp in Eq. (8). When the
dimension of the target random variable X is very large
(e.g., on the order of @(107) for the example in Figure 4),
a single GPU does not have sufficient memory to perform
the matrix operation.

The above two challenges will be addressed using HPC in the
following two subsections.

B. The parallel-in-time scheme for the diffusion model

This subsection describes the parallel-in-time scheme for
efficiently solving the diffusion model. Specifically, we em-
ploy the Parareal algorithm [16], which has been demonstrated
to be a scalable discretization scheme for solving dynamical
systems. Because the Parareal algorithm cannot be applied to
SDEs, we first convert the backward SDE in Eq. (6) to an
ordinary differential equation (ODE), i.e.,

dZ, = |b(t)Z, — %az(t)S(Zt,t) dt,)
where b(t), o(t) and S(Z;,t) are the same as in Eq. (6).
According to [17], [24], the trajectories of the backward ODE
is different from the backward SDE, but the distribution of
the state Z; remains the same for any ¢ € [0,1]. Thus, the
backward ODE model can provide us the desired transport
map F' to generate samples from the target distribution.

The Parareal algorithm is a numerical method designed
for solving ODEs on parallel computing architectures. It
achieves this by decomposing the temporal domain into several
subintervals, which can be processed simultaneously across
multiple processors. Initially, the algorithm generates a coarse
approximation of the solution over the entire time domain
using a computationally inexpensive method. Then, it refines
this approximation in each subinterval using a more accurate
method, but crucially, it does this in parallel, which signifi-
cantly speeds up the process. The corrections from the fine
solver are used to update the solution iteratively until con-
vergence is achieved. This combination of coarse predictions
and fine corrections allows the parareal algorithm to leverage
parallel processing capabilities effectively. The illustration of
the Parareal algorithm is given in Figure 1.

The parallel-in-time ODE solver for the diffuson model is
summarized in Algorithm 1. n. specifies the number of time
intervals that will be used for coarse solving step. For example,
if n. = 4 and number of time steps is 100, then we will

I coarse Grid

Bl rrecric
Coarse
Prediction
Z(‘,“’/ N Zf“’/ - TN Zé“’/ RN z§“’/ RN zﬁ"’/ - T~z
) L Ny Ny) Ny N
l— a2 -l | | | |
Ty Ty T, Ty T T
Fine
Prediction
= k-1) Z%-1) = Z 1) 751
Z”,,,,Z‘ 777742 &5 4 777745
(2) TTTTYIYITM NTTITITIITH FTTTTTITITY RTTTTTYIITH FTYITITIITY|
[e e e
7 T T T 7 T
GPUyto GPU,_1 | GPU,to GPUs, |GPUsy to GPUsy 1 |GPUsy to GPUsy 1 |GPUs, to GPUs, 1
Refine
States
(k) —_ k) — (k) — —_ (k) —_ (k)
I - L L zH 2
(3) 7 NI N NI N7 N

7 7 T, T 7, T

Fig. 1. Illustration of the parallel-in-time (i.e., Parareal) algorithm. For the
time domain [0,77], we first split the time range into an arbitrary number
of time slices (5 time slices in the figure). In (1), we run the ODE solver
sequentially to get the states at times 77 to T5. We are running the ODE
solver coarsely, as we are using a large time step to go directly from the
state Z;_1 to Z;. This sacrifices accuracy but quickly determines the initial
states for the next step. In (2), we run the fine solver over each time slices
in parallel. For each time slice, we assign g available GPUs to run the ODE
solver. In this step, we use small time steps to get a more accurate ODE solve.
In (3), the states are refined from the solutions of the coarse and fine solvers.
Steps (2) and (3) are repeated until the solutions converge.

use four coarse solvers serially with tf,gg values of [0,0.25],

[0.25,0.50], [0.50,0.75] and [0.75,1]. This means, instead of
using the time step values 0, 0.01, 0.02 gradually up to 1; we
go from 0 to 0.25, 0.25 to 0.5, 0.5 to 0.75 and 0.75 to 1. This
gives us 4 initial values to use for the fine solvers. We then run
the fine solvers for these four intervals in parallel. If the total
number of GPUs available is size, then we assign |size/n.|
GPUs to each fine solver. By fine solving, we mean instead
of jumping from time step value 0 to 0.25 for the interval
[0,0.25], we use the time step values [0,0.01,...,0.25] to
get a more accurate result. For several iterations, the solution
values are updated using the update formula described in [16],
until the convergence criteria is met.

C. Speeding up the computation of the score function

The computational burden in score estimation lies in the
computing matrix subtraction Z; — «;Zy in Eq. (8), where
Zy € RN*d and ZJ € RM*4 When the dimension d of
the target random variable X in Eq. (1) is extremely large,
e.g., d is on the order of O(107) in the example in Figure
4, a single GPU does not have sufficient memory to hold
such large matrices. In this work, we split both Z, € RV*¢
and ZJ € RM*4 into multiple GPUs along the direction of
the dimension d. Each GPU receives a corresponding chunk
for further calculation. The score function is then calculated
on each GPU for the chunk assigned to that GPU. After
computation, the results are concatenated on the main GPU
along the direction of size d. Our approach ensures that the
matrix operations for score computation are independent of
the chunks sent to other GPUs. Our algorithm is illustrated in

383

Algorithm 1 The parallel-in-time solver for diffusion models

Require: Z, ¢ RV*4 Y ¢ RMx*d ¢ . which is an array
containing time step values between 0 and 1 depending
on the number of time steps, n. the number of coarse
time intervals for the parareal algorithm, ¢ tolerance

1. size <— number of GPUs available

: Number of GPUs to use for each time slice for the fine

solver: g < |size/n.|

3: Initialize 2fcoarses Ztfine> aNd Ztpararcal tensors with appro-

priate dimensions

4: T < length of tyec

50 ts « T/n,

6: for i =0ton.—1do

7. 8« [tvecli * ts], tyec|(d + 1) % £5]]

8 Zteouse[t + 1] = ODE_solver(zteoarseli], Y, t&sZ)

9: Broadcast ztcouse[t + 1] from rank O to all processes

10: end for

11: tharareal[:] < ZtcoarseH

12: for k=0ton.—1do

13: fori=~Fkton.—1do

14: 80 tyeelixts: (i 4 1) xts+ 1]

15: Assign g available GPUs for the fine-solver in the
following step

16: Ztfine[t + 1] < ODE_solver(ztpaareal[1], Y, tSQ)

17: Broadcast ztgne[i + 1] to all processes

18: end for

19: Ztgllcrlareal < Zlparareal

20. fori=kton.—1do

21 t82) < [tvec[i * ts], tuee[(i + 1) % £5]]

22: znc <— ODE_solver(ztpararcal[t], Y, tvgg)

23: Broadcast znc to all processes

24 Ztparareal [t + 1] <= znc+ (2tane [t + 1] — 2teoarse[? + 1])

25: Zteourse [t + 1] = zne

26: end for

270 if max (|2t parareal — ztg!ﬂarea,D < ¢ then

28: break

29: end if

30: end for

31: return ztpararcal

Figure 2 and detailed in Algorithm 2. Note that Algorithm 2
will be used by the ODE solver in Algorithm 1.

IV. EXPERIMENTS
A. Scalability demonstration

Hardware and software. We perform the experiments on
the first Exascale supercomputer, Frontier. Each Frontier node
is equipped with four AMD Instinct MI250X GPUs with
dual Graphics Compute Dies (GCDs) and one third-generation
EPYC CPU. A GCD is viewed as an effective GPU, and we
use GCD and GPU interchangeably in the following discus-
sion. All four MI250Xs (eight effective GPUs) are connected
using 100 GB/s Infinity Fabric (200 GB/s between 2 GCDs
of MI250X), and the nodes are connected via a Slingshot-11

Algorithm 2 Score function computation

Require: 7; € RV*?, 7 ¢ RM*d ¢, 32
1: size < number of GPUs available

2: Split Z; and Y into size number of along the 2nd
dimension

3: chunksl < chunks of Z;

4: chunks2 ¢ chunks of ZJ

5: if rank == O then

6: for each process ¢ in 1 to size — 1 do

7: Send chunks1[i] and chunks2[i] to process i

8: end for

9: else

10 local_chunkl < corresponding chunk of Z; from
rank 0

11: local_chunk2 ¢ corresponding chunk of Z;] from
rank 0

12: end if

13: S <+ *gig) (local_chunkl][;,None,:] —

local_chunk2)

14: Compute the final score:

15: score <— mean value of S across 2nd dimension

16: if rank == O then

17: Gather the score from all processes

18: Concatenate the gathered scores along the 2nd dimen-
sion

19: end if

20: return Final concatenated score

dfa
dja

PR P T
lv z ‘I::> [AERESES | 7| m|m | <3 7 a

Fig. 2. This figure illustrates how to compute the score function in parallel
on GPUs. The data Z; € RNV >4 and the samples Z] € RM > are split into
chunks along the second dimension, depending on the number of available
GPUs (4 in this figure). Then, chunks ZS and Zf are sent to corresponding
GPU;. Scores are computed for the chunks in parallel using Eq. (8). The
computed scores S; for each GPU are then concatenated along the 2nd
dimension to get the final score.

interconnect with 100 GB/s of bandwidth. Our evaluation is
based on PyTorch v2.2.1 and ROCm v5.7.0. We use AWS
OFI RCCL plugin for communication, which is built against
libfabric v1.15.2.0.

Scaling test. We study both the strong and weak scaling of
our parallel ODE solver on Frontier, as shown in Figure 3.
For strong scaling, we fix the feature dimension to be 106,
and evaluate the time-to-solution from 16 to 128 GPUs. For
weak scaling, each GPU has a fixed workload with the feature
dimension size 12500. The time-to-solution is evaluated up to

384

Strong scaling: dim(X) = 10°

140

——

Frontier
ideal

un
N
o

[
o
o

80

60

40

Time-to-solution (s)

20

ideal

Time-to-solution (s)

16 32

#GPUs

Fig. 3. Strong and weak scaling of our parallel ODE Solver on Frontier .

80 GPUs, i.e., a total feature dimension of 106.

B. Scientific demonstration

We demonstrate the performance of our UQ method by
applying it to quantify uncertainties of an Al-driven model,
FourCastNet [15], in predicting hurricane paths. The Al-
driven models are more computationally efficient than tra-
ditional physics-based models. However, the performance of
the Al models is significantly affected by uncertainties. In
this work, we focus on reducing the uncertainty arising from
the initial condition. Because FourCastNet was trained on the
Fifth Generation of ECMWF Atmospheric Reanalysis of the
Global Climate (ERAS), produced by the European Centre
for Medium-Range Weather Forecasts (ECMWF), we treat the
ERAS data as the ground truth.

We use Hurricane Lee (2023) as an example to discuss
the effect of uncertainty in initial conditions on the hurricane
path prediction. We choose September 8, 2023 as the “current
time”, i.e., Day 0, and use FourCastNet to predict the path
of the hurricane’s center from Day 1 to Day 8. The initial
condition is constructed using the historical observation data.
Here, the observation data of the atmosphere state variables,
e.g., temperature, humidity, wind speed, geo-potential, etc., for
Day 0, Day -1, Day -2 and Day -3 are generated synthetically
by adding random perturbations to the ground truth state from
ERAS. The correlation structures of the random perturbation
is defined according to the information about observation data
collection given in the National Hurricane Center’s Tropical
Cyclone Report [8]. The dimension of FourCastNet is on the
order of O(107). To illustrate the performance of our method,
we conduct experiments in the following two cases:

Hurricane Center Prediction without UQ (Baseline)

Hurricane Center Prediction with UQ (Our Method)

=
G

—*— Ground Truth
—e— Prediction Mean

i day 7 Prediction Uncertainty

LT ek ST .

%

—*— Ground Truth
—e— Prediction Mean

H day 7 Prediction Uncertainty

Fig. 4. (Left) The grey ellipse represents the prediction uncertainty without UQ (Baseline). With 20 perturbed initial conditions, the uncertainty of hurricane
center predictions made by FourCastNet expands significantly over time. By day 8, the predicted hurricane centers span a broad area near the East Coast,
rendering the predictions too uncertain to be informative. (Right) The grey ellipse depicts the reduced uncertainty in predictions enhanced by UQ (Our method).
This UQ approach mitigates the effects of observational noise, enhances the accuracy of initial conditions, and consequently improves the Al model’s predictive
accuracy. We observe that the prediction uncertainty with UQ is substantially smaller than that without UQ, and it accurately encompasses the ground truth,

thereby enhancing the reliability of the predictions.

o Case I (Baseline): prediction without UQ. The noisy
observation data is directly used as the initial condition for
FourCastNet to make 8-day prediction of the hurricane.

o Case II (Our method): Prediction assisted by UQ. We
apply the proposed UQ method in the context of data
assimilation [1], [3], which combines the observation data
(from Day -3 to Day 0) and the FourCastNet model to
generate the initial conditions for FourCastNet to make the
8-day prediction of the hurricane.

Figure 4 shows the comparison results. When the FourCast-
Net is used without UQ, the prediction uncertainty grows very
quickly, such that the uncertainty of the Day 8 prediction is too
large to be informative, as shown in the left subfigure in Figure
4. Even so, it is hard to make a decision under such large
uncertainty in practice when the ground truth is unknown. In
comparison, Figure 4 (right) shows that after applying our UQ
method, the uncertainty in FourCastNet’s prediction is much
smaller, significantly improving the reliability of the prediction
results. This demonstrates that a UQ procedure is critical to
reduce uncertainty in the initial condition of the AI model.

We emphasize that this experiment is set up in a relatively
ideal situation, as it assumes that all state variables can
be observed with added noise. Even in this ideal scenario,
the prediction uncertainty without proper UQ is too large
to be informative. In practice, the observation data typically
exhibit even greater uncertainty due to factors such as sparse
observations and inconsistencies from various devices like
aircraft, Dvorak, and SATCON [8]. This significantly increases
the uncertainty in the initial conditions for FourCastNet,

presenting more challenging problems. Therefore, despite the
promising results shown in Figure 4, the need for rigorous UQ
in Al-based models must be emphasized for future studies.

V. CONCLUSION

We introduce a scalable, training-free score-based diffusion
model designed for high-dimensional sampling tasks, particu-
larly useful in dynamic uncertainty quantification (UQ) where
target distributions evolve rapidly. By integrating the Parareal
algorithm, our method utilizes multiple GPUs to parallelize
and accelerate the solution of backward ODEs, effectively
distributing computational loads. We also optimize resource
use by splitting large matrix calculations across available
GPUs, allowing our model to adapt to changes in probability
distributions swiftly without the need for training the score
function. Demonstrated on the Frontier supercomputer, our
approach showcases remarkable scalability and reduces un-
certainty in Al-based hurricane prediction models like Four-
CastNet, emphasizing its potential in real-world applications.
Despite the promising results, several aspects of the proposed
method need to be improved in order to be used in operation.
For example, observation data, i.e., the data used to estimate
the score function of the diffusion model, is the direct ob-
servation of the target random variable with added noise. In
practice, the observation data is usually indirect, such that the
computation of a likelihood function is needed to incorporate
the indirect observation data. Another module needs to be
added to Algorithm 2 to handle indirect observation.

385

ACKNOWLEDGEMENT

This work is supported by the U.S. Department of En-
ergy, Office of Science, Office of Advanced Scientific Com-
puting Research, Applied Mathematics program, under the
contract ERKJ443. ORNL is operated by UT-Battelle, LLC.,
for the U.S. Department of Energy under Contract DE-
AC05-000R22725. Feng Bao would also like to acknowledge
the support from U.S. National Science Foundation through
project DMS-2142672 and the support from the U.S. De-
partment of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Applied Mathematics program
under Grant DE-SC0022297. Lili Ju would also like to ac-
knowledge the support from the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing
Research, Applied Mathematics program under Grant DE-
SC0025527. This research used resources of the Oak Ridge
Leadership Computing Facility (OLCF), which is a DOE
Office of Science User Facility at the Oak Ridge National
Laboratory supported by the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.

REFERENCES

Bao, F., CHIPILSKI, H. G., LIANG, S., ZHANG, G., AND WHITAKER,
J. S. Nonlinear ensemble filtering with diffusion models: Appli-
cation to the surface quasi-geostrophic dynamics. arXiv preprint
arXiv:2404.00844 (2024).

BAo, F., ZHANG, Z., AND ZHANG, G. An ensemble score
filter for tracking high-dimensional nonlinear dynamical systems.
ArXiv:2309.00983 (2024).

BAO, F., ZHANG, Z., AND ZHANG, G. A score-based filter for nonlinear
data assimilation. Journal of Computational Physics (2024), 113207.
BROCK, A., DONAHUE, J., AND SIMONYAN, K. Large scale GAN
training for high fidelity natural image synthesis. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019 (2019).

CRESWELL, A., WHITE, T., DUMOULIN, V., ARULKUMARAN, K.,
SENGUPTA, B., AND BHARATH, A. A. Generative adversarial networks:
An overview. IEEE signal processing magazine 35, 1 (2018), 53-65.
DHARIWAL, P., AND NICHOL, A. Diffusion models beat gans on image
synthesis. Advances in neural information processing systems 34 (2021),
8780-8794.

DINH, L., SOHL-DICKSTEIN, J., AND BENGIO, S. Density estimation
using real NVP. In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings (2017).

ERIC, B., AND HEATHER, N. National hurricane center tropical cyclone
report - hurricane lee. Tech. rep., National Hurricane Center, 2024.
GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-
FARLEY, D., OZAIR, S., COURVILLE, A., AND BENGIO, Y. Generative
adversarial nets. Advances in neural information processing systems 27
(2014).

GRATHWOHL, W., CHEN, R. T. Q., BETTENCOURT, J., SUTSKEVER,
1., AND DUVENAUD, D. FFJORD: free-form continuous dynamics for
scalable reversible generative models. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019 (2019), OpenReview.net.

Guo, L., Wu, H., AND ZHoU, T. Normalizing field flows: Solving
forward and inverse stochastic differential equations using physics-
informed flow models. Journal of Computational Physics 461 (2022),
111202.

KARRAS, T., AILA, T., LAINE, S., AND LEHTINEN, J. Progressive
growing of gans for improved quality, stability, and variation. In
6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings (2018).

191

[10]

(12

386

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

KINGMA, D. P., AND WELLING, M. Auto-encoding variational bayes.
In 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Pro-
ceedings (2014), Y. Bengio and Y. LeCun, Eds.

KOBYZEV, I., PRINCE, S. J., AND BRUBAKER, M. A. Normalizing
flows: An introduction and review of current methods. IEEE transactions
on pattern analysis and machine intelligence 43, 11 (2020), 3964-3979.
KURTH, T., SUBRAMANIAN, S., HARRINGTON, P., PATHAK, J., MAR-
DANI, M., HALL, D., MIELE, A., KASHINATH, K., AND ANANDKU-
MAR, A. FourCastNet: Accelerating global high-resolution weather
forecasting using adaptive fourier neural operators. In Proceedings of
the Platform for Advanced Scientific Computing Conference (New York,
NY, USA, 2023), PASC 23, Association for Computing Machinery.
LIONS, J.-L., MADAY, Y., AND TURINICI, G. A “parareal” in time
discretization of pde’s. Comptes Rendus de I’Académie des Sciences-
Series I-Mathematics 332, 7 (2001), 661-668.

LU, Y., YANG, M., ZHANG, Z., BAo, F., CAO, Y., AND ZHANG, G.
Diffusion-model-assisted supervised learning of generative models for
density estimation. Journal of Machine Learning for Modeling and
Computing 5, 1 (2024), 25-38.

Lu, C., ZHou, Y., Bao, F., CHEN, J., L1, C., AND ZHU, J. DPM-
solver: A fast ODE solver for diffusion probabilistic model sampling in
around 10 steps. In Advances in Neural Information Processing Systems
(2022), A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds.

Lu, D., LIU, Y., ZHANG, Z., BAO, F., AND ZHANG, G. A diffusion-
based uncertainty quantification method to advance e3sm land model
calibration. Journal of Geophysical Research: Machine Learning and
Computation 1, 3 (2024), €2024JH000234.

MORALES-JUAREZ, E., AND PINEDA, G. F. Efficient generative
adversarial networks using linear additive-attention transformers. CoRR
abs/2401.09596 (2024).

PAPAMAKARIOS, G., PAVLAKOU, T., AND MURRAY, I. Masked autore-
gressive flow for density estimation. Advances in neural information
processing systems 30 (2017), 2338-2347.

REZENDE, D., AND MOHAMED, S. Variational inference with normal-
izing flows. In International conference on machine learning (2015),
PMLR, pp. 1530-1538.

SONG, Y., DURKAN, C., MURRAY, I., AND ERMON, S. Maximum
likelihood training of score-based diffusion models. Advances in neural
information processing systems 34 (2021), 1415-1428.

SONG, Y., SOHL-DICKSTEIN, J., KINGMA, D. P., KUMAR, A., ER-
MON, S., AND POOLE, B. Score-based generative modeling through
stochastic differential equations. In International Conference on Learn-
ing Representations (2021).

YANG, L., ZHANG, Z., SONG, Y., HONG, S., XU, R., ZHAO, Y.,
ZHANG, W., Cul, B., AND YANG, M.-H. Diffusion models: A
comprehensive survey of methods and applications. ACM Computing
Surveys 56, 4 (2023), 1-39.

YANG, M., WANG, P., DEL-CASTILLO-NEGRETE, D., CAO, Y., AND
ZHANG, G. A pseudo-reversible normalizing flow for stochastic dynam-
ical systems with various initial conditions. SIAM Journal on Scientific
Computing 46, 4 (2024), C508-C533.

