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Abstract—Exascale applications are being increasingly written
in modern languages such as Python, Julia, C++, and Rust.
The Message-Passing Interface (MPI), the de facto standard for
parallel computing, only defines interfaces for C and Fortran,
languages that are very different from these modern languages,
often containing more complex types and representations in-
compatible with MPI. The existing derived datatype interface
is widely used for older applications, but fails to work efficiently
for types containing multiple pointers, requiring application-
specific initialization, or serialization. Applications written in
these languages can still use MPI, but at the cost of complicated
address manipulation or high overhead. This work proposes
a new datatype interface for MPI giving more control to the
application over buffer packing and the wire representation. We
built a prototype for this interface, demonstrating it with Rust,
Python, and C++, highlighting key concerns of each language
and showing the improvements provided.

Index Terms—MPI, distributed datatypes, Data serialization,
C++, Rust, Python, Julia

I. INTRODUCTION

Applications written using modern languages, such as C++,
Julia, Python, and Rust, typically make extensive use of data
structures with varying characteristics and representations.
MPI derived datatypes were designed to support data structures
in C and Fortran, representing compound types with a se-
quence of predefined types and offsets from a base pointer; this
representation works extremely well for existing C and Fortran
code but fails to support many types in modern languages,
especially those that require serialization, which is a very
common feature [1], [2], [3], [4]. Serialization, or marshalling,
can be implemented by manual packing, as is done in most
implementations, but this can put an unnecessary burden
on memory usage, especially for larger buffers, resulting in
inefficient cache use as well as ignoring other possibilities for
performance improvements. Some serialization libraries are
able to extract regions of memory that can be directly sent and
received, allowing for some level of zero-copy serialization.
Current MPI datatypes, however, cannot take advantage of
performance enhancements provided by these libraries without
some loss in performance. We believe that creating new MPI
datatypes designed to take advantage of modern serialization

techniques can lead to enhanced performance for modern
languages.

Current MPI derived datatypes are designed around the use
of a type map, consisting of a sequence of predefined types
and displacements [5], using various type creation functions,
to enable construction of types using common patterns, such as
struct-like types, homogeneous arrays, as well as types with
varying offsets between elements. While this representation
suffices for many of the constructs typically used in C and
Fortran, it fails to support dynamic types and types that require
serialization. Derived datatypes are constrained by the use
of a single pointer and offsets from that for the entire type.
Dynamic types may include pointers to memory regions on the
heap of varying lengths, and for serialized types, a dynamic
buffer holding the serialized representation of the type may
need to be constructed on the fly. Existing derived datatypes
could potentially be used to represent some of these types, but
would require error-prone address manipulation and expensive
datatype recreation for every unique buffer.

The alternative to using derived datatypes is to pack se-
rialization buffers before sending as a primitive type, such
as MPI_BYTE, which is the case for many existing MPI
bindings [6], [7]. Performance problems arise with this method
for extremely large messages and for large numbers of small
messages. To serialize a large buffer, implementations are
currently required to allocate an additional buffer that is often
the same size, or larger than, the datatype buffer as stored
in memory, doubling memory usage. Some implementations
of MPI bindings [7] attempt to take advantage of large,
contiguous memory regions extracted from serialized types
by using multiple messages, at the cost of thread safety con-
cerns and high latency overhead. Multiple high-level messages
may use the same tag, thus requiring higher-level locking
mechanisms to ensure messages can be sent across threads.
Dynamic data structures present problems as well, particularly
on the receive side, where incoming serialized buffer lengths
cannot be known in advance; this forces the receive side
to do some sort of probe or receive an extra message to
determine the length and allocate buffers for the serialized
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1 struct A {
2 int a, b, c;
3 // 4B gap
4 double d;
5 A(int a, int b, int c, double d)
6 : a(a), b(b), c(c), d(d)
7 { }
8 virtual ˜A() = default;
9 // size of data members to pack

10 constexpr static
11 size_t pack_size = sizeof(int)*3
12 + sizeof(double);
13 };

Listing 1: Non-POD C++ type with 4 B gap and virtual
function table.

message. These probes and extra messages can lead to serious
performance degradation, especially when receiving multiple
small messages. Integrating a custom datatype API into MPI
with full support for these types would alleviate the correctness
problems and address potential performance problems by
allowing for improved network utilization.

Our major contributions in this paper are as follows:

• Design of a custom datatype API to support more com-
plex types used in languages such as C++, Python, Julia,
and Rust.

• Prototype implementation of the new API.
• Evaluation of the API and prototype using Python, C++,

and Rust with various datatypes.

This paper is organized as follows. Section II gives im-
portant context about datatypes and language-related issues.
Section III explains our proposed API. Section IV presents a
prototype implementation and section V contains our evalua-
tion. Section VI discusses the API, the implementation, and
limitations. We then list related works in section VII and close
in section VIII.

II. BACKGROUND

In this section we will give a more detailed explanation
about datatype representations, key concerns for modern pro-
gramming languages, and the complications these present for
MPI.

A. Non-POD datatypes

Listing 1 shows a datatype that is not a plain old datatype
(POD) in C++. The introduction of a virtual member function
inserts a virtual function table into the binary representation
of the object. These vtables contain function pointers that are
called at runtime and should not be copied to other processes,
where the memory layout may be different. Tools such as
offsetof are not supported for non-POD types and thus it
is not possible to query the beginning of the public data of a
non-POD type. The only safe way to send or receive such a
type is through explicit serialization.

B. Dynamic Types

Not all objects in modern languages can be expressed
as fixed-size types with a known number of memory re-
gions. For example, in a list of vectors (std::list<
std::vector<int>> in C++) each vector is a contiguous
memory region that can be transferred by MPI individually.
However, a list itself is a non-contiguous container. We thus
need to first determine the number of memory regions in the
list before collecting the sizes of the individual vectors and
their base pointers. The serialization of such a list consists of
storing the size of each vector. The deserialization of such a
list consists of resizing each vector to be able to hold the data
that will be written by MPI.

C. Serialization in Python and Other Languages

Python and, in particular, its serialization library Pickle
[2] present several challenges for MPI datatypes. Pickle was
originally designed as a format for storing Python objects on
disk, but has grown beyond this in recent years to be used for
RPC calls, network programming and more. In its simplest
form a Python object can be fully serialized into one large
buffer and then sent over some medium or simply stored on
disk. Full serialization becomes a problem for large objects
since it can potentially double memory usage of a program,
just to store an intermediate serialized form. This is a problem
not just in Python, but in other languages that provide similar
serialization mechanisms.

To remedy the memory usage concerns of full serialization,
extensions to Pickle [8] were designed to allow for out-of-
band or zero-copy buffers. Instead of packing all of the data
into one buffer, larger data fragments are returned in an array
of zero-copy buffers pointing to memory regions that can be
sent directly without requiring a new allocation. These out-of-
band buffers can be used by mpi4py by sending multiple MPI
messages.

Another important issue with Pickle and other serialization
frameworks in general is that the receive side often cannot
determine the expected serialized size of an object, or for
that matter, the multiple sizes that would be involved with
zero-copy buffers. mpi4py currently uses MPI Mprobe on
the receive side to determine the serialized size. For an array
of zero-copy buffers a separate message with the buffer lengths
is required [7].

D. Rust and RSMPI

We use the Rust programming language to implement our
prototype. Rust is a systems-level programming languages
designed with memory safety, performance, and modern lan-
guage ergonomics in mind. RSMPI [9] is the current Rust
library, or crate, exposing most MPI functions to Rust code
by linking with major MPI implementations. RSMPI supports
derived datatypes through procedural macros, which can be
invoked at compile time on struct type definitions to automat-
ically generate the MPI type creation calls. On first use of the
type in a call, the derived datatype will be created and cached
for later usage. This mechanism is used for a couple of our
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1 int MPI_Type_create_custom(
2 MPI_Type_custom_state_function *statefn,
3 MPI_Type_custom_state_free_function *freefn,
4 MPI_Type_custom_query_function *queryfn,
5 MPI_Type_custom_pack_function *packfn,
6 MPI_Type_custom_unpack_function *unpackfn,
7 MPI_Type_custom_region_count_function *

region_countfn,
8 MPI_Type_custom_region_function *regionfn,
9 void *context,

10 // Flag indicating in-order pack requirement
11 int inorder,
12 MPI_Datatype *type
13 );

Listing 2: Signature for the datatype create function of the
custom API. This includes a pointer to a context that can be
used when initializing pack or unpack operations.

benchmarks to show the performance of an underlying MPI
implementation with derived datatypes.

III. CUSTOM SERIALIZATION API
Our proposed custom serialization API gives applications

the ability to directly pack or extract memory regions from
message buffers. Using this API, applications can operate at
a slightly lower-level than the existing MPI datatype API
and can represent more complex types commonly found in
modern languages. The custom serialization API can be used
to create MPI datatypes with application-provided functions to
pack non-contiguous data and the ability to expose contiguous
memory regions to MPI. Many complex objects often include
parts that must be packed, such as individual fields of non-
contiguous struct data, and other fields, such as vectors and
long contiguous arrays of primitive types, that can be sent
efficiently as memory regions. Errors are propagated through
return values: each callback returns either MPI_SUCCESS or
an error value indicating a failure. Error handling is crucial for
serialization libraries that can fail in the case of invalid data.

These datatypes are created with a new type creation
function and a list of application callbacks, whose prototype
is shown in Listing 2. Instead of fixed offsets and counts, MPI
implementations must query the details of objects to be sent
through the provided callbacks. Generally, use of this API can
be broken up into two main stages: i) packing of data using
the pack callback; and ii) querying of memory regions for
components of the buffer that can be sent directly.

When a buffer with the custom datatype is accessed by some
MPI operation, a state object local to that operation can be al-
located using the MPI_Type_custom_state_function
callback as shown in Listing 3. The state object is used to
store buffer-specific information for any sequence of callbacks
that may be invoked during sending or receiving of a custom
type buffer. The state object is freed on completion of the
point-to-point operation using the freefn callback. The state
object may contain context information for complex types and
is optional, i.e., may be ignored for simpler types.

The callbacks for packing and unpacking, shown in List-
ing 4, are inspired by the generic datatypes implemented

1 typedef int (MPI_Type_custom_state_function)(
2 // Context passed to create function
3 void *context,
4 // Buffer provided to MPI
5 const void *src,
6 // Count provided to MPI
7 MPI_Count src_count,
8 // Out: State to be passed into callbacks
9 void **state

10 );
11 typedef int (MPI_Type_custom_state_free_function)

(void *state);

Listing 3: State management functions. The optional state is
used during pack and unpack operations to keep track of
custom serialization data between calls.

1 typedef int (MPI_Type_custom_query_function)(
2 // State information
3 void *state,
4 // User-provided buffer (not packed)
5 const void *buf,
6 // Count passed to MPI
7 MPI_Count count,
8 // Expected bytes to be packed
9 MPI_Count *packed_size

10 );
11 typedef int (MPI_Type_custom_pack_function)(
12 // State information for packing
13 void *state,
14 // Pointer to custom object to be packed
15 const void *buf,
16 // Number of elements of custom type
17 MPI_Count count,
18 // Virtual offset into the packed buffer
19 MPI_Count offset,
20 // Destination buffer
21 void *dst,
22 // Size of destination buffer
23 MPI_Count dst_size,
24 // Out: Number of bytes used
25 MPI_Count *used
26 );
27 typedef int (MPI_Type_custom_unpack_function)(
28 // State information for unpacking
29 void *state,
30 // Pointer to object to unpack data into
31 void *buf,
32 // Number of objects to unpack
33 MPI_Count count,
34 // Virtual offset into the unpacked buffer
35 MPI_Count offset,
36 // Incoming buffer to be unpacked
37 const void *src,
38 // Size of current buffer to be unpacked
39 MPI_Count src_size
40 );

Listing 4: Callback functions used in the custom serialization
API for querying the total packed size, packing of data, and
unpacking of data.
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1 typedef int (
MPI_Type_custom_region_count_function)(

2 void *state,
3 // Buffer pointer
4 void *buf,
5 // Number of elements in send buffer
6 MPI_Count count,
7 // Out: Number of memory regions
8 MPI_Count *region_count
9 );

10 typedef int (MPI_Type_custom_region_function)(
11 void *state,
12 // Buffer pointer
13 void *buf,
14 // Number of elements in send buffer
15 MPI_Count count,
16 // Number of regions
17 MPI_Count region_count,
18 // Out: start of each region
19 void *reg_bases[],
20 // Out: length of each region
21 MPI_Count reg_lens[],
22 // Out: MPI types for each region
23 MPI_Datatype reg_types[]
24 );

Listing 5: Memory region/iovec callback signatures.

within the Unified Communication Protocol (UCP) component
of UCX [10], an optimized and widely used HPC network-
ing library. The MPI_Type_custom_query_function
callback is used to determine the total packed size of a
buffer. The packed size can be used by the implemen-
tation to determine how best to break the packed buffer
up into fragments, as well as make other optimization
decisions. Packing is done fragment by fragment using
the MPI_Type_custom_pack_function callback. This
function takes a state object, an offset, information about a
destination fragment buffer, and a used output count. The
offset, as in the UCP API, represents a virtual offset in the
entire packed buffer in bytes. The pack function is not required
to fill the entire fragment buffer, since in many cases this
may not line up with the size of a packed element of the
datatype. The pack function may choose to only partially
fill the buffer, postponing packing of subsequent data to
the next call with a new fragment. On the receive side
the MPI_Type_custom_unpack_function callback is
invoked for each individual fragment buffer in order to recon-
struct the buffer on the send side.

One complication of giving lower-level pack/unpack control
to application code is that data fragments may be received out
of order, depending on the underlying transport library. This,
however, may be problematic for some applications relying
on the same order of fragments. Such applications can set
the inorder flag to true (see Listing 2). Our prototype
implementation always provides in-order packing. This flag
would inhibit potential out-of-order optimizations in advanced
implementations.

After all data been packed, when the packed_size
limit is reached, the memory region API is invoked to
determine if any parts of the buffer can be sent di-

rectly without packing. Listing 5 shows the two call-
backs used for memory region extraction. First, the MPI_-
Type_custom_region_count_function is used to
determine the number of memory regions that can be
sent for this buffer; then the MPI_Type_custom_-
region_function is passed multiple arrays, all of
region_count length, that will be filled with corresponding
memory region pointers, counts, and datatypes.

IV. IMPLEMENTATION

We implement our custom serialization API using a light-
weight Rust-based prototype providing a simplified MPI
API, reusing components from an earlier MPI prototype
[11]. Internally, our prototype uses UCX [10], a framework
that provides various levels of abstraction for HPC net-
works, protocols, and hardware. In particular, we utilized
the UC-Protocols (UCP) component, which is designed to
support MPI and PGAS implementations, as well as multiple
datatypes that helped with our implementation here, includ-
ing UCP_DATATYPE_IOV, UCP_DATATYPE_GENERIC,
UCP_DATATYPE_CONTIG, and others. The prototype will
attempt to use UCP_DATATYPE_CONTIG when a single
contiguous buffer can be used for a message, while using
UCP_DATATYPE_IOV for when multiple memory regions
must be sent.

Our implementation is organized into three main libraries
(in Rust referred to as crates): the highest layer exposes a
simplified MPI API (mpicd-capi), the middle layer imple-
ments point-to-point management and other necessary logic
(mpicd), and the bottom layer exposes the UCX API to Rust
code (mpicd-ucx-sys).

The mpicd-capi layer passes user-provided buffers and
datatypes to the mpicd layer using a Rust trait (not shown
here due to space) that provides an implementation calling
directly into the user-provided function callbacks. Rust traits
can roughly be thought of as an interface with a set of
methods to implement for individual types, with some unique
differences that help with Rust generics and type definitions.
When sending or receiving a message with a custom type the
library internally uses the UCP_DATATYPE_IOV type, allow-
ing for scatter-gather functionality. The packed data is the first
element in the scatter-gather pointer (or iovec) list, following
which the iovec array is filled with any memory region pointers
that were provided by the corresponding callbacks.

V. EVALUATION

We evaluate our benchmarks using both bandwidth and
latency tests, some of which are partially based on the OSU
Micro Benchmarks [12]. We present tests in Python, C++, and
Rust. The results presented in this section were obtained using
two Dell PowerEdge R7525 servers each with 2 AMD EPYC
7232P 8-Core sockets connected by Mellanox ConnectX5
Infiniband network interfaces with the ports configured for
100 Gbps. The servers were running RedHat 8.4. Compilers
used were rustc 1.77.1 and gcc 8.5.0, along with UCX version
1.12.0 and Open MPI v5.1.0a1 (main).
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1 #[repr(C)]
2 pub struct StructVec {
3 a: i32,
4 b: i32,
5 c: i32,
6 d: f64,
7 data: [i32; 2048],
8 }

Listing 6: struct-vec type with some elements that will be
packed (a, b, c, d) and a buffer (data) that can be sent
with an iovec. Rust types i32 and f64 represent 32-bit
integers and 64-bit floating point types respectively. Using
#[repr(C)] forces this struct to use a C representation,
causing a gap to be formed between c and d.

1 #[repr(C)]
2 pub struct StructSimple {
3 a: i32,
4 b: i32,
5 c: i32,
6 d: f64,
7 }

Listing 7: struct-simple type containing only elements that will
be packed (a, b, c, d). As in Listing 6, this type also contains
a gap between c and d.

A. Rust

For our Rust evaluation we focus on bandwidth and la-
tency results for different datatypes and datatype represen-
tations/transfer methods. These benchmarks tie directly into
the mpicd prototype implementation, utilizing special traits
directly to implement the various datatypes (not shown due
to space). The two main methods that will be used in all
results shown here are: (1) custom where our custom packing
functions and memory region-based code is used; and (2)
manual-pack where code manually packs data into a buffer
before sending as a byte stream. All tests show the average of
four runs, with error bars included in graphs.

Our Rust evaluation is based on three types that are de-
signed to stress different components of our custom interface,
showing where some methods may perform better or worse
than others:

• The double-vector type is expressed in Rust as

1 #[repr(C)]
2 pub struct StructSimpleNoGap {
3 a: i32,
4 b: i32,
5 c: f64,
6 }

Listing 8: The struct-simple-no-gap type is similar to the types
in Listing 7 and Listing 6, but without the third integer field,
thus removing the gap in the C representation.
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Latency Varying Subvector Sizes
custom-64b
custom-256b
custom-1k
custom-4k
manual-pack-64b
manual-pack-256b
manual-pack-1k
manual-pack-4k
rsmpi-bytes-roofline

Fig. 1: Latency benchmark for the double vector type run while
varying the subvector size on two nodes.

Vec<Vec<i32>>, being roughly equivalent to the C++
type vector<vector<int>>.

• struct-vector is a struct type, defined as in Listing 6,
including several scalar fields that will likely need to
be packed for best performance, while also including an
array field best sent directly with a memory region or
iovec representation. We use a static array type in the
struct-vector type in order for it to work with existing
derived datatypes for a useful baseline metric. In practice,
however, this array type will likely be a dynamic vector
which cannot be represented by derived datatypes without
complicated address manipulation and recreation of the
datatype on each call. A dynamic vector will only work
well with our new custom interface.

• struct-simple is another struct type, shown in Listing 7,
and is exactly the same as struct-vector except that the
vector has been removed; this type is designed to show
the performance of packing alone.

• struct-simple-no-gap, shown in Listing 8 is similar to
struct-simple, except that the type has no gap and thus
should require no packing.

All of the Rust tests shown here will use some variant of
the below methods for sending and receiving data:

• custom uses the custom packing API, utilizing packing
and/or memory regions to send and receive data, depend-
ing on the type.

• packed manually packs the data into an allocated buffer
before sending.

• rsmpi using RSMPI [9] linked with Open MPI v5.1.0a1
to act as a baseline; this method has partial support for the
struct-simple, struct-simple-no-gap, and struct-vec types
but doesn’t support the double-vec type, where instead we
show this test just sending bytes as an absolute baseline.

custom and packed both use our simple prototype MPI
implementation.

Latency and bandwidth results for the double-vector type
are shown in Figure 1 and Figure 2, respectively. The double-
vector tests were performed with vectors of vectors of integers,
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Fig. 2: Bandwidth benchmark for the double vector type run
on two nodes. The subvector size was set to 1024 bytes.
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Fig. 3: Latency benchmark for the struct-vector type.

where each internal integer vector has uniform length, which
we refer to here as the sub-vector length; for message sizes
smaller than the sub-vector size, a single sub-vector of the
message size is sent.

Figure 1 shows latency results while varying subvector sizes
from 64 bytes to 4 KiB. At about a size of 29 bytes, the
custom method begins to show better performance for larger
subvector sizes (1-4 KiB) when compared with smaller sizes
(64-256 bytes). The manual-pack tests after 29 bytes have the
highest latency of all methods shown; these tests also show
no negligible difference between the different subvector sizes.

As expected, the rsmpi-bytes-baseline has the lowest la-
tency. The bandwidth results for the double-vector type were
run with sub-vector sizes of 1024 bytes. Our custom method
outperforms manual packing at larger data sizes due to the use
of memory regions, since the double-vector type lends itself
well to these types of transfers.

Figures 3 and 4 show results for the struct-vec benchmark.
Since this type uses an array in the definition, we are able to
use derived datatypes with rsmpi; if this array were instead
a vector, then RSMPI and MPI in general would not support
this type, whereas custom and manual-pack would be able to
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Fig. 4: Bandwidth benchmark for the struct-vector type.
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Fig. 5: Latency benchmark for the struct-simple type.

handle this type with the performance shown here, since we
treat the type as if it contained a vector.

Figure 3 shows latency results for the struct-vector type. La-
tency is higher for custom until a size of 218 bytes where both
custom and rsmpi-derived-datatype show similar performance.
Figure 4 shows bandwidth results for the struct-vector type.
The sizes used here are evenly divisible by roughly 8K, which
is the size of a packed single struct-vector element. Thus for
size 32K there are four elements, for 64K eight elements, and
so on.

Figures 5 and 7 show results for the struct-simple type.
In Figure 5 we see that custom and manual-pack both have
very low-latency in comparison with RSMPI. This is caused
by the gap inside the structure, which the Open MPI type
representation is not able to handle efficiently. In Figure 6
we ran the same test but with struct-simple-no-gap, showing
that RSMPI, and therefore Open MPI, performs as expected
when sending contiguous types. Figure 7 shows a similar
trend where both custom and manual-pack achieve better
performance at larger sizes. The dip shown with manual-pack
at 215 bytes can be attributed to the switchover from eager to
rendezvous protocol within UCX, which doesn’t affect custom
since it uses the UCX iovec API internally.
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Fig. 6: Latency benchmark for the struct-simple-no-gap type.
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Fig. 7: Bandwidth benchmark for the struct-simple type.

B. Python

For Python we focus on a pingpong test measuring band-
width using mpi4py. This involves measuring the bandwidth
of two messages (a send-receive pair) multiple times and
then averaging the results. We first determine a roofline
bandwidth using preallocated raw memory buffers without any
serialization process involved. Next, we determine effective
bandwidth using Python’s pickle serialization using three
different strategies: i) basic pickle, where Python objects are
serialized into/out of a single in-band contiguous byte stream
communicated with a single pair of MPI messages, and ii)
out-of-band pickle, where Python objects are serialized into an
in-band contiguous byte stream and a sequence of zero-copy
out-of-band memory buffers. The out-of-band serialization is
communicated via two mechanisms: a) multiple pairs of MPI
messages, and b) the custom datatype machinery proposed in
this work, leading to a single pair of outer MPI messages with
the MPI engine handling internally the pieces.

It should be noted that MPI communication of Python
objects with pickle serialization always involve memory allo-
cation on the receive side. For objects containing large memory

buffers, these memory allocation steps on the receive side
impact negatively on the effective achievable bandwidth. Our
pingpong tests involve the communication of NumPy arrays.
Pickle serialization of these Python objects always include, be-
sides the contiguous array buffer, an additional small ”header”
with basic metadata (mostly shape, datatype, and byte order)
required to reconstruct the object upon deserialization. For
simple 1D arrays, this metadata header weighs around 120
bytes, thus being quite small in comparison to the array buffer
sizes we use in our testing.

To make our testing representative of different scenarios, we
consider two cases: 1) the communication of single NumPy
arrays of a given size, and 2) the communication of com-
plex user-defined Python object containing multiple 128-KiB
NumPy arrays and adding up to a given total size; the effective
bandwidth is shown on Figure 8 and Figure 9, respectively.
When using basic in-band pickle, the small metadata headers
and the large array buffers are all packed together in a single
contiguous byte stream and then communicated with a single
MPI message (lines with label pickle-basic). When using out-
of-band pickle, only the small metadata headers are packed in-
band in a single contiguous buffer; the large array buffers are
handled out-of-band and have to be dealt with individually, i.e.,
either communicated with individual MPI messages (lines with
label pickle-oob), or handled by our custom datatype engine
as individual memory regions (lines labeled pickle-oob-cdt).

The trends seen in the figures show that for smaller aggre-
gate message sizes, the basic pickle pack method yields similar
performance to that for the two out-of-band methods. For the
single NumPy array case, the performance of the two out-
of-band methods is significantly better than the simple pickle
method for message sizes 218 bytes (256 KiB) and greater.
For the complex object case containing multiple NumPy
arrays, results are mixed for intermediate message sizes, but
for the largest transfer sizes, the two out-of-band methods
realize significantly better bandwidths than the basic pickle
pack method. The out-of-band approaches cannot match the
raw roofline performance, but this is expected; as mentioned
previously, the required memory allocations on the receive side
diminish the effective achievable bandwidth.

C. Datatype Benchmark

We implemented a subset of the benchmarks from the DDT-
Bench benchmark suite [13], a collection of MPI datatypes
representative of widely used MPI applications. Each bench-
mark performs ping-pong communication using various strate-
gies: manual packing using C code, packing using MPI
datatypes, and direct communication using MPI datatypes. For
custom datatypes, we experimented with using both packing
and memory regions (where sensible) and provide both data
for comparison.

The chosen datatypes exhibit significantly different struc-
tures. For the sake of brevity, Table I provides a summary of
the benchmark characteristics. For example, the manual pack
function for LAMMPS consists of a single loop packing from
six arrays while the manual pack functions in MILC and WRF
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Fig. 8: Python pingpong test using single NumPy arrays.
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Fig. 9: Python pingpong test using a complex object composed
of multiple NumPy arrays of 128 KiB buffers each that sum
to the total size shown on the x-axis.

use loop nests of up to five with non-contiguous, non-unit
stride iteration. For LAMMPS and WRF, the non-unit stride
loop and non-contiguous loop nests, respectively, made the use
of memory regions in the custom datatype impracticable.

We experimented with ways to partially pack data, i.e., the
ability to return from the pack function before all data has
been packed due to a limited size buffer and return later to
pack into a new buffer. This has been straight-forward with
the single loop in LAMMPS where the start of the loop can
simply be computed from the offset passed to the pack/unpack
callbacks. However, for nested loops, this quickly becomes
intractable. We thus experimented with using C++ coroutines
and specifically with std::generator. This interface allows
us to suspend the coroutine in the middle of a loop nest and

TABLE I: Benchmark characteristics.

Benchmark MPI Loop Memory
Datatypes Structure Regions

LAMMPS indexed, struct single loop, 6 arrays
(non-unit stride)

MILC strided vector 5 nested loops
(non-unit stride) !

NAS LU x contiguous 2 nested loops !

NAS LU y strided vector 2 nested loops
(non-contiguous)

!

NAS MG * !

WRF * vec struct of
strided vectors

3/4/5 nested loops
(non-contiguous)

1 std::generator<MPI_Count>
2 pack_coro(PackInfoT *info) {
3 MPI_Count pos = 0, k, m, i, cnt;
4 MPI_Count dst_cnt = info->dst_cnt;
5 double *src = info->src;
6 double *dst = info->dst;
7 for (k = 1; k < DIM3; k++) {
8 for(m = 0; m < DIM1; /* inline */ ) {
9 /* pack as much as possible */

10 cnt = std::min(dst_cnt-pos, DIM1-m);
11 for (; m < cnt; ++m)
12 dst[pos++] = src[idx(m,k)];
13
14 if (pos == dst_cnt) {
15 /* dst full, suspend */
16 co_yield pos*sizeof(double);
17 /* we’re back, reset state */
18 src = info->src;
19 dst = info->dst;
20 pos = 0;
21 } } }
22 co_return pos*sizeof(double);
23 }
24
25 int pack_cb(
26 void *state, const void *buf,
27 MPI_Count count, MPI_Count offs,
28 void *dst, MPI_Count dst_size,
29 MPI_Count *used)
30 {
31 PackInfoT *info = (PackInfoT*)state;
32 if (info->coro == nullptr)
33 info->coro = new pack_coro(info);
34 info->dst_cnt = dst_size/sizeof(double);
35 info->src = (double*)(intptr_t)src+offs;
36 info->dst = (double*)dst;
37 *used = *info->coro->begin();
38 return MPI_SUCCESS;
39 }

Listing 9: Packing NAS LU y using C++ coroutines.

return to the same position at a later time. Listing 9 provides
the slightly simplified code of such a coroutine. The important
part is the ability to suspend in the middle of the m-loop and
resume without leaving the loop nest.

Unfortunately, we have seen issues with vectorization of
loops in the Clang compiler inside coroutines. For the DDT-
Bench experiments we thus resorted to full packing and a
pack function that do not utilize coroutines. However, we
consider this a deficiency that will eventually be resolved,
making custom datatypes in MPI an interesting use-case for

421



102

Size [kB]

0

1000

2000

3000

4000

5000

6000

7000

Ba
nd

wi
dt

h 
[M

B/
s]

LAMMPS_full
MPICD Pack
OMPI Manual
OMPI DDT
OMPI Pack DDT
MPICD Manual
MPICD Ref
OMPI Ref

101 102

Size [kB]

MILC_su3_zd
MPICD Pack
MPICD Regions
OMPI Manual
OMPI DDT
OMPI Pack DDT
MPICD Manual
MPICD Ref
OMPI Ref

100 101

Size [kB]

NAS_LU_x
MPICD Pack
MPICD Regions
OMPI Manual
OMPI DDT
OMPI Pack DDT
MPICD Manual
MPICD Ref
OMPI Ref

100 101

Size [kB]

NAS_LU_y
MPICD Pack
MPICD Regions
OMPI Manual
OMPI DDT
OMPI Pack DDT
MPICD Manual
MPICD Ref
OMPI Ref

101 102

Size [kB]

NAS_MG_x
MPICD Pack
MPICD Regions
OMPI Manual
OMPI DDT
OMPI Pack DDT
MPICD Manual
MPICD Ref
OMPI Ref

101 102 103

Size [kB]

NAS_MG_y
MPICD Pack
MPICD Regions
OMPI Manual
OMPI DDT
OMPI Pack DDT
MPICD Manual
MPICD Ref
OMPI Ref

102

Size [kB]

WRF_x_vec
MPICD Pack
OMPI Manual
OMPI DDT
OMPI Pack DDT
MPICD Manual
MPICD Ref
OMPI Ref

102

Size [kB]

WRF_y_vec
MPICD Pack
OMPI Manual
OMPI DDT
OMPI Pack DDT
MPICD Manual
MPICD Ref
OMPI Ref

Fig. 10: DDTBench results for Open MPI and custom datatypes.

C++ coroutines.
The results are depicted in Figure 10. We compare the

custom pack/unpack and memory regions against sending and
receiving using the datatype engine in Open MPI, up-front
packing and sending/receiving a contiguous buffer using either
MPI datatypes or manual loops, as well as a reference ping-
pong of the same size that does not require packing.

Figure 10 shows that the custom packing (red) provides
competitive performance over MPI datatypes in some cases
(LAMMPS, NAS MG x) while in some cases performance
lags behind all other methods (MILC, WRF y vec). The latter
cases require additional investigation.

In some cases, exposing the data as memory regions yields
higher bandwidth than packing, i.e., for MILC, NAS LU x,
and NAS MG y, where only a small number of regions is
required. Conversely, when larger numbers of (smaller) regions
are exposed the use of memory regions with the UCX scatter-
gather API yields lower bandwidths (i.e., for NAS LU y and
NAS MG x). We consider this a quality of implementation
issue since an MPI implementation could pack the data into a
contiguous buffer instead of calling the UCX API.

This evaluation shows that the custom datatype API can
deliver competitive performance but we acknowledge that our
implementation may require further optimization.

VI. DISCUSSION

Our proposed API provides a new way for communicating
objects that are not currently well supported by MPI, including
complex types found in higher level languages. This allows
for applications to easily represent dynamic types, such as
those composed of multiple heap-allocated elements. The
API also makes it easier to work with serialization libraries,
such as Python’s Pickle, which in some cases can provided
out-of-band buffers to avoid the memory overhead inherent
in serialization. The issues discussed here also go beyond
implementing language bindings for newer languages. C,
C++, and Fortran data structures containing dynamically sized
arrays face similar shortcomings and would benefit from the
custom datatype proposal. Today these arrays have to be sent
separately, creating potential conflicts between threads sharing

the message tag-space. Our proposed API combines these
messages parts into a single MPI operation.

Our API does have some limitations to note. The first being
that we require the receive side to know the exact length of
individual components of a message, such as when sending
multiple memory regions. In the Python implementation we
work around this problem with a second message containing
an array of the lengths of each region. Ideally, there should
be some way to better handle this length information, perhaps
by extending MPI_Probe and MPI_Get_count. Doing so
would make it easier to avoid using multiple messages for
multi-component buffers, which in turn helps eliminates the
need for locking in multithreading situations since all data
can be encapsulated in a single ”atomic” MPI message.

One of the initial design questions we faced with this new
API was whether to include existing MPI type information.
Derived datatypes describe types by explicitly listing prede-
fined types in type creation calls, the products of which can
then be used in further calls to build up more complex types.
MPI implementations then have complete control over how
these types are transferred and reconstructed from incoming
data. Our API gives more control to the application code,
both allowing for more complicated datatypes and for the
application to make performance decisions that may not be
possible with the limited information known from derived
datatypes. The problem then becomes whether or not we
should integrate into the APIs this existing predefined type
information, allowing for MPI implementations to make fur-
ther decisions internally that could help with MPI reductions
and other calls.

Language bindings today often have to work around MPI
limitations by breaking language-level messages into multiple
real MPI messages, whether for additional metadata or to avoid
memory overhead. When multithreading is used, which is
very common in modern languages, higher level thread safety
controls need to be implemented around the MPI interfaces to
ensure that messages being sent from multiple threads are not
interleaved. This can involve locking per communicator and
per tag, all of which can lead to significant overhead.

In addition, we anticipate some challenges to full stan-
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dardization of the datatype API, including further refinement
for collective call semantics and packing with accelerator
device buffers. The interface may require a method for setting
boundaries between minimum chunks of data to be processed
by the callbacks, allowing for collective operations to func-
tion properly. Furthermore, packing and handling accelerator
memory may require device kernels to run, as opposed to our
host-based callbacks.

VII. RELATED WORK

Several previous works have pointed out issues with using
MPI and higher-level languages. Gregor et al. [14] give an
early overview of this with respect to languages such as Java,
Python, and others, noting that these languages often pro-
duce serialized objects without a fixed size. The MPI BLOB
datatype proposed in this paper corresponds to the regions
concept presented earlier in Section III. Kambadur et al.
presented an approach to improved C++ bindings for MPI
that would support optional serialize/deserialize of transmitted
objects [15]. The KaMPIng MPI C++ bindings implementa-
tion [16] makes use of the Boost PFR library to generate
MPI types for user-provided structs at compile time. Carpenter
el al. presented strategies for serialization/deserialization of
objects within the context of Java MPI implementations [17].
They discussed various strategies for improving on Java’s
native Object(Output/Input)Stream methods to map better to
MPI’s datatype concept. Peng et al. proposed an MPI Stream
concept for augmenting MPI’s message passing paradigm with
one more suitable for handling irregular communication pat-
terns [18]. Other works in this area highlight safety concerns,
especially the lack of message type validation [19], [11].

Existing derived datatypes, while supporting a wide range
of types, have limitations that can cause problems for newer
languages and more complex types. Several authors have in-
vestigated the use of compiler techniques to produce optimized
serialize/deserialize functions for C and Fortran data structures
already expressed in terms of MPI derived datatypes [20],
[21], [22]. Träff et al. proposed a library for derived datatypes,
noting and adding extensions for missing functionality [23].

There have been a few works focused on extracting informa-
tion about MPI derived datatypes for use in external libraries or
for validation purposes. MPICH recently implemented exten-
sions that are designed to extract memory region information
or iovecs from MPI datatypes [24], the opposite of our work,
which attempts to create MPI datatypes from memory regions.
Kimpe et al. [25] created a method for serializing datatype
representations and provide an overview of the complications
involved in determining MPI datatype equivalence.

Several works have attempted to use gather-scatter function-
ality of networks such as InfiniBand to improve performance
of sending non-contiguous buffers, as well as attempting to
achieve zero-copy communication [26], [27], [28].

Many newer languages, such as Python, Julia, and Rust,
have binding libraries for MPI. mpi4py [7] implements support
for Python, exposing most MPI calls. MPI.jl [6] provides MPI
support for the Julia Language, borrowing ideas from mpi4py

while also modeling the interface on the MPI C and C++ APIs.
RSMPI [9] is the Rust binding library for MPI, attempting
to provide better safety guarantees and a more comfortable
interface for Rust programmers.

These languages also all provide some level of support
for serialization. Python comes with the Pickle library [2]
that allows for serialization of complex Python objects into a
custom binary format. Julia includes serialization and deseri-
alization methods that write or read from a stream of data [1].
Rust supports serialization through a variety of serialization
libraries, with the Serde [4] crate being the current standard
approach; Serde provides generic infrastructure code used by
other libraries to implement multiple serialization formats.
Serde was not used for our Rust benchmarks since we wanted
to compare performance with manual packing and avoid any
associated overhead with the serialization library itself. In
practice an extended Rust MPI implementation supporting
our new type interface may implement macros to automati-
cally generate manual packing, instead of using Serde. Boost
MPI[29] supports transmission of arbitrary C++ objects using
the Boost serialization library. It supports a is mpi datatype
trait which can be used to avoid extraneous copy overheads
for objects of fixed size and offsets.

VIII. CONCLUSIONS

We have presented results using the proposed custom
datatype API for several programming languages. Results are
varied, but generally show that use of the proposed API is
viable for transfer sizes where traditional serialize/deserialize
approaches show poor performance. To more fully make
effective use of the serialization packages avaialable with
modern programming languages, in particular Python Pickle
5, additional MPI functionality needs to be developed. In
particular, the generic challenge of efficiently receiving objects
of undetermined size currently necessitates the use of multi-
message protocols and inefficient message probing on the
receive side. Mechanisms for delivering message meta-data
to a receiver need to be developed if such protocols are to be
avoided. More research is needed for implementing truly dy-
namic datatypes, where receiving objects of an undetermined
size, or a list of sizes, may not be known before hand. This
is important for both serialization and languages that have
dynamic types that can be constructed at runtime. We also
leave the integration with collective operations as future work,
which we acknowledge as a requirement for standardization
of our approach.
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[16] D. Hespe, L. Hübner, F. Kurpicz, P. Sanders, M. Schimek, D. Seemaier,
C. Stelz, and T. N. Uhl, “Kamping: Flexible and (near) zero-overhead
c++ bindings for mpi,” arXiv preprint arXiv:2404.05610, 2024.

[17] B. Carpenter, G. Fox, S. H. Ko, and S. Lim, “Object serialization for
marshalling data in a java interface to mpi,” in Proceedings of the ACM
1999 conference on Java Grande, 1999, pp. 66–71.

[18] I. B. Peng, S. Markidis, E. Laure, D. Holmes, and M. Bull,
“A data streaming model in mpi,” in Proceedings of the 3rd
Workshop on Exascale MPI, ser. ExaMPI ’15. New York, NY,
USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2831129.2831131

[19] T. Jammer, A. Hück, J.-P. Lehr, J. Protze, S. Schwitanski, and C. Bischof,
“Towards a hybrid mpi correctness benchmark suite,” in Proceedings of
the 29th European MPI Users’ Group Meeting, ser. EuroMPI/USA ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
46–56. [Online]. Available: https://doi.org/10.1145/3555819.3555853

[20] T. Schneider, F. Kjolstad, and T. Hoefler, “Mpi datatype processing
using runtime compilation,” in Proceedings of the 20th European
MPI Users’ Group Meeting, ser. EuroMPI ’13. New York, NY,
USA: Association for Computing Machinery, 2013, p. 19–24. [Online].
Available: https://doi.org/10.1145/2488551.2488552

[21] T. Prabhu and W. Gropp, “DAME: Runtime-compilation for data
movement,” The International Journal of High Performance Computing
Applications, vol. 32, no. 5, pp. 760–774, 2018. [Online]. Available:
https://doi.org/10.1177/1094342017695444

[22] Y. Li, J. Schuchart, and G. Bosilca, “Comprehensive Study for
Just-In-Time Pack Functions in Open MPI,” in 2024 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW).
Los Alamitos, CA, USA: IEEE Computer Society, may 2024, pp.
678–685. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/IPDPSW63119.2024.00130
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