
MPI Progress For All
Hui Zhou∗, Robert Latham∗, Ken Raffenetti∗, Yanfei Guo∗ and Rajeev Thakur∗

∗Argonne National Laboratory
Lemont, IL 60439, USA

Abstract—The progression of communication in the Message
Passing Interface (MPI) is not well defined, yet it is critical
for application performance, particularly in achieving effective
computation and communication overlap. The opaque nature
of MPI progress poses significant challenges in advancing MPI
within modern high-performance computing practices. First, the
lack of clarity hinders the development of explicit guidelines
for enhancing computation and communication overlap in ap-
plications. Second, it prevents MPI from seamlessly integrating
with contemporary programming paradigms, such as task-based
runtimes and event-driven programming. Third, it limits the
extension of MPI functionality from user space. In this paper,
we examine the role of MPI progress by analyzing the imple-
mentation details of MPI messaging. We then generalize the
asynchronous communication pattern and identify key factors
influencing application performance. Based on this analysis, we
propose a set of MPI extensions designed to enable users to
construct and manage an efficient progress engine explicitly. We
compare our approach to previous efforts in the field, highlighting
its reduced complexity and increased effectiveness.

I. INTRODUCTION

Overlapping computation and communication [1], [2] is
a key performance goal in high-performance computing
(HPC). Ideally, with 100% computation/communication over-
lap, communication and synchronization become effectively
free, allowing parallel applications to scale perfectly. How-
ever, achieving this overlap goal remains challenging. The
Message Passing Interface (MPI), the de facto communication
runtime for HPC applications, does not precisely define how
communication progress is made. MPI guarantees that once
communication is initiated, it will complete, but it does
not specify whether progress occurs during the starting call
(e.g., MPI_Isend), the completion call (e.g., MPI_Wait),
or in between. To achieve effective computation/communi-
cation overlap, strong progress from MPI is desirable [3],
meaning that MPI can make progress between the starting
and completion calls without explicit MPI calls from the user.
However, implementing strong progress poses constraints on
MPI implementations and is not always feasible.

The obvious approach to strong progress is to seek hardware
solutions. For example, remote direct memory access (RDMA)
technology allows network hardware to communicate without
the operating system or CPU involvement. Hardware solu-
tions, however, have their own limitations. Hardware may
have limited capacity to handle unexpected messages and
congestion, lack semantic contexts to make smart routing
decisions, and lack mechanisms to provide feedback to the
software layer. In addition, hardware solutions are always
system-dependent. The arrival of GPU architectures presents

new challenges. GPU Direct RDMA technology is still in the
emerging stage and cannot always be assumed to be available.
It also poses high setup cost and latency. Alternate solutions
such as GDRCopy or software pipelining may provide better
performance but require weak progress.

Thus, a performance-portable application that relies on good
computation/communication overlap generally requires an ex-
plicit progression scheme to regularly invoke MPI progress
during computation.

Applications currently have limited means to explicitly
control MPI progress. The conventional method to invoke MPI
progress is via MPI_Test. However, MPI_Test is tied to a
specific MPI request. Thus, designing a progress engine that
includes MPI progress requires a synchronization mechanism
for managing MPI requests, which is often complex and
prone to inefficiency. This is particularly problematic with the
asynchronous programming paradigm, including task-based
[4], [5] and event-driven programming [6]. Asynchronous
programming systems typically include a software progress
engine that provides the service of task scheduling and event
dispatching. Implementing a separate progress engine for MPI
breaks the tasks and events abstractions and contends for
resources between the progress engines. Unifying the pro-
gression requires managing MPI requests. This is not always
possible when the task or event-based runtimes are not MPI-
aware. Even when it is possible, it adds complexity and is
difficult to implement efficiently.

The core issue is the lack of interoperability from MPI
progress. First, MPI progress is not explicitly exposed. It
is ambiguous on how to invoke MPI progress or whether a
regular MPI progress invocation is needed. The semantics of
MPI_Test is tied to a particular operation represented by an
MPI request and only invokes progress as a side effect. To
design an effective progress engine, an explicit MPI progress
invocation API is needed. Second, there is no effective way to
hook into MPI progress so that a progression scheme for MPI
can also progress user-defined asynchronous tasks rather than
having to create and manage different progression schemes
for individual asynchronous tasks. All asynchronous tasks,
including MPI operations, share similar patterns. Without
mechanisms to hook into MPI progress forces applications
to deal with separate progression mechanisms, which not
only increases complexity but also affects performance due
to contention and necessary synchronization between the
progress engines. An interoperable MPI progress would allow
an external progress engine, e.g., from a task runtime or an
event system, to efficiently progress MPI, or it will allow an

425979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00063

application to implement a custom MPI progression scheme.
Both solutions will also work for user-defined tasks, avoiding
duplication and inefficiency due to contention.

Explicit MPI progress is not needed when there is a
strong progress guarantee. However, providing an explicit
MPI progress interface provides performance portability, since
only the implementation knows whether software progress
is needed. When there is strong progress, the explicit MPI
progress can be reduced to nearly a no-op.

The lack of interoperability from MPI progress is also one of
the key barriers keeping MPI from advancing. As HPC enters
the exascale era, MPI faces performance challenges on increas-
ingly hybrid node architectures. Achieving high performance
with MPI implementations is becoming more complex and
challenging compared to hand-tuned, non-portable solutions.
Researchers need the ability to prototype MPI algorithms and
MPI extensions independently of MPI implementations. The
ROMIO project, which prototyped and implemented MPI-IO
during MPI-2 standardization [7], is a good example of such
an approach. Today, a potential area for similar innovation
is MPI collective operations. An algorithm for a collective
operation often involves a collection of communication pat-
terns tied together by a progression schedule. An optimized
collective algorithm may integrate both MPI communications
and asynchronous local offloading steps, tailored to specific
system configurations and application needs. Therefore, ex-
posing and making MPI progress interoperable with user-layer
asynchronous tasks will stimulate broader community research
activities, driving future advancements in MPI. We aim to
address a common debate in MPI standardization meetings—
whether a proposed feature needs to be in MPI or whether it
can be a library on top of MPI. Exposing new progress APIs
will facilitate more tightly coupled libraries, so more features
can be built on top of MPI first, rather than directly added
into MPI before widespread adoption.

In this work, we introduce a set of MPI extensions to
allow applications to explicitly invoke MPI progress without
tying to specific communication calls, thereby enabling ap-
plications to manage MPI progress without the complexity
of handling individual MPI request objects. Our previously
introduced MPIX Stream concept [8] is used to target progress
to specific contexts, avoiding multithreading contention issues
associated with traditional global progress. We also recognize
that MPI progress can be extended to collate progress for
asynchronous tasks in general, simplifying the management
of multiple progress mechanisms and avoiding wasting cycles
on maintaining multiple progress engines.

II. ANATOMY OF ASYNCHRONOUS TASKS AND ROLE OF
PROGRESS

Before discussing how to manage progress, we need to
define what is progress and understand its role.

A. MPI’s Message Modes

To understand the role of progress, we examine how an
MPI implementation might send and receive messages. The

following discussion is based on MPICH, but we believe it is
applicable to other MPI implementations as well.

Figure 1 illustrates various modes of MPI_Send and
MPI_Recv. When sending a small message, the implemen-
tation may immediately copy the message to the Network
Interface Card (NIC)1 and return, marking the send operation
as complete (see Figure 1(a)). While the actual transmission
may still be in progress, the send buffer is safe for the
application to use. In MPICH, this is called a lightweight send,
which notably does not involve any wait blocks.

For larger messages, buffering costs can be significant.
Instead, the message buffer pointer is passed to the NIC, which
transmits the message directly from the buffer. MPI_Send
must wait until the NIC signals completion, as the message
buffer remains in use until then. This method, known as eager
send mode, involves a single wait block (see Figure 1(b)).

When messages are even larger, early arrival at the receiver
can cause issues, such as blocking the receiver’s message
queue or necessitating temporary buffer copying. To prevent
unexpectedly receiving large messages, a handshake protocol
is used: the sender sends a Ready to Send (RTS) message and
waits for the receiver to post a matching buffer and reply with
a Clear to Send (CTS) message. The sender then proceeds
to send the message data similarly to eager mode. This
rendezvous mode involves two wait blocks (see Figure 1(c)).
MPI_Recv operations vary as shown in Figure 1(d-f). Re-

ceiving an eager message, including those sent via lightweight
send, involves a single wait block regardless of whether
the message arrives before or after MPI_Recv. Receiving a
rendezvous message requires two wait blocks.

Additional message modes with more complex protocols,
such as pipeline mode, may involve multiple wait blocks. In
pipeline mode, a large message is divided into chunks, and the
implementation may control the number of concurrent chunks,
leading to an indeterminate number of wait blocks.

B. Nonblocking and Asynchronous Task Patterns

The wait blocks in Figure 1 illustrate why MPI_Send and
MPI_Recv are considered blocking operations. By focusing
on the wait blocks in the block diagram, we can abstract tasks
such as MPI_Send and MPI_Recv into three patterns, as
shown in Figure 2: tasks that do not wait, tasks that contain a
single wait block, and tasks with multiple wait blocks. During
a wait block, the task is executed on a hardware device such
as a NIC or GPU, within the OS kernel, or within a separate
execution context such as a thread or process.

The wait block is often implemented as a busy poll loop,
which wastes CPU cycles while the offloaded task is still in
progress. Conversely, if the offloaded task finishes and the
completion event is not immediately polled and acted upon, it
can delay subsequent dependent work, adding latency to the
workflow.

Rather than immediately waiting for an asynchronous task
to complete, a program can, in principle, perform other jobs

1Here “NIC” loosely refers to either hardware operations or software
emulations.

426

(a) Buffered send.

(b) Eager send.

(c) Rendezvous send.

(d) Eager unexpected receive.

(e) Eager expected receive.

(f) Rendezvous receive.

CPU Wait NIC

CPU NIC

initiate

finalize
buffer

CPU NIC

initiate

finalize

wait

CPU NIC

initiate

send data

finalize

wait

wait

RTS
CTS

data

CPU NIC

initiate

finalize
wait

CPU NIC

initiate

finalize

wait

CPU NIC

initiate

finalize

wait

wait

RTS
CTS

data

Fig. 1. Common communication modes: (a) Buffered eager send; (b) Normal
eager send; (c) Rendezvous send; (d) Receiving an eager message that arrived
before posting the receive; (e) Receiving an eager message that arrived after
posting the receive; (f) Receiving a rendezvous message.

(a) (b) (c)

CPU Wait NIC

Fig. 2. Asynchronous Task patterns: (a) A task with no blocking parts; (b)
A task with a single blocking part; (c) A task with multiple blocking parts.

that do not depend on the pending task. This is the idea
behind MPI’s nonblocking APIs. A nonblocking operation
splits a corresponding blocking operation into two parts:
starting and completion. For example, MPI_Send is divided
into MPI_Isend and MPI_Wait.

Figure 3 illustrates how blocking patterns in Figure 2 are
split into nonblocking patterns. If the task does not contain
any wait blocks (Figure 3(a)), the split into a nonblocking
pattern is somewhat arbitrary, but typically the entire operation
is completed in the starting call, and the completion call will
return immediately. If the task contains a single wait block
(Figure 3(b)), it is naturally split just before the wait block.
For tasks with multiple wait blocks (Figure 3(c)), the split

Start

Completion

(a) (b) (c)

CPU Wait NIC

Fig. 3. Nonblocking task patterns: (a) A task with no blocking parts; (b) A
task with a single blocking part; (c) A task with multiple blocking parts.

(a) (b) (c)

CPU Wait Compute NIC

Fig. 4. Computation/communication overlap: (a) Communication with no
blocking parts; (b) Communication with single blocking part; (c) Communi-
cation with multiple blocking parts.

occurs before the first wait. Generally, the starting call should
avoid any wait blocks to preserve the nonblocking semantics.

Viewing MPI operations through the lens of wait patterns
generalizes MPI nonblocking operations to common asyn-
chronous programming patterns. For instance, the async/await
syntax [9] in some programming languages provides a concise
method to describe the wait patterns in a task. Event-driven
programming [6], on the other hand, expresses the code
following the wait block as event callbacks. In MPI, these
async patterns are opaque, making MPI progress management
obscure.

C. Computation/Communication Overlap

One of the primary goals of using nonblocking MPI
operations is to achieve overlap between computation and
communication. Ideally, the CPU cycles spent in a wait loop
should instead be used for computation, enhancing overall
efficiency. However, achieving this overlap with MPI is not
straightforward. The concept of computation/communication
overlap is illustrated in Figure 4. Immediately after initiating
a nonblocking operation, the program enters a computation
phase while the message data transmission is handled by
the NIC hardware or another offloading device. Once the
computation phase completes, the program resumes the wait
for the nonblocking operation. If the communication has
finished by then, the final wait returns immediately; otherwise,
the wait time is significantly reduced. This overlap maximizes

427

(a) (b)

CPU Test Compute NIC

Fig. 5. Remedies for the lack of progress: (a) Intersperse progress tests inside
computations; (b) Use a dedicated thread to continuously poll progress.

efficiency, improving overall performance and reducing time
to solution.

The ideal overlap can be easily achieved for the case in
Figure 4(b), where a single wait in the nonblocking operation
allows for effective overlap. In contrast, Figure 4(a) shows a
scenario with no wait block to save, offering no additional
overlap compared to the blocking case. Converting a block-
ing operation without a wait into a nonblocking one only
introduces overhead due to the creating and finalizing of a
task handle (i.e., an MPI request). However, in most MPI
implementations, this overhead is negligible. The situation is
more complex in Figure 4(c), where multiple wait blocks are
present, and computation only overlaps with the first wait
block. This initial overlap is often insignificant compared
to the total combined wait time. For instance, in a simple
rendezvous message, the first wait involves waiting for a
small protocol handshake, while the bulk of the message
transmission occurs during the second wait. As a result, the
opportunity for significant overlap is missed in such cases.

D. Role of Progress

The key issue with the scenario depicted in Figure 4(c) is the
lack of progress. After the first wait ends, a small block of code
needs to run to initiate the second wait. For asynchronous tasks
with multiple wait blocks, this small block of code after each
wait block must run to trigger the subsequent asynchronous
tasks for the next wait. Polling for completion events and run-
ning the handlers to initiate the following asynchronous tasks
constitute progress. Without adequate progress, the next steps
in the asynchronous task are delayed, resulting in degraded
performance.

There are two remedies for this lack of progress. One is
to intersperse MPI_Test calls within the computation, as
illustrated in Figure 5(a). However, this approach has at least
three drawbacks. First, breaking the computation into parts and
interspersing it with progress calls significantly increases code
complexity and may not always be feasible. For example, the
computation might be encapsulated in an opaque function, or
the bulk of it might be spent in a math routine from an external
library. Second, if progress polling is too frequent, many polls
will waste CPU cycles without benefit, and the context switch-
ing between computation and progress polling adds overhead.

Consequently, frequent polling decreases performance. Third,
if progress polling is too sparse, the likelihood of polling
just after a communication step completes is low, resulting
in imperfect computation/communication overlap.

An alternative solution is to use a dedicated CPU thread
for polling progress. This approach ensures sufficient progress
and maximizes the overlap between computation and com-
munication. However, it also wastes CPU cycles when a
communication step is not ready and occupies an entire CPU
core. While modern HPC systems often have many cores,
dedicating a CPU core for progress can be acceptable for
some applications. However, this becomes problematic when
multiple processes are launched on a single node. If each
process has its own progress thread, it can quickly exhaust
CPU cores and severely impact performance. Additionally,
applications may use other asynchronous subsystems besides
MPI, each potentially requiring its own progress thread, lead-
ing to competition for limited core resources.

E. Managing MPI Progress

Implementing a progress thread with MPI is challeng-
ing, primarily because MPI does not provide explicit APIs
for invoking MPI progress. MPI progress is largely hidden
within the implementation, with the assumption that a system-
optimized MPI will provide strong progress, thereby reducing
the need for explicit progress. However, as discussed earlier,
this assumption may not always hold true. Calling any MPI
function may or may not invoke MPI progress, and when it
does, it may not serve global progress. For instance, calling
MPI_Test on one MPI request may not necessarily advance
other MPI requests. Furthermore, any MPI function that in-
vokes progress may contend for locks with another thread
calling MPI functions. Managing MPI progress can feel almost
magical when it works, but extremely frustrating when it fails.

One of the more explicit ways to invoke MPI progress is
by calling MPI_Test (or any of its variants). MPI_Test
requires an explicit MPI request parameter. However, a ded-
icated progress thread is often isolated from the context that
initiates the actual MPI operations, making it challenging to
synchronize MPI requests between the computation threads
and the progress thread. This synchronization of MPI request
objects imposes a significant burden on a many-task system
design. Therefore, to enable applications to build effective
progress engines, MPI needs to provide mechanisms for in-
voking progress independent of specific MPI requests.

F. Collating Progress

In addition to the inconvenience of having to use an MPI
request to call MPI_Test, polling progress for individual
MPI requests is inefficient. It is more efficient to poll for
all events, process them one by one, and then check whether
a specific MPI request has been completed from the event
handling. This is referred to as collating progress. Collating
progress ensures that all parts of the program are progressing
towards completion, rather than waiting unnecessarily for each
individual operation to be completed sequentially. Collating

428

progress can help improve overall application performance by
reducing bottlenecks and enhancing concurrency.

In addition to collating progress for network operations,
an MPI library internally needs to manage the progress of
multiple asynchronous subsystems. For example, data transfer
may involve GPU device memory, meaning a conventional
MPI send and receive could include asynchronous memory
copy operations between host and device memory. MPI-IO
may introduce asynchronous storage I/O operations. Col-
lectives are often implemented as a series of nonblocking
point-to-point communications following a multi-stage pattern
similar to Figure 3(c). Additionally, MPI communication may
internally utilize different subsystems depending on whether
the communication is between on-node processes or inter-
node processes. All these asynchronous subsystems require
progress, and it is often more convenient and efficient to collate
them.

Listing 1 shows the pseudocode of MPICH’s internal
progress function.

i n t M P I D I p r o g r e s s t e s t (M P I D P r o g r e s s s t a t e * s t a t e) {
i n t mpi e r rno = MPI SUCCESS , ma de p rog r e s s = 0 ;

/ * a s y n c h r o n o u s d a t a t y p e pack / unpack * /
D a t a t y p e e n g i n e p r o g r e s s (& ma de p rog r e s s) ;
i f (made p ro g r e s s) goto f n e x i t ;

/ * c o l l e c t i v e a l g o r i t h m s * /
C o l l e c t i v e s c h e d p r o g r e s s (& ma de p ro g r e s s) ;
i f (made p ro g r e s s) goto f n e x i t ;

/ * i n t r a n o d e s ha r e d memory communica t ion * /
Shmem progress (& ma de p ro g r e s s) ;
i f (made p ro g r e s s) goto f n e x i t ;

/ * i n t e r n o d e netmod communica t ion * /
Netmod progress (& ma de p ro g r e s s) ;
i f (made p ro g r e s s) goto f n e x i t ;

f n e x i t :
re turn mpi e r rno ;

}

Listing 1. Pseudocode for MPICH’s progress function

This progress routine is called whenever an MPI function
requires progress. Collating progress assumes that the cost
is negligible if a subsystem has no pending tasks. For the
datatype engine, collective, and shared memory (shmem) sub-
systems, an empty poll incurs a cost equivalent to reading an
atomic variable. However, this is not always the case with
netmod progress, so we place netmod progress last and skip
it whenever progress is made with other subsystems. Addi-
tionally, MPICH’s progress function accepts a state variable
from the calling stack, providing an opportunity for the caller
to tune the progress performance according to the context.
For example, from a context where only netmod progress is
needed, the progress state can be set to skip progress for all
other subsystems. Since MPI implementations already per-
form collated event-based progress internally, exposing MPI
progress as an explicit API for applications is straightforward.

G. Case for Interoperable MPI Progress

As we have discussed, the patterns of MPI internal op-
erations are similar to those of general asynchronous tasks
that applications may create. Therefore, the design and opti-
mization of MPI progress should be applicable to application-
layer asynchronous tasks as well. In fact, current MPI imple-
mentations already handle several async subsystems internally,
making it straightforward to extend this capability to work with
external tasks. We refer to this concept as “interoperable MPI
progress.”

Interoperable MPI progress provides applications with a
mature progress engine, eliminating the need to create and
maintain separate progression mechanisms for each new async
system. Additionally, integrating user-layer progress within
MPI progress is more convenient and efficient.

Another advantage of interoperable MPI progress is that
it allows for the implementation and extension of MPI sub-
systems at the user level. For instance, users could implement
collectives in user space by adding a progress hook into MPI’s
progress, similar to the Collective_sched_progress
in Listing 1. This approach promotes a modular design where
parts of MPI are built on top of a core MPI implementation,
enhancing both flexibility and stability. Furthermore, a core
MPI set that facilitates the building of MPI extensions can
stimulate broader community research activities and infuse
new life into MPI.

III. MPICH EXTENSIONS FOR INTEROPERABLE
PROGRESS

In this section, we present new extension APIs developed in
MPICH that enable applications to more effectively manage
MPI progress and to extend MPI through interoperable MPI
progress.

A. MPIX Streams

First, we refresh the MPIX Stream extension introduced
in our previous work [8]. An MPIX Stream represents an
internal communication context within the MPI library, defined
as a serial execution context. All operations attached to an
MPIX Stream are required to be issued in a strict serial
order, eliminating the need for lock protection within the
MPI library. The default stream, MPIX_STREAM_NULL can
be used wherever MPIX Stream is needed in the interface,
thus, MPIX Stream is not a prerequisite. However, exposing
MPIX Stream allows applications to influence and control
MPI progress to be more targeted and to avoid contention,
addressing one of the key performance factors in a multi-
threaded application.

An MPIX Stream is created using the following API:

i n t MPIX Stream crea te (MPI Info i n f o , MPIX Stream *
s t r e a m)

To use an MPIX Stream in MPI communications, you must
first create a stream communicator with the following function:

i n t MPIX Stream comm create (MPI Comm parent comm ,
MPIX Stream s t ream , MPI Comm * stream comm)

429

A stream communicator can be used the same way as a
conventional MPI communicator, except that all operations
on a stream communicator will be associated with the cor-
responding MPIX Stream context. While an MPIX Stream is
naturally suited for a thread context, it can also be applied
to any semantically serial construct. For example, the serial
context can be manually enforced through thread barriers, or
originate from a specific runtime such as a CUDA stream. Info
hints offer a flexible mechanism for implementations to extend
support and apply specific optimizations. For more detailed
information on MPIX Streams, please refer to our previous
work[8].

B. Explicit MPI Progress

To address the need for making MPI progress without being
tied to specific MPI requests, We propose an API that allows
applications to advance MPI progress for a specific MPIX
Stream:

i n t MPIX Stream progress (MPIX Stream s t r e a m)

An explicit MPIX Stream can be used to avoid unnecessary
thread contention or to influence how each subsystems are
being progressed. For example, in Listing 1, hints can be pro-
vided to the MPIX Streams to skip some progress components
if the subsystem does not require them.

C. MPIX Async Extension

MPIX_Stream_progress allows applications to incor-
porate MPI progress into their progression schemes. However,
to make MPI progress truly interoperable, we also need a
mechanism for applications to add progress hooks into the
MPI progress system. This is accomplished with the following
extension:

i n t MPIX Async s tar t (MPIX Async po l l func t ion
p o l l f n , void * e x t r a s t a t e , MPIX Stream s t r e a m
)

The poll_fn parameter is a user-defined progress hook
function that is called from within MPI progress (e.g., in-
side MPIX_Stream_progress or MPI_Test) along with
MPI’s internal progress hooks (See Listing 1). extra_state
is a user-defined handle or a state pointer that will be passed
back to poll_fn. The stream parameter attaches the task
to the corresponding MPIX Stream, including the default
stream, MPIX_STREAM_NULL. poll_fn has the following
signature:

t y p e d e f s t r u c t MPIR Async thing * MPIX Async thing ;
t y p e d e f i n t (MPIX Async po l l func t ion) (

MPIX Async thing) ;

An opaque struct pointer, MPIX_Async_thing, is
used instead of directly passing extra_state back to
poll_fn. This provides some flexibility for implementations
to support additional features. MPIX_Async_thing com-
bines application-side context (i.e., extra_state) and the
implementation-side context. Inside poll_fn, the original
extra_state can be readily retrieved with:

void * MPIX Async ge t s ta te (MPIX Async thing
a s y n c t h i n g)

poll_fn returns either MPIX_ASYNC_PENDING if the
async task is in progress or MPIX_ASYNC_DONE if
the async task is completed. Before poll_fn returns
MPIX_ASYNC_DONE, it must clean up the application con-
text associated with the async task, typically by freeing the
structure behind extra_state. The MPI library will then
free the context behind MPIX_Async_thing.

The MPIX Async interface allows users to extend MPI’s
functionality and integrate custom progression schemes into
MPI progress. For example, an MPI collective can be viewed
as a fixed task graph composed of individual operations and
their dependencies. By defining poll_fn, one can advance
a specific task graph for a custom collective algorithm within
MPI progress. Integrating into MPI progress simplifies the
process by eliminating the need for constructing separate
progress mechanisms and avoiding performance issues such
as managing MPI request objects, extra progress threads, and
thread contention.

MPIX Async is not a rehash of MPI Generalized Request.
Rather they can be used together and complement each other.
MPIX Async provides a progress mechanism, while MPI Gen-
eralized Request provides the handle representation. Together,
they allow users to create nonblocking tasks that not only can
be queried via MPI request API but also can be progressed
using the same MPI progression scheme.

D. Completion Query on MPI Requests

When a task finishes its computation for a given stage, it
must wait for the completion of its dependent nonblocking
operations. However, MPI_Wait may also perform progress
in addition to local queries and wait blocks. This is good when
MPI_Wait is the main progression mechanism. However,
when there is a separate progress engine, invoking redundant
progress outside the progress engine wastes CPU cycles,
creates thread contentions, and degrades performance.

The following API provides a pure request completion query
function that does not have the side effects of triggering
progress:

boo l MPIX Reques t i s comple te (MPI Request r e q u e s t)

The implementation simply queries an atomic flag for
the request, resulting in minimal overhead when repeatedly
polling this function. Importantly, there are no side effects
that would interfere with other requests or other progress calls.
MPIX_Request_is_complete is also useful in the MPIX
Async poll_fn when the application-layer task is built upon
MPI operations. Each MPI progress may internally use a
context to coordinate various parts, thus, invoking progress
recursively inside the poll_fn is prohibited.

IV. EXAMPLES AND EVALUATIONS

In this section, we present various examples using the
extensions introduced in the last section and demonstrate

430

various performance factors in MPI progress. An important
metric for quantifying progress performance is the progress
latency, defined as the average elapsed time between a task’s
completion and when the user code responds to the event.
We use a dummy task created with MPIX Async interface
to directly measure progress latency. Unless otherwise noted,
our experiments were conducted on a local workstation with
an 8-core i7-7820X CPU.

A. Dummy task

For most of the following examples, we use a dummy task
that completes after a predetermined duration. This simulates
an asynchronous job completed via offloading. Instead of
querying a completion status, we check for the elapsed time.
The code is provided in Listing 2. By presetting the duration
for the dummy task to complete, we can measure the latency
of the progress engine’s response to the completion event.

d e f i n e TASK DURATION 1 . 0
d e f i n e NUM TASKS 10

s t r u c t dummy state {
double w t i m e f i n i s h ;
i n t * c o u n t e r p t r ;

} ;

void a d d s t a t (double l a t e n c y) ; / * imp l . o m i t t e d * /
void r e p o r t s t a t (void) ; / * imp l . o m i t t e d * /

s t a t i c i n t dummy poll (MPIX Async thing t h i n g) {
s t r u c t dummy state *p = MPIX Async ge t s ta te (t h i n g) ;
double wtime = MPI Wtime () ;
i f (wtime >= p−>w t i m e f i n i s h) {

a d d s t a t (wtime − p−>w t i m e f i n i s h) * 1 e6 ;
(* (p−>c o u n t e r p t r)) − −;
f r e e (p) ;
re turn MPIX ASYNC DONE;

}
re turn MPIX ASYNC NOPROGRESS ;

}

s t a t i c vo id add async (i n t * c o u n t e r p t r) {
s t r u c t dummy state *p = m a l l o c (s i z e o f (s t r u c t

dummy state)) ;
p−>w t i m e f i n i s h = MPI Wtime () + TASK DURATION;
p−>c o u n t e r p t r = c o u n t e r p t r ;
MPIX Async s tar t (dummy poll , p) ;

}

i n t main (i n t argc , c o n s t char ** a rg v) {
M P I I n i t (NULL, NULL) ;

i n t c o u n t e r = NUM TASKS;
f o r (i n t i = 0 ; i < NUM TASKS; i ++) {

add async (& c o u n t e r) ;
}

/ * p r o g r e s s * /
whi le (c o u n t e r > 0) {

MPIX Stream progress (MPIX STREAM NULL) ;
}

r e p o r t s t a t () ;
M P I F i n a l i z e () ;
re turn 0 ;

}

Listing 2. An example of dummy async task using MPIX Async extensions
with synchronization counter, wait-progress loop, and stubs for latency
benchmarking

Since there is no real computation work in our example, we
spin MPIX_Stream_progress after adding the tasks in the

Fig. 6. Latency overhead in microseconds as the number of pending async
tasks increases.

same thread. Because this progress does not take individual
task handles, it can be easily moved into a progress thread or
a progress engine, achieving computation overlap.

B. Performance Factors in Async Progress

Several performance factors influence the average response
latency to event completion in asynchronous progress.

1) Number of pending tasks: During each MPI progress
call (e.g., MPIX_Stream_progress), MPI will invoke the
async poll_fn for each pending async task sequentially.
The cycles spent processing numerous tasks may delay the
response time to a specific task’s completion event. Therefore,
as the number of pending tasks increases, we expect an
increase in response latency. This expectation is confirmed by
the experimental results shown in Figure 6.

If all the pending tasks are independent, each progress call
must invoke poll_fn for every pending task, leading to
a performance degradation as the number of pending tasks
rises. Notably, when there are fewer than 32 pending tasks,
the latency overhead remains below 0.5 microseconds.

Most applications do not create thousands of independent
tasks randomly. Typically, tasks have dependencies on each
other, forming a task graph, or they are grouped into streams
with implicit linear dependencies. When tasks have depen-
dencies, it is possible to skip polling progress for tasks whose
dependent tasks are not yet completed. While implementing a
general-purpose task management system to track dependen-
cies is complex, we will demonstrate in Section IV-C through
an example how users can manage task dependencies within
their poll_fn.

2) Poll Function Overhead: In addition to the number of
pending tasks, the overhead of individual progress poll func-
tions (poll_fn) can also affect the average event response
latency. If a single poll_fn takes a disproportionate amount
of time to execute, the overall response time to events will
increase. This effect is illustrated in Figure 7, where we
manually inserted delays in poll_fn when the task is still
pending.

The MPIX Async interface is designed for lightweight
poll_fn functions and is not suitable for tasks that require
significant CPU cycles to respond to an event. This is generally
true for all collated progress mechanisms: when one part of

431

Fig. 7. Impact of poll function overhead on event response latency. Each
measurement runs 10 concurrent pending tasks. The delay is implemented by
busy-polling MPI_Wtime.

the progress takes significant overhead, it negatively impacts
the performance of other tasks.

To avoid heavy poll_fn overhead, it is recommended to
enqueue events and postpone the heavy work outside of the
progress callbacks. This approach ensures that the poll_fn
remains lightweight, minimizing its impact on overall perfor-
mance.

3) Thread Contention: When multiple threads concurrently
execute progress, they contend for a lock to avoid corrupting
the global pending task list. Even if the tasks are independent,
multiple threads running collated progress will still contend
for locks, leading to performance degradation. As illustrated
in Figure 8, the observed latency increases with the number
of concurrent progress threads.

It is important to note that individual poll_fn functions
may access application-specific global states that require lock
protection from other parts of the application code. This lock
protection should be implemented within the poll_fn by
the application. MPI only ensures thread safety between MPI
progress calls.

To avoid performance degradation, it is advisable to limit
the number of progress threads—a single progress thread often
suffices. Sometimes, MPI progress loops are invoked implic-
itly. For example, blocking calls in MPI, such as MPI_Recv,
often include implicit progress similar to MPI_Wait. Even
initiation calls, such as MPI_Isend, may contend for a
lock with the MPI progress thread. This global lock con-
tention contributes to the notorious poor performance of
MPI_THREAD_MULTIPLE [8].

Using MPIX Stream appropriately can mitigate the issue
of global thread contention. We will demonstrate this in
Section IV-D.

C. Async task class

To avoid wasting cycles polling progress for tasks with
pending dependencies, it is essential to track task dependen-
cies. This can be managed either within MPI implementations
or inside the callback poll_fn. However, handling general
task graphs inside MPI implementations needs to handle
unbounded complexity, while applications often have specific
and much simpler dependency structures. Therefore, it is more

Fig. 8. Latency overhead in microseconds as the number of concurrent
progress threads increases. Each measurement runs 10 concurrent pending
tasks.

Fig. 9. Latency versus the number of pending tasks when the progress
callback only checks the task at the top of the queue.

effective for applications to manage task dependencies within
the poll_fn. For example, instead of polling progress for
individual asynchronous tasks, users can design task subsys-
tems or asynchronous task classes. Within the poll_fn, they
can poll progress for the entire task class. When the tasks are
topologically sorted according to dependency, the poll_fn
only needs to poll the head tasks rather than to poll every task.

f o r (i n t i = 0 ; i < c o u n t ; i ++) add async (i) ;
MPIX Async s tar t (c l a s s p o l l , t a s k g r a p h) ;

Listing 3. Use a single poll_fn to manage a class of async tasks.

Shown in Listing 3, a single MPIX_Async_start is
used to register progress for all tasks within the class.
Individual tasks are launched in add_async function
by adding to a separately managed task graph (omit-
ted in Listing 3). The class_poll function will return
MPIX_ASYNC_NOPROGRESS until finalization. Effectively,
we are adding a custom progress component in Listing 1.

When all the tasks in the task class follow a linear de-
pendency, the poll_fn only needs to poll a single task
each time. As shown in Figure 9, the average latency stays
constant (within measurement noise) regardless of the number
of pending tasks.

432

Fig. 10. Latency versus the number of concurrent progress threads using
different MPIX streams. Each measurement runs 10 concurrent pending tasks.

D. Concurrent progress streams

If running multiple progress threads is necessary, explicit
MPIX Stream can be used to avoid contentions between
the various threads. To demonstrate, we create separate
MPIX streams and have each thread use its own stream
in MPIX_Async_start and MPIX_Stream_progress.
The result is shown in Figure 10. In contrast to Figure 5, the
average progress latency does not increase significantly as the
number of threads increases when separate MPIX streams are
used. The slight increase in latency is within measurement
noise and is attributable to core power fluctuations due to the
number of active cores.

E. User-level collective algorithms

One of the motivations behind the MPIX Async extension
is to enable user-level implementation of collective algorithms
with performance comparable to native implementations. Col-
lective algorithms are essentially a collection of communica-
tion patterns built on a core set of operations, including MPI
point-to-point operations, buffer copies, and local reductions.

A key advantage of native collective implementations is
their tight integration with the MPI progress. MPIX Async is
designed to provide the same level of integration to user-level
applications.

In Listing 4, we present an example of implementing a
user-level allreduce algorithm using the MPIX Async APIs.
This example implements the recursive doubling allreduce
algorithm[10]. For simplicity, the datatype is restricted to
MPI_INT, the op to MPI_SUM, and the number of processes
to a power of 2.

To compare the performance of this custom user-level allre-
duce against MPICH’s MPI_Iallreduce using the same
recursive doubling algorithm, we conducted experiments on
the Bebop cluster at Argonne National Laboratory Comput-
ing Resource Center (LCRC). The experiment measures the
latency of allreduce of a single integer. The results are shown
in Figure 11.

The custom user-level implementation actually outperforms
MPICH’s native MPI_Iallreduce. We believe this is due
to the specific assumptions and shortcuts in the custom imple-
mentation. For example, we assume the number of processes

is a power of 2 and that sendbuf is MPI_INPLACE, which
avoids certain checks and branches. Additionally, restricting
to MPI_INT and MPI_SUM avoids a datatype switch and the
function-call overhead of calling an operation function. This
highlights an advantage of custom code over an optimized
MPI implementation: the former can leverage specific contexts
from the application to avoid complexities and achieve greater
efficiency.

s t r u c t m y a l l r e d u c e {
i n t * buf , * tmp buf ;
MPI Comm comm ;
i n t rank , s i z e , t ag , mask , c o u n t ;
MPI Request r e q s [2] ; / * send & r e c v r e q u e s t s * /
boo l * d o n e p t r ; / * e x t e r n a l c o m p l e t i o n f l a g * /

} ;

s t a t i c i n t my pol l (MPIX Async thing t h i n g) {
s t r u c t m y a l l r e d u c e *p = MPIX Async ge t s ta te (t h i n g) ;
i n t r eq done = 0 ;
f o r (i n t i = 0 ; i < 2 ; i ++) {

i f (p−>r e q s [i] == MPI REQUEST NULL) {
r eq done ++;

} e l s e i f (MPIX Reques t i s comple te (p−>r e q s [i])) {
MPI Reques t f r ee (&p−>r e q s [i]) ;
r eq done ++;

}
}
i f (r eq done != 2) {re turn MPIX ASYNC NOPROGRESS;}
i f (p−>mask > 1) {

f o r (i n t i = 0 ; i < p−>c o u n t ; i ++)
p−>buf [i] += p−>tmp buf [i] ;

}
i f (p−>mask == p−>s i z e) {

*(p−>d o n e p t r) = t r u e ;
f r e e (p−>tmp buf) ; f r e e (p) ;
re turn MPIX ASYNC DONE;

}
i n t d s t = p−>r an k ˆ p−>mask ;
MPI Irecv (p−>tmp buf , p−>count , MPI INT , d s t , p−>t ag , p

−>comm , &p−>r e q s [0]) ;
MPI Isend (p−>buf , p−>count , MPI INT , d s t , p−>t ag , p−>

comm , &p−>r e q s [1]) ;
p−>mask <<= 1 ;

re turn MPIX ASYNC NOPROGRESS ;
}

void MyAllreduce (c o n s t vo id * sendbuf , void * r e c v b u f , i n t
cn t , MPI Datatype d a t a t y p e , MPI Op op , MPI Comm comm) {

i n t rank , s i z e ;
MPI Comm rank (comm , &ra nk) ; MPI Comm size (comm , &s i z e) ;

/ * o n l y d e a l w i t h a s p e c i a l cas e * /
a s s e r t (s e n d b u f == MPI IN PLACE && d a t a t y p e == MPI INT

&& op == MPI SUM && i s p o f 2 (s i z e)) ;

s t r u c t m y a l l r e d u c e *p = m a l l o c (s i z e o f (* p)) ;
p−>buf = r e c v b u f ; p−>c o u n t = c n t ;
p−>tmp buf = ma l l o c (c n t * s i z e o f (i n t)) ;
p−>r e q s [0] = p−>r e q s [1] = MPI REQUEST NULL ;
p−>comm = comm ;
p−>r an k = rank ; p−>s i z e = s i z e ;
p−>mask = 1 ; p−>t a g = MYALLREDUCE TAG;

boo l done = f a l s e ;
p−>d o n e p t r = &done ;

MPIX Async s tar t (my poll , p , MPIX STREAM NULL) ;
whi le (! done) MPIX Stream progress (MPIX STREAM NULL) ;

}

Listing 4. An example of a user-level allreduce algorithm

433

Fig. 11. Custom single-integer allreduce latency vs MPI_Iallreduce.
Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz. Nodes interconnect via Omni-
Path Fabric. One process per node.

V. RELATED WORK

Several related works address issues with MPI progress and
the management of asynchronous tasks within MPI. Here, we
provide a brief review and compare these approaches with our
proposed methods.

A. MPICH Asynchronous Progress

With MPICH and its derived MPI implementations, users
can set an environment variable, to enable a dedicated back-
ground thread to poll progress in a busy loop. This is the sim-
plest method for ensuring that MPI will always progress and
complete any nonblocking operations after they are initiated,
without requiring additional MPI calls from the application.
However, this method has significant performance issues and
is generally not recommended. MVAPICH [11] has proposed
a design to address these issues by identifying scenarios where
asynchronous progress is required and putting the async thread
to sleep when it is not required or beneficial. Their benchmarks
showed up to a 60% performance improvement over the
original MPICH design.

With the extension MPIX_Stream_progress, applica-
tions can easily implement the async progress thread within
the application layer. The same tuning design as that adopted
in MVAPICH can be applied. Instead of the implementa-
tion detecting where async progress is required, the ap-
plication can know where it is needed by design, thus
controlling the progress thread more precisely and directly.
MPIX_Stream_progress also allows applications to use
MPIX streams to target async progress for specific contexts,
thereby avoiding lock contention issues altogether. In contrast,
it is difficult for an MPI implementation to detect user contexts
or determine the scope of global progress.

Casper [12] is a process-based asynchronous progress
approach for MPI. It leverages one or more auxiliary “ghost”
processes to offload communication progress for all applica-
tion processes on a node. The Casper approach addresses the
contention and oversubscription issues of progress threads and
shows good benefits for passive-target RMA applications. Still,
progress for passive-target RMA is not always straightforward
using standard MPI APIs, which ultimately adds complexity to

the Casper implementation. MPIX_Stream_progress can
enable progress explicitly on specific resources, such as RMA
windows, thereby keeping the code simple and potentially
more efficient by avoiding unnecessary global progress.

B. MPIX Schedule

MPIX Schedule[5] is a proposal to expose MPI’s internal
nonblocking collective system to applications so that users can
create custom nonblocking collective algorithms or a series
of coordinated MPI operations similar to a nonblocking MPI
collective. The proposal only has APIs to add operations
represented as an MPI request or an MPI op, thus it would
be difficult to extend to non-MPI operations such as GPU
asynchronous copy and offloading tasks. More critically, the
lack of a progress mechanism limits the performance users
can achieve compared to what is possible within an MPI
implementation.

In contrast, the MPIX Async APIs address the root issue
of providing interoperable MPI progress. Its simple yet flexi-
ble progress hook-based interface can accommodate arbitrary
asynchronous tasks. Combined with generalized requests, it
enables users to effectively experiment with MPI extensions,
such as experimental collective algorithms, entirely from the
application layer.

C. MPIX Continue

MPIX Continue [4] is a proposal that allows MPI to call
back a user-defined function upon the completion of a request,
eliminating the need for the application to continuously test
the request for completion. The motivation behind the MPIX
Continue APIs is to simplify the management of MPI requests
within a task-based programming model.

Our proposed extensions address many of the chal-
lenges that the MPIX Continue proposal seeks to resolve.
MPIX_Stream_progress can be used to implement a
polling service that integrates with the task runtime system
without requiring synchronization of MPI requests. Mean-
while, MPIX_Request_is_complete allows tasks to
query the status of their dependent requests without triggering
redundant progress invocations.

VI. SUMMARY

In summary, we present a suite of MPI extensions crafted to
provide an interoperable MPI progress, which grants applica-
tions explicit control over MPI progress management, the abil-
ity to incorporate user-defined asynchronous tasks into MPI,
and seamless integration with task-based and event-driven
programming models. The MPIX_Stream_progress and
MPIX_Request_is_complete APIs effectively decouple
the context for invoking MPI progress and querying the
completion status of MPI requests, thereby circumventing
synchronization complexities and task-engine interference.
Meanwhile, the MPIX Async proposal empowers applications
to integrate custom progress hooks into MPI progress, enabling
them to harness MPI progress and extend MPI functionality
from the user layer. Through examples and micro-benchmark

434

testing, we demonstrate the effectiveness of these extensions
in bringing MPI to modern asynchronous programming.

ACKNOWLEDGMENT

This research was supported by the U.S. Department of En-
ergy, Office of Science, under Contract DE-AC02-06CH11357.

REFERENCES

[1] E. Castillo, N. Jain, M. Casas, M. Moreto, M. Schulz, R. Beivide,
M. Valero, and A. Bhatele, “Optimizing computation-communication
overlap in asynchronous task-based programs,” in Proceedings of the
ACM International Conference on Supercomputing, 2019, pp. 380–391.

[2] M. Sergent, M. Dagrada, P. Carribault, J. Jaeger, M. Pérache,
and G. Papauré, “Efficient communication/computation overlap with
MPI+OpenMP runtimes collaboration,” in Euro-Par 2018: Parallel
Processing: 24th International Conference on Parallel and Distributed
Computing, Turin, Italy, August 27-31, 2018, Proceedings 24. Springer,
2018, pp. 560–572.

[3] D. J. Holmes, A. Skjellum, and D. Schafer, “Why is MPI (perceived
to be) so complex?: Part 1 – does strong progress simplify MPI?” in
Proceedings of the 27th European MPI Users’ Group Meeting, 2020,
pp. 21–30.

[4] J. Schuchart, P. Samfass, C. Niethammer, J. Gracia, and G. Bosilca,
“Callback-based completion notification using MPI continuations,” Par-
allel Computing, vol. 106, p. 102793, 2021.

[5] D. Schafer, S. Ghafoor, D. Holmes, M. Ruefenacht, and A. Skjellum,
“User-level scheduled communications for MPI,” in 2019 IEEE 26th
International Conference on High Performance Computing, Data, and
Analytics (HiPC). IEEE, 2019, pp. 290–300.

[6] P. Haller and M. Odersky, “Event-based programming without inversion
of control,” in Joint Modular Languages Conference. Springer, 2006,
pp. 4–22.

[7] R. Thakur, W. Gropp, and E. Lusk, “On implementing MPI-IO portably
and with high performance,” in Proceedings of the sixth workshop on
I/O in parallel and distributed systems, 1999, pp. 23–32.

[8] H. Zhou, K. Raffenetti, Y. Guo, and R. Thakur, “MPIX Stream: An
explicit solution to hybrid MPI+X programming,” in Proceedings of the
29th European MPI Users’ Group Meeting, 2022, pp. 1–10.

[9] S. Okur, D. L. Hartveld, D. Dig, and A. v. Deursen, “A study and
toolkit for asynchronous programming in C#,” in Proceedings of the
36th International Conference on Software Engineering, 2014, pp. 1117–
1127.

[10] M. Ruefenacht, M. Bull, and S. Booth, “Generalisation of recursive
doubling for allreduce: Now with simulation,” Parallel Computing,
vol. 69, pp. 24–44, 2017.

[11] A. Ruhela, H. Subramoni, S. Chakraborty, M. Bayatpour, P. Kousha, and
D. K. Panda, “Efficient design for MPI asynchronous progress without
dedicated resources,” Parallel Computing, vol. 85, pp. 13–26, 2019.

[12] M. Si, A. J. Peña, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa,
“Dynamic adaptable asynchronous progress model for MPI RMA mul-
tiphase applications,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 9, pp. 1975–1989, 2018.

435

