
Offloaded MPI message matching:
an optimistic approach

Jerónimo S. Garcı́a1,2, Salvatore Di Girolamo2, Sokol Kosta1,
J.J. Vegas Olmos2, Rami Nudelman2, Torsten Hoefler3, and Gil Bloch2

1Aalborg Universitet
2NVIDIA

3ETH Zürich

Abstract—Message matching is a critical process ensuring the
correct delivery of messages in distributed and HPC environ-
ments. The advent of SmartNICs presents an opportunity to
develop offloaded message-matching approaches that leverage
this on-NIC programmable accelerator, retaining the flexibility of
software-based solutions (e.g., tailoring to application matching
behaviors or specialized for non-MPI matching semantics) while
freeing up CPU resources. This can be especially beneficial for
intensive I/O systems, such as those protected with Post Quan-
tum Cryptography. In this work, we propose a bin-based MPI
message approach, Optimistic Tag Matching, explicitly designed
for the lightweight, highly parallel architectures typical of on-
path SmartNICs. We analyze several MPI applications, showing
how most of them present a matching behavior suitable for
offloading with the proposed strategy (i.e., low queue depths). Ad-
ditionally, we show how, in those scenarios, offloaded optimistic
matching maintains message rates comparable to traditional on-
CPU MPI message matching while freeing up CPU resources.

I. INTRODUCTION

In distributed computing, effective communication among
the processes of an application is critical for its performance
and scalability. Message interfaces and frameworks, such as
the Message Passing Interface (MPI) [1] and NCCL [2],
provide application programmers with easy and powerful
methods to manage the exchange of information among peers.
A fundamental challenge in these interfaces is ensuring that
messages sent by one process are correctly received by the
intended recipient. This is accomplished through the message
matching process.

Message matching involves pairing incoming messages with
the appropriate receive requests and mapping the received data
to user-defined buffers, while also ensuring that messages must
comply with some constraints/semantics in their delivery (they
depend on the interface used). This task becomes increasingly
complex as the number of messages and processes grows. This
is typically achieved using two queues: the posted receives
queue (PRQ) and the unexpected messages queue (UMQ). The
PRQ stores unresolved receive requests — requests to receive
messages that have not yet arrived — while the UMQ stores
messages that have been received but not yet requested. Then,
these queues are searched for a match when a new message
arrives or a new receive request is posted, respectively.

Efficient message matching is crucial for minimizing com-
munication overhead, preventing bottlenecks and scalability
issues in distributed applications [3], [4], especially important
in intensive I/O (e.g., Post Quantum Cryptography-enabled
clusters [5]) and exascale systems.

Typically, the message matching process is performed by
the host CPU. This easily becomes a bottleneck, especially as
the volume of messages increases while, at the same time,
the CPU manages other tasks and compute. One solution
to alleviate this issue is to offload the message matching
process to accelerators, such as FPGAs [6], or to implement
dedicated hardware circuitry in commercial Network Interface
Cards (NICs) to perform message matching, also known as
hardware tag matching [7].

However, with the emergence of in-network comput-
ing (INC) [8]–[10] in the form of novel hardware solu-
tions such as SmartNICs (sNICs) and Data Processing Units
(DPUs) [2], [11], there is a great opportunity to design in-
network message matching techniques, which can leverage
the benefits of INC to alleviate CPU load by offloading this
task while keeping performance comparable to the CPU-based
solution.

Additionally, offloading message matching to programmable
sNICs offers several other benefits. First, since the matching
process is implemented in software, it allows for custom
optimizations and adjustments tailored to specific application
characteristics or invariants - an approach that is not possible
for hardware tag matching. Secondly, hardware tag matching
does not handle unexpected messages, leaving to the applica-
tion the search for a matching receive. Furthermore, it also
brings improvements after the message matching process is
completed, as further computations involving those messages
can be performed directly on the network edge, eliminating
the need to transfer the message back and forth between the
sNIC and the host CPU. This is especially advantageous in
GPU-centric communication, the one that dominates current
AI and DL systems, where the matching can be performed
on the sNIC, then the message is directly transferred to GPU
memory, bypassing the CPU entirely [12].

Among the various message-based interfaces, MPI is ar-
guably the most widely used in distributed computing, par-
ticularly in HPC environments. MPI’s point-to-point commu-

457979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00067

nication semantics allow for both fully specified messages
and the use of wildcards, such as MPI_ANY_SOURCE and
MPI_ANY_TAG. These wildcards provide greater flexibility
by enabling a receiving process to accept messages from
any source or with any tag, although at the cost of extra
complexity in the message matching logic. For this reason,
typically, MPI implementations employ linked lists to maintain
the ordering of posted receives and unexpected messages.
For these cases, the search for a match becomes linear and
dependent on the number of messages (i.e., the search time
complexity is O(n)) which can hinder the performance of
some applications, specifically for the ones that use global
communication patterns - where most processes send messages
to most of their peers - or many-to-one communications,
where a process receives messages from most of its peers
simultaneously (e.g., MPI_Gatherv) [13]. The issue is also
present in multi-threaded MPI (MPI_THREAD_MULTIPLE)
where the need to lock the lists to ensure thread safety further
exacerbates the problem [14].

To address the challenge of offloading the MPI message
matching semantics, we propose “Optimistic Tag Matching”,
a novel bin-based message matching algorithm optimized for
highly-parallel architectures, such as the ones commonly found
in current SmartNICs [8], [15]. Our optimistic message match-
ing approach offloads the entire message matching process of
the host CPU, resulting in significant savings in CPU cycles,
as the host CPU no longer performs the message matching.
Furthermore, the implementation of our matching approach is
highly generic, and designed to be used with any type of MPI
application. While this generality is advantageous (i.e., our
approach is not tied to specific invariants), a custom matching
implementation tailored to a particular application or commu-
nication pattern would likely achieve better performance.

To validate the assumptions made during the design of
our approach and to demonstrate the practical benefits of our
algorithm, we have developed an MPI trace analyzer. This tool
allows us to analyze the impact that different point-to-point
communication patterns have on the matching data structures
of our optimistic approach.

With this work, we aim to make a few notable contributions
to the MPI message matching literature and problems:

i) Innovative message matching approach: We introduce
and implement a cutting-edge message matching strategy
specifically designed to enhance performance in highly
parallel architectures.

ii) Open-source MPI trace analyzer: We provide an open-
source MPI trace analyzer that enables detailed insights
into message matching behavior.

iii) Performance evaluation across applications: We evalu-
ate our proposed message matching approach by applying
it to a variety of MPI applications using the trace analyzer
we developed. This evaluation not only demonstrates the
effectiveness of our method but also provides valuable
data that can inform future developments and optimiza-
tions in the matter.

Through these contributions, we seek to improve perfor-
mance, and understanding and offer practical tools for further
improving MPI message matching, as well as some theoretical
insights.

The rest of the paper is structured as follows. Section II
provides a detailed overview of the MPI message matching
process, emphasizing its performance challenges. It includes a
brief literature review of alternative approaches and discusses
the in-network computing architecture relevant to our proposed
solution. Section III introduces our novel “Optimistic Tag
Matching” approach in detail. Following this, Section IV
covers the implementation of our optimistic matching ap-
proach on an on-path NIC accelerator. Section V presents and
analyzes results related to tag usage and queue depth across
several MPI applications, preceded by an introduction to the
MPI trace analyzer developed for collecting these results and
validating our matching approach. Section VI benchmarks the
message rate in a prototype implementation of “Optimistic Tag
Matching”. Finally, Section VII offers concluding thoughts.

II. BACKGROUND AND RELATED WORK

A. MPI message matching

Message matching, also known as tag matching, is the
crucial mechanism in MPI that ensures the correct delivery
and order of messages in point-to-point (p2p) communications,
as well as the process that maps these messages to user-
registered buffers. It involves identifying which incoming/re-
ceived message corresponds to which request. From here
thereafter, received messages are called incoming messages,
while requests are termed as posted receives. By matching
specific information within the message, such as the process
identifier (“rank”), a user-defined identifier (“tag”), and the
communicator (or message channel), MPI implementations
ensure the correct delivery of messages to the specified process
in the correct order.

A more detailed explanation of the message matching pro-
cess is provided in Figure 1. Starting as a process requesting
messages (posting receives), Figure 1a delineates the logical
flow for posting receives. First, in step 1, when a process posts
a receive using functions like MPI_Recv or MPI_Irecv, it
first checks the unexpected messages queue (UMQ). The UMQ
holds messages that have arrived before the corresponding
receive was posted. If a matching unexpected message is
found, step 2a occurs, where the message is retrieved from
the UMQ. Following this, in step 3a, the protocol to retrieve
the message data (i.e., eager or rendezvous) is executed,
and the message is successfully received. Conversely, if no
matching message is found, step 2b is triggered, where a new
entry is appended to the posted receives queue (PRQ). The
PRQ holds information about pending receives, waiting for
a corresponding message to arrive. The process then finishes
with step 3b, where the posted receive is successfully recorded
and awaits future matching.

Subsequently, when new messages arrive, a different process
takes place, as shown in Figure 1b. In step 1, the PRQ is
compared against the incoming messages. If a match is found,

458

(a) Traditional receive posting flow (b) Traditional incoming messages flow

Fig. 1: Traditional message matching scheme. Fig. 1a shows how a receive post is handled. Fig. 1b shows how incoming
messages are handled. UMQ and PRQ denote the traditional matching queues: unexpected messages queue and posted receive
queue, respectively. The symbols + and − denote the addition or removal of an entry.

Authors Nature Hardware accelerated Matching strategy
Underwood et al. [16] Static ✓ Associative lists
Dózsa et al. [17] Static × Rank-based
Flajslik et al. [13] Static × Bin-based
Bayatpour et al. [18] Dynamic × Traditional, bin- or rank-based
Xiong et al. [6] Static FPGA Traditional
Denis Alexandre [4] Static × Bin-based

TABLE I: Overview of different tag matching approaches in the literature, sorted by publication date. ‘Nature” indicates
whether the matching algorithm is static (fixed for the application runtime) or dynamic (changes during its runtime).

step 2b involves removing the corresponding posted receive
entry from the PRQ. The appropriate protocol is then used
to gather the message data, and the message is successfully
received. If no match is found, step 2a involves storing the
incoming message in the UMQ. The process concludes with
step 3a, where the message remains in the UMQ, awaiting a
future match.

This process is necessary to satisfy the “message ordering”
semantic imposed by MPI for p2p messages [19]. Furthermore,
MPI offers the possibility of using wildcards (MPI_ANY_SRC
and/or MPI_ANY_TAG) instead of the source and/or tag
when posting a receive, allowing the application to match
incoming messages in a more flexible way. Nevertheless, by
using wildcards, the MPI tag matching process becomes more
serialized, making it harder to optimize the matching structures
of MPI implementations. For this reason, the MPI Forum
updated the MPI standard to allow applications the possibility
to hint implementations about the no-usage of wildcards [20].

This is why one way to reduce unexpected messages in MPI
applications with extensive point-to-point communications is
to post all immediate receives before transmitting any mes-
sages. Unexpected messages require temporary memory allo-
cation while being received, increasing latency and reducing
the throughput of applications.

B. Current MPI tag matching approaches

Improving the performance of MPI tag matching has been
a longstanding research goal for enhancing HPC systems. Ta-
ble I highlights several approaches discussed in the literature.
Two main strategies have been explored: a) redesigning the

message matching process by using optimized data structures
and algorithms and b) offloading this process to hardware.

For the first strategy, there are proposals that use either bin-
based approaches or rank-based approaches. More in-depth,
Flajslik et al. [13] propose using two hash tables instead of
the traditional two-queued implementation, where the hash
function is based on the source rank, tag, and communicator.
Then, to preserve message order, they also introduce times-
tamps to posted receives and unexpected messages, while, at
the same time, they maintain a list of the order information
for unexpected messages with wildcards. In their work, for
an implementation with b bins, the average time spent in the
search would be O(n/b), although in the case that posted
receives or unexpected messages are contained within the same
bin, the search time remains O(n).

Regarding hardware offloading strategies in the literature,
there are proposals that suggest using FPGAs or NICs to
offload MPI tag matching.

Building on the strategies previously discussed, our “Opti-
mistic Tag Matching” approach integrates concepts from both
hardware offloading and algorithmic optimization. This bin-
based method employs three binned hash tables to categorize
point-to-point messages according to their wildcards. A de-
tailed explanation of our tag matching approach is provided
in Section III.

C. Data Path Accelerator

Modern SmartNICs are equipped with a variety of proces-
sors and accelerators to provide additional computing power
and offload network tasks. An example of this is the Data

459

Path Accelerator (DPA) found on the NVIDIA BlueField 3
DPUs (BF3) [15].

This power-efficient embedded processor accelerates net-
working tasks requiring access to NIC engines, such as packet
processing and I/O workloads. Consequently, its architecture
is optimized for these workloads. The DPA features numerous
execution units, enabling the simultaneous processing of mul-
tiple tasks and the parallelization of others. Specifically, the
DPA on the BF3 is equipped with 16 cores supporting 256
threads, with tasks executed in a run-to-completion fashion.

This architecture allows the DPA to excel in offloading
simple, latency-sensitive network tasks and handling parallel
workloads with small working sets [21] like our “Optimistic
Tag Matching” algorithm.

III. OPTIMISTIC TAG MATCHING

With optimistic tag matching, we enable the offloading of
MPI tag matching to programmable, power-efficient, on-NIC
accelerators, such as the Data Path Accelerator (DPA). These
accelerators typically include multiple lightweight compute
cores (e.g., RISC-V [22]) and provide fast access to NIC
resources. Due to their architecture, offloading complex and
serial tasks to these accelerators is not ideal from a perfor-
mance perspective. Instead, highly parallel and relatively light
tasks are a good fit for offloading.

For tag matching, the MPI specification defines constraints
on how incoming messages must be matched to posted re-
ceives. These constraints semantically serialize the matching,
providing applications with a deterministic behavior. Our ap-
proach extracts parallelism from tag matching while remaining
compliant with the MPI standard.

a) MPI matching constraints: The tag-matching con-
straints defined by MPI can be summarized as follows:

• C1: Order of posted receives. If a message matches two
or more receives, then the receive that has been posted
first must be matched first. This allows an application
to know which receive will complete first if there are
multiple receives that can match the same message.

• C2: Non-overtaking messages. If two messages from
the same sender match the same receive, they should be
matched in the same order they are sent. This allows the
application to rely on message ordering.

A solution based on a linked list, where each element of
the list is a posted receive, satisfies both constraints: each new
receive is appended at the end of the list, making sure that
receives are checked in the same order they are posted, and
new messages are matched by scanning the list from the head,
avoiding overtaking. However, this approach would be hard
to parallelize without incurring high synchronization costs;
hence, it is not a good candidate for offloading [17].

A. Overview

Optimistic matching is designed for lightweight parallel
architectures, such as on-NIC programmable accelerators. In
the following, we use the term thread to indicate a generic
parallel task, which needs to be mapped on the specific

MSG 0MSG 1MSG 2MSG 3MSG 4MSG 5

Thread 0Thread 1Thread 2Thread 3

Partial barrier

Optimistic
matching

Optimistic
matching

Optimistic
matching

Optimistic
matching

Conflict
check

Conflict
check

Conflict
check

Conflict
check

Partial barrier

Protocol Protocol

recv: 0recv: 1recv: 1recv: 2

ProtocolProtocol
Conflict

resolution
Conflict

resolution

N messages processed in parallel

Threads 1 and 2 match the same receive

Threads 1 wins (earlier arrived message)

Threads 2 and 3 run conflict resolution

Fig. 2: Optimistic tag matching example on a stream of 6
messages. Four messages are processed in parallel. After the
optimistic tag matching phase, threads 1 and 2 try to match
the same receive but thread 1 wins because it is processing an
earlier arrived message.

architecture where this solution is implemented (e.g., even
handlers for DPA).

This strategy works on a stream of incoming messages,
where blocks of N consecutive messages are processed si-
multaneously by different threads. Figure 2 shows an example
with N = 4. The matching is performed optimistically, i.e., as
if no other messages are matched concurrently, which could
lead to a violation of the MPI matching constraints. After
the optimistic matching phase, the threads check for conflicts
(e.g., if two messages have been optimistically matched to the
same receive) and resolve them if needed. After the conflict
resolution phase, a thread can either have a receive matching
the message or not. In the first case, the specific protocol, i.e.,
eager or rendezvous, is executed. Otherwise, the message is
handled as unexpected. The idea behind this approach is that
if there are few conflicts, then the optimistic matching phase
will succeed without conflicts often, avoiding more expensive
synchronization needed by the conflict resolution phase.

B. Indexing receives

To make this approach suitable to offload-enabled archi-
tectures, we need to minimize the computational cost of the
matching, that is the number of matching attempts done to
find a receive. For this, we organize the posted receives in
different indexes, as depicted in Figure 3. The receives are
split according to which wildcards they use:

• No wildcards. These are receives that have no wildcards
as source rank or tag. They are indexed using a hash table
with both the source and the tag as a key.

• Source wildcards. All receives that use the wildcard for
the source rank but not for the tag. These receives are
also indexed using a hash table. However, the key is only
the tag, as the source is a wildcard.

460

MSG

hash(tag) hash(src) front()

No wildcards

[Hash table]
Source rank wildcard

[Hash table]

Tag wildcard

[Hash table]

Source rank and tag

wildcards [Linked list]

hash(src, tag)

Fig. 3: A receive is indexed in one of the four data structures.
For each incoming message, the four indexes are searched
using the appropriate keys.

• Tag wildcards. All receives that use the wildcard for the
tag but not for the source rank. Similarly to the previous
class, these receives are also indexed in a hash table, but
in this case, the key is only the source rank.

• Source and tag wildcards. Receives that use wildcards
for both source rank and tag. As there are no fields to be
used as keys, these receives are kept in a linked list: a
message can be matched by the first receive in this list.

These indexes contain information needed for the matching
and a pointer to the full receive descriptor. Receive descriptors
are stored in a fixed-size table, where the size of the table de-
termines the maximum number of receives that can be posted
at the same time. If the number of posted receives exceeds
this capacity, the application must fall back to software tag
matching.

C. Optimistic matching

During the optimistic matching phase, each thread attempts
to match its own message independently, searching for receives
in each of the above-described indexes. A thread must ensure
to select the oldest posted receive matching its message;
otherwise, it will violate constraint C1. Inside an index, this
constraint is already satisfied: if two receives have the same
key, they will hash to the same hash table bucket. Hence, they
will belong to the same linked list following the order in which
they have been posted. The thread will stop once it finds the
first matching receive in the linked list.

On the other side, the thread must enforce constraint C1
between different indexes. This is done by labeling each
receive with a monotonically increasing counter that reflects
the posting order. After all indices have been checked, a thread
might have up to four candidates receive (i.e., one per index)
for a message and have to select the one with the minimum
label, which is the one that has been posted first.

At this point, as we have multiple threads optimistically
matching messages in parallel, we might end up with multiple
messages matching the same receive, potentially violating
constraint C2. As there is no synchronization between threads
up to this point, two messages sent from the same sender and
matching the same receive might be matched in the wrong
order. It is worth noting that conflicts are time-dependent: two

threads attempt to book the same receive only if they process
messages matching that same receive at the same time. To
not violate C2, once a matching receive has been found, the
thread tentatively books it. Each receive descriptor includes a
booking bitmap of N bits that is used by threads to book the
receive by setting their respective bit. The bitmap is then used
to detect conflicts as described in the next section.

D. Conflict detection and resolution

A thread can determine whether there is a conflict on the
selected receive by looking at the receive booking bitmap.
However, before doing that, it must make sure that all threads
processing messages that arrived before its own one have
completed the optimistic matching phase and booked their
candidate receive.

1) Synchronization: This synchronization is achieved using
a partial barrier between threads. The barrier is partial because
a thread must wait only on threads processing earlier messages.
It is not necessary to wait for threads to process later messages
because either they will match a different receive or, if
they match the same receive, the current thread will have
precedence according to C2. Additionally, since we operate
on a stream of messages, waiting on future messages might
stall the application as we do not know whether there will be
new messages coming. As threads move over blocks of the
incoming message stream, this barrier can be implemented
by letting a thread i wait on all threads j with j < i. We
implement the partial barrier with a bitmap, where each thread
sets its own bit whenever it enters the barrier.

2) Conflict detection: Once threads are (partially) synchro-
nized, they can check for conflicts. The check is done by
looking at the booking bitmap of the selected receive: if a
thread with a lower thread ID booked the receive, then there
is a conflict, and the thread with the lowest ID wins the receive
and can consume it. If a thread i detects a conflict, then all
other threads j > i need to enter the conflict resolution phase.
In fact, even if a thread j > i selects a candidate receive that
is not conflicted, it might still happen that thread i selects the
same candidate receive of j during the conflict resolution. In
that case, i will have precedence because of constraint C2,
and j must give up its receive.

3) Conflict resolution: To resolve a conflict, we identify
two possible strategies that target different conflict scenarios.

a) Fast path: The fast conflict resolution is designed to
quickly select the next receive candidate without additional
synchronization costs. This strategy is useful for scenarios
where the application posts long sequences of receives with
the same source rank and tag, and incoming messages all
match these receives. In other words, this is the case where
all threads try to match the same receive at the same time. We
define such a sequence of receive as sequence of compatible
receives. This can be checked by looking at the booking
bitmap of the candidate receive: if all threads selected it, then
conflicted threads can try to use this strategy. In particular,
the next candidate receive for thread i is selected as the
receive with index k + i, where k is the index of the current

461

R0 R1 R2 R3 R4

T0 T1 T2 T3

R0 R1 R2 R3 R4

T0 T1 T2 T3

Conflict: all threads wants to match R0

Sequence of compatible receives (same src and tag)

Fast resolution: threads shifts by their ID to g et the next candidate

Fig. 4: Fast path for conflict resolution: if all threads want to
match the first receive of a list of compatible receives (i.e.,
same source rank and tag, posted consecutively), then they
can select the next candidate by shifting the current receive
ID by their thread ID. Each thread must then check if the new
candidate still belongs to the sequence of compatible receives.

candidate receive. Figure 4 shows an example of a sequence
of compatible receives. Such a list can be contained in one of
the indexes described in Section III-B. In this case, all threads
want to match receive R0, but only thread T0 can consume it
safely, as it has the lowest ID. Thread T1, can directly check
receive R1 as candidate. Thread T2 should not check receive
R1 as it already knows that it might be taken by thread T1,
but will instead check receive R2.

However, this strategy assumes that the next candidate
receive belongs to the same sequence of compatible receives
of the current candidate one. If this is not true, then there
could be a receive posted between k and k + i that matches
the current message and belongs to a different index data
structure. In this case, the fast path should not be taken as
it might break the MPI matching constraints. To prevent this
issue, we assign to each receive a sequence ID at the time of
posting. The MPI implementation on the host can increment
the sequence number whenever it sees that the new receive
is not compatible with the previous one (i.e., different source
rank or tag). During the fast path execution, a thread will check
if the new candidate receives belongs to the same sequence,
and if not, it will switch to the slow path.

b) Slow path: A thread i hits the slow path when it
cannot make assumptions on what will be the next candidate
receive that will be selected by conflicted threads j < i. In
this case, the thread must synchronize with the previous one,
waiting for it to match and book a new receive. Once this
happens, the thread is safe to match and book a new receive
without violating the MPI matching constraints.

IV. OFFLOADING OPTIMISTIC TAG MATCHING

We now describe how optimistic tag matching can be
offloaded to on-NIC programmable accelerators, defining how
incoming messages are handled and how, after the optimistic
matching phase, either the protocol or the unexpected message
handling phases are executed. While this work focuses on
the BlueField-3 DPA [15], this approach can be also mapped

CQE 0CQE 1CQE 2CQE 3CQE 4CQE 5

DPA thread

Optimistic matching

Protocol
Unexpected

message

DPA thread

Optimistic matching

Protocol
Unexpected

message

DPA thread

Optimistic matching

Protocol
Unexpected

message

DPA thread

Optimistic matching

Protocol
Unexpected

message

Bounce buffers Indexes

Fig. 5: Overview of the DPA-offloaded software architecture
for optimistic tag matching.

onto other programmable on-NIC accelerators, like sPIN [8].
Figure 5 provides an overview of the offloaded optimistic tag-
matching architecture.

A. Handling incoming messages

Messages are exchanged via RDMA send/receive opera-
tions. When an RDMA receive completes at the receiver, a
completion notification is generated and stored in a RDMA
completion queue. Incoming messages are staged into bounce
buffers in NIC memory, which are pointed by the RDMA
receive operations posted by the receiver. Bounce buffers
are necessary because we only know the address of the
user-provided receive buffer once the matching is performed.
Additionally, staging data into bounce buffers has two more
benefits: 1) it allow us to avoid registering user-provided
buffers, and 2) as these buffers reside on the NIC, we eliminate
the need to cross the PCIe bus twice for matching and data
transfer, which would otherwise occur if the bounce buffers
were on host memory.

In order to have multiple threads working on the same
completion queue, we let each thread poll on the next expected
completion queue entry for that thread: e.g., thread i will first
wait for the completion notification i to be generated. Then,
once message i is processed, it will wait on the completion
notification i+N for the next message (the completion queue
needs to have a depth greater or equal to N). After a message
is received and a DPA thread is triggered, the optimistic
matching phase starts, as described in Section III.

B. Protocol handling

Once a receive is selected, a thread processing a message
can move to the protocol handling stage. Typically, different
protocols can be employed according to the message size. The
protocol handling stage is not tightly coupled with the opti-
mistic matching strategy described before. As the optimistic
matching completes, the protocol can be handled either on the
SmartNIC directly or on the host.

The eager protocol is used for small messages: the full
message is sent by the sender and staged in a bounce buffer at

462

the receiver. After the matching occurs, the data is copied to
the user-provided buffer if a receive is found. Otherwise, the
message is handled as unexpected. If the optimistic matching
phase is successful (i.e., a receive was found), the thread finds
all the needed information to copy the message data from the
staging buffer to the user-provided buffer in the descriptor of
the matched receive.

For larger messages, the rendezvous protocol is used. The
sender sends a Ready-To-Send (RTS) message, which might
include some message data. The receiver matches the message
and, if a receive is found, issues an RDMA read to move
data from the sender-side buffer to the user-provided buffer on
the receiver side. The message header brings information like
the memory key to access the send buffer, while the receive
descriptor contains information to access the receive buffer
that is used for issuing the RDMA read.

C. Handling unexpected messages

A message is unexpected when there is no receive that can
be matched to it. In this case, the message is stored for later
match into an unexpected message buffer. When a new receive
is posted, unexpected messages should be checked before
indexing the receive and making it available for matching. If a
matching unexpected message is found, the protocol handling
stage is started: in the case of eager, the message is copied
from the buffer where the unexpected message was stored to
the user-provided one. For rendezvous, the stored data contains
the information needed by the RDMA read.

We keep a set of indexes similar to the ones described
in Section III-B to store information related to unexpected
messages and that can be accessed at receive posting time.
The main difference is that an unexpected message is indexed
in each of these data structures, while a posted receive is
indexed in only one of them (depending on the combination of
wildcards it uses). It is worth noting that the MPI specification
does not allow messages with wildcards, hence a message has
source rank and tag always defined.

When a new receive is posted, only the index it belongs
to is searched. If a matching receive is found, the receive is
removed from all indexes before the protocol handling stage
can be triggered.

D. Optimizations

We now discuss a set of possible optimizations that can be
implemented to improve optimistic tag matching performance.
Inline hash values. To save compute resources on the
SmartNIC, we can let the sender-side compute the possible
hash values of a given message (i.e., hash(src, tag),
hash(src), and hash(tag)), as they do not depend on
the receiver-side state. These values can be included in the
MPI message header and used on the SmartNIC to index the
data structures described in Section III-B.
Early booking check. During the optimistic matching phase,
we can check the booking bitmap of the receives we are
considering for match. If the booking bitmap already signals
that one or more threads with lower ID are trying to match

this receive, then we can skip it as we are guaranteed that this
thread cannot consume it.
Lazy removal. If multiple threads consume a receive from
the same list, then they might serialize on the removal of the
receive from that list. To avoid this overhead, we implement a
lazy removal scheme, where receives are marked as consumed
(and considered in future matching attempts). Threads that
successfully acquire a lock during the removal will proceed
to clean up the list, removing also the marked receives.

E. Discussion

Posting receives. The cost of posting a receive to the DPA is
comparable to that of hardware tag matching - the application
must send a command to the DPA via a Queue Pair (QP).
Memory footprint. Each entry consists of a remove lock (4
bytes) and two pointers (8 bytes each) to the head and tail of
the chained queue within the bin, totaling 20 bytes per bin.
With the three index tables of our approach, this results in a
total cost of 7.5 KiB for 128 bins. Additionally, each receive
descriptor consumes 64 bytes. For example, to support 8 K
receives (posted at the same time), we need to allocate about
5̃20 KiB of DPA memory. For reference, DPA L2 and L3
caches in BlueField-3 are 1.5 MiB and 3 MiB, respectively.
The implementation is expected to fall back to software tag
matching if the DPA runs out of resources.
Multiple MPI communicators. Each MPI communicator is
linked to its own set of index tables and data structures. If
it is no possible to allocate DPA resources at communicator
creation time, the MPI implementation is expected to fall
back to software tag matching. Applications can provide MPI
communicator info objects [23] to influence the offloading of
tag matching for a given communicator.

V. MPI APPLICATION ANALYSIS

The optimistic tag matching approach is optimized for two
scenarios: either there are no or only a few conflicts in the
hash tables, or the application posts long lists of compatible
receives. In this section, we analyze different MPI applications
to extract information about their matching behavior, showing
that the majority of analyzed applications fall into one of
the two categories described above. To analyze applications,
we developed an MPI trace analyzer, that runs existing MPI
traces (of applications run at different scales), emulating the
optimistic tag matching strategy and gathering statistics. This
section is structured in two parts: first, we provide a general
overview of the trace analyzer, and second, we discuss the
results obtained from several MPI applications.

A. Trace analyzer overview

The MPI trace analyzer consists of two steps. a) a parsing
stage to that converts MPI traces into a common and in-
memory representation and, b) a trace processing stage in
which the in-memory representation is processed using the
intricacies of our tag matching approach.

463

a) Parsing stage: The initial phase consists of reading
the trace files. These traces contain the complete execution of
an MPI program. Currently, only a DUMPI text-traces reader
is implemented, although the design of the application allows
to easily add other formats.

Initially, the parser verifies the existence of a binary cache
for the given input trace, as parsing the traces of an application
is the most time-consuming step for the analyzer. If one
is found, the remaining of the parsing can be skipped. On
the other hand, the trace undergoes parsing, resulting in
the generation of an in-memory representation of point-to-
point (e.g., MPI_Isend), collective (e.g., MPI_Alltoall),
one-sided (e.g., MPI_Get) and progress (e.g., MPI_Wait)
MPI operations. We use a custom in-memory representation
because it is easier to integrate and tailor to our specific needs.

The parsing is done in parallel in a per-rank fashion. This
is done because, despite application traces not having a large
number of ranks, they are usually quite long in the number of
operations recorded on the trace. Finally, the in-memory trace
representation is committed to storage for future re-runs of the
application.

b) Processing stage: Following the parsing process, the
trace processing stage commences. Initially, the key data struc-
tures for the processing of collisions - the three hash tables and
the single linked list for messages based on the wildcards they
use - and structures for the recording of statistics are created.

Each MPI operation within the in-memory representation of
the trace gets sequentially processed until none remain. Only
p2p and progress operations are processed, ignoring collectives
and one-sided.

In the case of a p2p operation, the presence of wildcards
is evaluated, as posted receives with different wildcards have
different data structures, following our tag matching approach
(see Section III). Concurrently, for each one of these p2p
operations, various statistics, such as the current number of
collisions, the percentage of empty bins per hash table, the
percentage of p2p operations of each kind, and the usage of
tags are updated.

In the event that the currently processed operation is of the
progress type, all pertinent statistics and additional information
regarding the current state of the hash tables and the linked
list, such as the depth of said data structures are gathered.
This compilation of information forms a data-point entry,
encapsulating all progress achieved since the last recorded
entry.

Finally, when all the operations have been processed, the
data is formatted and recorded for later analysis.

B. Application analysis

a) Methodology: To analyze and investigate how differ-
ent MPI applications perform regarding message matching,
we (i) gathered MPI traces of different applications, (ii) de-
signed a trace analyzer based on how our matching algorithm
works (described in Section V-A) and (iii) analyzed the data
generated from it. The trace analyzer and the script source
code used to generate the results figures in this paper are

Fig. 6: Distribution of MPI calls for the application set

available under the project repository1. The traces used are
part of the project ‘Characterization of DOE mini-apps2’ of
the US National Energy Research Scientific Computing Center
(NERSC). Regarding the set of applications analyzed, Table II
provides a brief description of each application along with
the number of processes recorded in the trace. The number
of processes used for the analysis of each application was
determined by the NERSC characterization project traces.

The experiments are machine independent. Only the MPI
application traces are important.

b) Results: Our analysis begins with examining the
distribution of the different types of MPI calls (point-to-
point, collectives, and one-sided) used by the applications
in our dataset. Figure 6 shows the proportion of each type
of operation in the analyzed applications. It is evident that
the majority of applications rely primarily on point-to-point
MPI for communication, with minimal use of collectives,
typically to perform synchronization among all processes.
Only 3 applications in our dataset exclusively utilize p2p.
Additionally, another 2 applications are entirely reliant on
collectives (HILO has 2 different versions). Notably, none of
the applications in the dataset use one-sided MPI operations
for their communications.

The reduction in collisions is illustrated in Figure 7, which
shows the queue depth of the applications using 1, 32, and 128
bins. The 1-bin configuration corresponds to the traditional
tag matching approach. As seen, the average queue depth
decreases from 8.21 to 0.8 with 32 bins and further to 0.33
with 128 bins, representing reductions of 90% and 95%,
respectively. For example, in the BoxLib CNS application, the
maximum queue depth decreases from 25 elements to 3 with
32 bins and to 1 with 128 bins, reflecting improvements of
88% and 96%, respectively.

VI. MESSAGE RATE BENCHMARK

In this section, we benchmark a prototype of the opti-
mistic tag matching implemented on the NVIDIA DPA pro-

1https://github.com/ecn-aau/MPI-tgmtch-analyzer
2https://portal.nersc.gov/project/CAL/doe-miniapps.htm

464

Application Description Number of processes
AMG Algebraic MultiGrid. Linear equation solver 8
AMR MiniApp Single step AMR for hydrodynamics 64
BigFFT Distributed Fast Fourier Transform 1024
BoxLib CNS Compressible Navier Stokes equations integrator 64
BoxLib MultiGrid Single step BoxLib linear solver 64
CrystalRouter Proxy application for the Nek5000 scalable communication pattern 100
FillBoundary Proxy application for ghost cell exchange using MultiFabs 1000
HILO Modeling of Neutron Transport Evaluation and Test Suite 256
HILO 2D Modeling of Neutron Transport Evaluation and Test Suite in 2D multinode 256
LULESH Proxy application for hydrodynamic codes 64
MiniFe Proxy application for finite elements codes 1152
MOCFE Proxy application for Method of Characteristics (MOC) reactor simulator 64
MultiGrid MultiGrid solver based on BoxLib 1000
Nekbone Proxy application for the Nek5000 poison equation solver 64
PARTISN Discrete-ordinates neutral-particle transport equation solver 168
SNAP Proxy application for the PARTISN communication pattern 168

TABLE II: Application traces analyzed, sorted by name alphabetically

Fig. 7: Queue depth for the different applications. The red line indicates the average queue depth across all applications for
the given number of bins. Note that the plots are arranged in descending order of queue depth, not by application name.

Fig. 8: Single-process message rate for the different config-
urations: optimistic tag matching, MPI tag matching on the
CPU, and message exchange using RDMA on the CPU.

grammable accelerator (see Section IV). We focus on message
rate, i.e., the number of messages matched per second, using
small messages. This is the most critical metric for tag
matching, as for larger messages the required message rate

decreases. Experiments are run on two servers equipped with
Intel(R) Xeon(R) Platinum 8480+ CPUs, 2 TB DRAM, and
BlueField-3 network interfaces. The DPA-based prototype is
compiled with the DPA compiler (dpacc) provided in DOCA
2.2 [24]. The DPA prototype is configured to use hash tables
that are twice the maximum number of in-flight receives
(which we set to 1024 for these experiments) and uses 32
DPA threads (limited by the bookkeeping bitmap size). The
MPI benchmarks are run with OpenMPI 4.1.5.

We run a ping-pong benchmark, where a node sends a
sequence of k = 100 messages to its peer. Once the peer
receives (and matches) all messages in a sequence, it replies
with an acknowledgment. We measure the message rate as
k divided by the time from when the first message is sent
to when the acknowledgment is received. For each run, we
repeat the sequence 500 times. We test two main scenarios: all

465

posted receives have different source rank and tag combination
(referenced as no-conflict case, NC), or all receives have the
same source rank and tag (referenced as with-conflict case,
WC). This allows us to get insights on the best and worst
case for optimistic tag matching.

Figure 8 shows the benchmark results. The leftmost plot
shows the performance of our prototype (Optimistic-DPA)
for the no-conflict case, the with-conflict case using the fast
path (WC-FP), and the with-conflict case using the slow path
(WC-SP). We compare against two baselines running on the
host CPU: MPI-CPU and RDMA-CPU. The RDMA-CPU is
a reference baseline where no matching is performed and
messages are exchanged via RDMA (i.e., no match conflicts
are possible). We observe how optimistic tag matching has
performance comparable with MPI-CPU for the non-conflict
case. When there are conflicts, either the fast or the slow path
is taken, causing a lower message rate due to the additional
conflict resolution overheads. In all cases, the offloading fully
frees the host CPU from tag-matching overheads.

VII. DISCUSSION

We propose an optimistic approach to message matching
that enables multiple threads to perform concurrent matching
attempts and later check and resolve potential conflicts. In
particular, we focus on satisfying MPI tag matching con-
straints, which are the most general and complex ones, es-
pecially because of wildcards. It is worth noting that MPI
already allows applications to relax these constraints by
specifying communicator hints. In principle, these hints can
be propagated to the offloaded matching solution, reducing
matching costs. For example, mpi_assert_no_any_tag
and mpi_assert_no_any_source indicate that no re-
ceive with tag and source wildcards will be posted, re-
spectively. These hints can be combined together to signal
that no wildcards will be used at all. Another example is
mpi_assert_allow_overtaking that relaxes matching
order. Additionally, by having a software solution to offloaded
message matching, we retain the flexibility of specializing
the matching according to the specific communication library
being used, which could adopt weaker matching constraints
than MPI (e.g., NCCL [2]).

Lastly, running message matching on the SmartNIC not
only saves CPU cycles but also enables more high-level tasks
to be offloaded to the SmartNIC, such as tasks depending
on incoming data. In order to be executed, the incoming
message needs to be matched, so the receive upon which the
task depends can be completed. Offloading tag matching is a
necessary step to be able to offload the full chain of actions
(e.g., match; complete receive; run task). Examples of such
tasks are collective operations, which are normally built on
top of point-to-point operations, and hence need matching to
be performed in order to be offloaded.

VIII. CONCLUSION

In this work, we introduce a new message matching strat-
egy optimized for highly parallel architectures. This strategy

adopts an optimistic approach that allows for the extraction
and exploitation of parallelism during the matching phase,
which is normally meant to be serial due to the matching
constraints. We specialize our solution for two common cases:
either receives are well spread over the index data structures
(no conflicts) or there are long sequence of subquent receives
with the same source rank and tag. To confirm that this is
indeed the common case, we developed an MPI trace analyzer,
that allows us to emulate optimistic matching performance
over DUMPI traces. Our analysis shows that the number of
unique source/tag posted receives is low, indicating that the
receives are well spread in the hash tables, keeping collisions
low.

Moreover, we demonstrated that Optimistic Tag Matching
performs comparably to traditional MPI tag matching when
collisions are absent. This is a significant advantage, as our
approach offloads the tag matching process from the host
CPU, removing matching overheads from the host CPU while
maintaining comparable performance.

ACKNOWLEDGMENTS

This work was partly founded by the QUARC project by
the European Union Horizon Europe research and innovation
program within the framework of Marie Skłodowska-Curie
Actions with grant number 101073355.

REFERENCES

[1] L. Clarke, I. Glendinning, and R. Hempel, “The MPI message passing
interface standard,” in Programming Environments for Massively Par-
allel Distributed Systems (K. M. Decker and R. M. Rehmann, eds.),
pp. 213–218, Birkhäuser.

[2] NVIDIA, “NVIDIA collective communications library (NCCL).”
[3] S. Kumar, A. R. Mamidala, D. A. Faraj, B. Smith, M. Blocksome,

B. Cernohous, D. Miller, J. Parker, J. Ratterman, P. Heidelberger,
D. Chen, and B. Steinmacher-Burrow, “PAMI: A parallel active message
interface for the blue gene/q supercomputer,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, pp. 763–
773. ISSN: 1530-2075.

[4] A. Denis, “Scalability of the NewMadeleine communication library for
large numbers of MPI point-to-point requests,” in 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), pp. 371–380.

[5] “Preparing for quantum-safe cryptography.”
[6] Q. Xiong, A. Skjellum, and M. C. Herbordt, “Accelerating MPI message

matching through FPGA offload,” in 2018 28th International Conference
on Field Programmable Logic and Applications (FPL), pp. 191–1914,
IEEE.

[7] W. P. Marts, M. G. F. Dosanjh, W. Schonbein, R. E. Grant, and P. G.
Bridges, “MPI tag matching performance on ConnectX and ARM,” in
Proceedings of the 26th European MPI Users’ Group Meeting, EuroMPI
’19, pp. 1–10, Association for Computing Machinery.

[8] T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, and R. Brightwell,
“sPIN: High-performance streaming processing in the network,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16, ACM.

[9] W. Schonbein, R. E. Grant, M. G. F. Dosanjh, and D. Arnold, “INCA:
in-network compute assistance,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–13, ACM.

[10] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz, “Forwarding metamorphosis,”

[11] Asterfusion, “Helium DPU.”
[12] G. Shainer, A. Ayoub, P. Lui, T. Liu, M. Kagan, C. R. Trott, G. Scantlen,

and P. S. Crozier, “The development of mellanox/NVIDIA GPUDirect
over InfiniBand—a new model for GPU to GPU communications,”
vol. 26, no. 3, pp. 267–273.

466

[13] M. Flajslik, J. Dinan, and K. D. Underwood, “Mitigating MPI message
matching misery,” in High Performance Computing (J. M. Kunkel,
P. Balaji, and J. Dongarra, eds.), Lecture Notes in Computer Science,
pp. 281–299, Springer International Publishing.

[14] W. W. Schonbein, M. Dosanjh, R. Grant, and P. Bridges, “Measuring
multithreaded message matching misery..” ISSN: 0302–9743 Volume:
11014.

[15] NVIDIA, “BlueField DPA subsystem.”
[16] K. Underwood, K. Hemmert, A. Rodrigues, R. Murphy, and

R. Brightwell, “A hardware acceleration unit for MPI queue process-
ing,” in 19th IEEE International Parallel and Distributed Processing
Symposium, pp. 96b–96b, IEEE.

[17] G. Dózsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
J. Ratterman, and R. Thakur, “Enabling concurrent multithreaded MPI
communication on multicore petascale systems,” in Recent Advances
in the Message Passing Interface (R. Keller, E. Gabriel, M. Resch,
and J. Dongarra, eds.), Lecture Notes in Computer Science, pp. 11–20,
Springer.

[18] M. Bayatpour, H. Subramoni, S. Chakraborty, and D. K. Panda,
“Adaptive and dynamic design for MPI tag matching,” in 2016 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 1–10.
ISSN: 2168-9253.

[19] “Semantics of point-to-point communication.”
[20] Message Passing Interface Forum, “MPI: a message-passing interface

standard version 4.0.”
[21] X. Chen, J. Zhang, T. Fu, Y. Shen, S. Ma, K. Qian, L. Zhu, C. Shi,

Y. Zhang, M. Liu, and Z. Wang, “Demystifying datapath accelerator
enhanced off-path SmartNIC.”

[22] “Specifications – RISC-v international.”
[23] “Communicator info: Hints.”
[24] NVIDIA, “DOCA documentation v2.2.1.”

467

Appendix: Artifact Description

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s main contributions

• C1 A novel MPI tag matching approach (Optimistic
Tag Matching) prototype for a highly-parallel SmartNIC
architecture.

• C2 MPI trace analyzer for tag matching behavior.
Due to confidentiality, the source code of the tag matching

prototype (C1) and its benchmark cannot be disclosed -
only the analysis script for the benchmark results and the
required data to reproduce the corresponding paper elements
is provided.

B. Computational artifacts

• A1 https://github.com/ecn-aau/MPI-tgmtch-analyzer/exampi
• A2 https://github.com/ecn-aau/MPI-tgmtch-analyzer

Artifact ID Contributions Supported Related Paper Elements
A1 C1 Figure 8
A2 C2 Table 2, Figures 6-7

II. ARTIFACT IDENTIFICATION

A. Computational artifact A1

1) Relation to contributions: The artifact A1 features the
script to generate the message rate plot for the prototype
implementation of “Optimistic Tag Matching” (C1) results
gathered from its benchmark.

2) Expected results: A plot showing the different message
rates for the prototype implementation (fast and slow path),
for MPI tag matching on the CPU and a baseline of the peak
message rate for the connection in the test.

3) Expected reproduction time: The expected reproduction
time is around 1 minute.

4) Artifact setup:
• Hardware: Any general-purpose computer that can run a

Python 3 interpreter.
• Software: Python 3 interpreter and an IDE that supports

Jupyter notebooks (e.g., VSCode).
• Datasets/Input: Provided with the source code.
• Installation and deployment: Any Python 3 interpreter

should suffice. The Python environment must contain the
pandas, matplotlib, seaborn and numpy libraries.

5) Artifact evaluation: The artifact consist on a single task
T1, that using the data provided with the artifact (benchmark
results) produces the Figure 9 from the paper. The script is
self-contained.

6) Artifact analysis: The plot script calculates some statis-
tics based on the data from the tag matching message rate
benchmark in order to generate the corresponding plot pre-
sented in the text.

B. Computational artifact A2

1) Relation to contributions: The artifact A2 features of
the analyzer (C2) used to generate information about the
matching behavior of the different MPI applications and the
post execution analysis script that generates the plots and
figures displayed in the paper.

2) Expected results: After executing the analysis for all
applications, the artifact generates a folder for each application
in the analysis, and, for each application, it generates 6 folders
representing the number of bins used (from 1 to 256, in powers
of 2).

Then, this data is fed into the analysis script to generate the
plots in the text.

3) Expected reproduction time: It wildly depends on the
specifications of the running machine, but in our case it is
around 45 minutes to 1 hour.

4) Artifact setup:

• Hardware: Any general-purpose computer that can run
the Rust compiler in Tier 1 with host tools (x64, aarch64)
and a Python 3 interpreter.

• Software: Rust compiler (1.78+), Python 3 interpreter and
an IDE that supports Jupyter notebooks (e.g., VSCode).

• Datasets/Input: The inputs for the analyzer are the appli-
cation traces. They are provided with the source code.

• Installation and deployment: Compiling the analyzer
only requires to execute cargo b --release on
the parent folder of the project. It automatically down-
loads all required dependencies. For the plots script,
the Python environment must contain the pandas, mat-
plotlib, seaborn and numpy libraries. In order to
able to execute the analyzer application, the Struc-
tural Simulation Toolkit (SST) DUMPI Trace Library
(https://github.com/sstsimulator/sst-dumpi) must be in-
stalled and the run script (run.sh second line) must
be pointed to the SST installation.

5) Artifact evaluation: This artifact consists of 2 tasks, T1
and T2. Task T1 generates information about the tag matching
behavior of a set of applications, generating as output a set of
data. Then, this output is fed to task T2 for the generation of
plots.

Task T1 is self-contained, meaning that all the parameters
used in generating the paper elements are already provided.

468

6) Artifact analysis: The raw data generated by analyzer for
each application is join together in the plot script and then,
depending on the plot, some statistics are calculated based on
them, generating the plots presented in the text.

469

