Enhancing Small Message Aggregation with
Directive-Based Deferred Execution

Aaron Welch*, Oscar Hernandez*, Stephen PooleT, and Wendy Poolef
*QOak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Email: welchda@ornl.gov, oscar@ornl.gov
tLos Alamos National Laboratory, Los Alamos, New Mexico, USA
Email: swpoole@lanl.gov, wkpoole@lanl.gov

Abstract—The partitioned global address space (PGAS) model
offers one-sided communication operations to efficiently access
local and remote data through a distributed shared memory
model using point-to-point network operations. An extension to
the OpenSHMEM PGAS library previously demonstrated how
message aggregation could be applied in a minimally intrusive
manner to an application, while still achieving a significant
portion of the performance possible through manual tuning.
However, its primary deficiency was the inability to abstract
dependencies between aggregated remote memory accesses and
their subsequent uses, which must be managed explicitly by
applications. This undermined its goal of preserving algorithmic
intent. In this paper, we present a novel directive-based approach
for automatically deferring the execution of arbitrary code that
depends on aggregated messages, shifting the concern of their
efficient management from the application to the implementation.
We demonstrate our approach using two applications from the
bale 3.0 classic suite on the Frontier supercomputer.

Index Terms—OpenSHMEM, Message Aggregation, Convey-
ors, Deferred Execution, Compilers

I. INTRODUCTION

As HPC systems have evolved, particularly in response to
the end of Moore’s Law, the design of network interconnects
has shifted [1]. Traditionally, the focus was on optimising for
high-bandwidth and bulk data transfers, often at the expense
of latency and message rate. However, with the emergence of
new workloads in machine learning and data analytics, there
is an increasing need to address not only bandwidth density
but also improve message rates and reduce latencies.

This comes partially as a result of applications dependent
on high rates of small messages, a pattern frequently seen in
data analytics applications using many-to-many communica-
tion and irregular access patterns. Recent network interconnect
technologies, like those in Slingshot 11, have made improve-
ments in this area [2] through the use of congestion control,
dynamic routing, and quality of service in their switches.

Notice: This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-000R22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, worldwide license to publish
or reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.gov/downloads/
doe-public-access-plan).

979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00094

677

However, the gap between applications well tuned for high-
bandwidth use and those suffering from the small message
problem remains vast. While PGAS programming models offer
a distributed shared memory abstraction that is well-suited for
developing algorithms with irregular access patterns, optimis-
ing network throughput generally requires the use of explicit
message aggregation strategies. These involve extensive code
transformations in point-to-point algorithms where aggregation
cannot be abstracted through the use of network collectives,
which is costly to develop and maintain. This additional
complexity can significantly diminish the productivity benefits
that a PGAS model is intended to provide.

Prior work on the OpenSHMEM PGAS library proposed
an extension called “aggregation contexts” based on an aggre-
gation library called conveyors and aimed at addressing this
issue by expanding the API for non-blocking communication
operations. It does so by conditionally changing their com-
pletion semantics such that data for many remote operations
can be accumulated and later sent in bulk to their respective
targets for local processing [3]. While this approach worked
well for independent operations and successfully scaled up to
8,192 nodes [4], its usefulness was limited when there were
dependencies among the data that required aggregation. That
is, if some code were to fetch remote data and then use it in
a subsequent operation (e.g., as an index into another remote
array), it would not be a candidate for context aggregation.

Our solution is to employ user-provided hints that annotate
regions of code to be deferred via a directive-based API. This
allows the compiler to transform dependent code, deferring
its execution based on the tracked status of the outstanding
aggregated communication it’s dependent upon. Our design
requires no code modifications beyond a single directive for
each lexical scope containing communication operations for
which the user wants to defer dependent code.

This paper is organised as follows. An overview of related
work can be seen in Section II. Section III provides some back-
ground on conveyors and aggregation contexts, followed by a
description of how contexts were enhanced to support deferred
execution in Section IV. In Section V, we demonstrate the
performance improvements of our approach using the sparse
matrix transpose and triangle counting bale applications on the
Frontier supercomputer at ORNL. Finally, concluding remarks
and directions for future work are discussed in Section VI.

II. RELATED WORK

The work in [5] also introduces conveyor-style aggregation
to the PGAS paradigm by proposing an extension to the task-
parallel Habanero-C Library (HCLib) using the actor model.
In this framework, actors can possess multiple mailboxes,
allowing them to send and receive fine-grained active messages
backed by conveyor aggregation. Since the abstraction around
the conveyor API is thin, it requires developers to explicitly
manage dependencies between aggregated data accesses as
well as the state and progression of conveyors, including
handling failure conditions of push/pull operations due to
buffer limitations. This approach, while offering powerful
low-level control, requires a detailed understanding of the
underlying communication patterns and explicit handling of
dependencies, reducing its abstraction level.

Grossman et al. [6] explored the integration of asynchronous
task parallelism within OpenSHMEM by extending HCLib
to support task-based programming models. Their work in-
troduced an abstraction layer that enables fine-grained task
parallelism, but it requires explicit handling of dependencies
between tasks, making the model powerful but less abstract.
This approach is particularly useful for applications that need
to manage complex dependencies, although it demands a deep
understanding of the underlying communication patterns.

Lu, Curtis, and Chapman [7] proposed an extension to
OpenSHMEM that introduces active message support for task-
based programming. Their approach leverages the existing
OpenSHMEM infrastructure to support active messages, al-
lowing for asynchronous communication. The explicit nature
of handling dependencies between active messages in this
model would require developers to carefully manage the state
of communication, similar to other low-level approaches.

Other directive-based programming models like OpenMP
provide directives to express dependent tasks, but they don’t
focus on dependent remote or local memory access or network
operations. However, the new detach clause introduced in
OpenMP 5.0 is meant to interoperate with asynchronous
libraries, but does not offer a way to abstract small message
aggregation.

[II. BACKGROUND

First, we will provide a brief background on conveyors,
as our past and present work is based upon it. We will
then provide an overview of aggregation contexts as they
were previously designed so as to provide a foundational
basis for understanding our changes for implementing deferred
execution.

A. Conveyors

Conveyors [8] provide an abstraction around message
queues with which fixed-size items can be pushed or pulled.
The size and contents of these buffers are specified and
processed solely by the user — the responsibility of conveyors
lies with packing many of them into incoming/outgoing buffers
for bulk transmission to target processes.

678

Use of conveyors implicitly requires the creation of ad-hoc
progress loops each time they are needed, which continuously
cycle between filling outgoing queues and processing items
from incoming ones until all communication requests are com-
plete. Messages are physically sent across the network either
as relevant buffers fill or during explicit calls to advance them,
though completion of any specific operation is not guaranteed
until an advance indicates that the current communication
epoch is complete.

B. Aggregation Contexts

The proposed aggregation contexts extension for OpenSH-
MEM [3] is implemented on top of conveyors to abstract
their usage on applications. They were designed with the goal
of minimally changing existing code and thus preserving its
algorithmic intent, even if it comes at the sacrifice of some
additional performance that could have been gained through
direct conveyor use. To achieve this, they introduced the ability
to create a logical context object that indicates that aggregation
is desired, which must be passed as an additional argument
to all the basic atomic, get, and put (AGP) operations. This
implicitly changes the completion semantics of each such
operation such that neither local nor remote completion is
guaranteed until the user executes a quiet on the context,
signaling the start of a new communication epoch in which the
cycle continues until the user eventually destroys the context.

These contexts are able to map a diverse set of communi-
cation operations to a single set of conveyors by creating a
fixed-size unified packet structure capable of describing any
possible communication request supported by OpenSHMEM,
generally consisting of a type identifier, local and remote
addresses, and a value. Due to the fixed-size nature of these
packets that conveyors mandate, this necessarily results in
drops in the efficiency of network utilisation for operations
not requiring values for all members of the packet encoding,
proportional to the wasted encoding space. Individual calls
to AGP operations essentially just translate to encoding the
relevant information into one of these packets and pushing it
onto a conveyor, where the majority of the work including the
actual execution of operations is left to the context’s internal
progress management, which follows a very similar pattern to
what was described for conveyors’ ad-hoc progress loops with
the addition of type checks to determine how to respond to
pulled requests.

This approach worked very well, as long as all communica-
tion within an epoch was able to be executed independently —
that is, when no result of an operation would be accessed until
after the next quiet. However, when such dependencies were
introduced, they required more effort from the application
developer to restructure their code to accommodate aggrega-
tion (e.g., by prefetching a large number or all such results
and performing a quiet before proceeding to use them in the
subsequent code). An example of this can be seen in the bale
application for sparse matrix transpose. Its first phase performs
histogram calculations without dependent operations to obtain
column counts. However, its second phase repeatedly fetches

positions in the resulting transpose matrix before subsequently
writing to them, as shown in Listing 1.

for (int64_t row = 0; row < A->lnumrows; row++) {
2 for (int64_t j = A->loffset[row]; J <
A->loffset[row + 1]; J++) {

3 int64_t pos =
shmem_atomic_fetch_add(&shtmp[A->1nonzero[]]
/ npes], npes, A->lnonzero[j] % npes);

4 shmem_int64_p (& (xAt) ->nonzero[pos / npes], row
% npes + me, pos % npes);

5 if (A->value != NULL)

6 shmem_double_p (& (xAt) ->value[pos / npes],

A->1value[]j], pos % npes);

7 }

8 |}

9 shmem_barrier_all();

Listing 1: Transpose Phase 2 Using AGP

Using the aggregation contexts extension alone requires
developers to manually perform loop fission, similar to what
a compiler might do, with a quiet operation added between
the two smaller loops, as shown in Listing 2. This approach
not only places a greater burden on the development and
maintenance of applications, but the impact can be even
more pronounced if multiple dependencies exist within an
epoch, particularly when nested within loops. This detracts
from aggregation contexts’ goal of minimising required code
restructuring and is what we seek to avoid with our approach
for supporting deferred execution.

int64_t xpos[A->lnumrows];

2> | for (int64_t row = 0; row < A->lnumrows; row++) {
pos[row] = (int64_t x)malloc((A->loffset[row + 1] -
A->loffset[row]) * sizeof(inte6d_t));
if (pos[row] == NULL) {
5 FAIL();
6 }
7 for (int64_t j = 0, col = A->loffset[row]; col + J

< A->loffset[row + 1]; Jj++)

8 shmem_atomic_fetch_add_nbi (ctx, &pos[row][]],
&shtmp[A->1nonzero[col + j] / npes], npes,
A->1nonzero[col + j] % npes);
9 |

shmem_ctx_quiet (ctx);

shmem_barrier_all();

12 | for (int64_t row = 0; row < A->lnumrows; row++) {
13 for (int64_t j = 0, col = A->loffset[row]; col + J
< A->loffset[row + 1]; Jj++) {
14 shmem_int64_p_nbi (ctx,
& (xAt) ->nonzero[pos[row] [J] / npes], row =*

]
npes + me, pos[row][J] % npes);
(A->value != NULL)
shmem_double_p_nbi (& (xAt) ->value [pos[row] []]
/ npes], A->lvalue[col + jl,

pos([row] [j] % npes);

if

17 }

18 free(pos[row]);
19 }

2 shmem_ctx_qguiet (ctx);
shmem_barrier_all();

Listing 2: Transpose Phase 2 Using Aggregation Contexts

IV. DEFERRED EXECUTION

Our solution was to provide a directive-based abstraction
that tracks the status of any outstanding aggregated operations
and automatically defers the execution of code dependent upon

679

their results. Applications would simply annotate blocks con-
taining remote fetching operations whose dependent code they
want deferred using #pragma shmem defer. Listing 3
shows how the defer directive is applied to the second phase
of the sparse matrix transpose code.

1 for (int64_t row = 0; row < A->lnumrows; row++) {
> | #pragma shmem defer
for (int64_t j = A->loffset[row]; j <

A->loffset[row + 1]; j++) {
int64_t pos shmem_atomic_fetch_add (ctx,
&shtmp[A->1nonzero[j] / npes], npes,

% npes);

A->1nonzerol[]J] %
5 shmem_int64_p_nbi (ctx, & (xAt)->nonzero[pos /

I

npes], row % npes + me, pos % npes)
6 if (A->value != NULL)
shmem_double_p_nbi (ctx, & (*At)->value[pos /
npes], A->lvalue[j], pos % npes);

}
shmem_ctx_quiet (ctx);
1 shmem_barrier_all();

8 }
9

Listing 3: Transpose Phase 2 with Deferred Execution

Its implementation involves a compiler plugin that must
scan annotated blocks for regions that are dependent upon
prior fetch requests, extract them into callback functions, and
store relevant stack data along with a counter set to the
number of associated fetch operations into a defer queue.
As fetch operations get completed, their associated counter
gets decremented until it eventually reaches zero, at which
point its dependent block is ready to be executed. If the defer
queue reaches a set maximum size, the context must force and
wait on progress of outstanding AGP operations until it can
clear more space by executing blocks previously waiting in
the queue. Execution order of deferred blocks is strictly first
in, first out.

One of the benefits of implementing deferred execution
capabilities in the compiler as we are proposing here is that
it can open up the door to all manner of new optimisation
capabilities. By adding semantic knowledge of the OpenSH-
MEM API to compiler analyses, it allows for transformations
that may not have been possible before, such as reordering
of communication operations or other statements in relation
to them, or other optimisations like code hoisting. This could
not only have great impact in relation to deferred code blocks,
but could potentially improve ordinary OpenSHMEM related
code that is neither aggregated nor deferred.

V. EVALUATION

We evaluated our deferred implementation based on two of
the bale 3.0 classic applications: sparse matrix transpose and
triangle counting. Transpose is a straightforward use case as
seen in Section IV, while triangle counting expands this to
a more complicated graph algorithm with multiple levels of
nested deferment. As we have yet to implement our design in
its entirety into the compiler, what follows is an initial proof
of concept where some of the necessary transformations were
applied by hand.

The following runs were performed on 256 nodes of
ORNL’s Frontier, using 1-64 processes per node with a block
distribution. Each Frontier compute node has a single 64-core
AMD Epyc 7A53 2 GHz CPU with 512 GB of memory and
four HPE Slingshot 11 200 Gbit/s NICs connected through
four AMD MI250X GPUs. We compiled with Cray clang
15.0.0 and ran using Cray OpenSHMEM-X 11.7.2.3 with
XPMEM using the SLURM hint “-~hint=nomultithread” for
optimal core bindings. Our results obtained using aggregation
contexts are compared against bale’s versions of the appli-
cations using direct, hand-tailored conveyor code in terms of
speedup relative to the original AGP versions (i.e., a result
of 10 would indicate 10 times faster execution compared to
AGP).

Conveyors Deferred ——

120
100
80
60
40 "\
20
0 ! L ! |
4 8 16
Processes per Node

MF

32

Performance Relative to AGP

64

Fig. 1: Matrix Transpose Speedup over AGP

The results for transpose can be seen in Figure 1. Ag-
gregation contexts performed quite favourably here, generally
achieving a consistent fraction of conveyors’ speedup, which
ranged between 2-3 times faster. Similarly, the results for
triangle counting can be seen in Figure 2. Aggregation contexts
took a slightly larger performance hit here, for which the
relatively larger overhead for the nested deferment increased
conveyors’ relative perforamance in excess of 4x.

Conveyors Deferred —+—

70
60

40
30
20
10 .

0 L L L 1 L
4 8 16

Processes per Node

Performance Relative to AGP

Fig. 2: Triangle Counting Speedup over AGP

680

As according to their design, the overhead of using aggre-
gation contexts on application developers and their code is ex-
tremely minimal, and instead all the opportunity costs are tied
to their runtime performance compared to a manually tailored
result. Two of the main sources for such runtime overhead
are the encoding efficiency of the buffer items supplied to the
conveyor (which as suggested in [4] could still be a good focus
for further optimisation, the gains for which we estimate could
be up to 50%), and that of managing the storage and retrieval
of execution state for deferred blocks (which may also have
room for additional improvement). However, even with our
initial implementation, the benefits are clearly massive and we
think can already outweigh the cost of manually implementing
the alternative in user applications. There are most likely
also a number of optimisation opportunities, though such
considerations were left for future investigation.

VI. CONCLUSION

In this paper, we introduced a directive-based approach to
abstract small message aggregation capabilities of dependent
operations in PGAS programming models through OpenSH-
MEM. Our method leverages compilers to implement auto-
matic deferred execution that abstracts dependencies between
memory accesses, enabling more efficient aggregation without
compromising the application’s algorithmic intent or requiring
significant code restructuring. The results from our evaluation
show that our approach effectively removes blocking operation
and synchronisation overheads in the sparse matrix transpose
and triangle counting applications from the bale 3.0 classic
suite, resulting in substantial performance gains of up to 10—
20x improvements to application runtime over non-aggregated
execution. Beyond fully implementing our design within the
LLVM framework, other avenues for future work include
a focus on refining the directive interface, testing it on a
wider array of applications, and investigating optimisation
opportunities and the compiler analyses that might be needed
to support them. It could also be worth looking into adapting
our strategies to other PGAS environments, or exploiting
SmartNICs to offload handling of deferred blocks to them for
potential further performance gains.

VII. ACKNOWLEDGEMENTS

This research used the Frontier and Andes resources of the
Oak Ridge Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE-
ACO05-000R22725. This work was funded through Strategic
Partnership Projects Funding Office via Los Alamos National
Laboratory with IAN 619215901.

REFERENCES

[1] J. Shalf, “Hpc interconnects at the end of moore’s law,” in
Optical Fiber Communication Conference (OFC) 2019. Optica
Publishing Group, 2019, p. Th3A.l. [Online]. Available: https:
/lopg.optica.org/abstract.cfm?URI=OFC-2019-Th3A.1

D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth, and T. Hoefler,
“An in-depth analysis of the slingshot interconnect,” in SC20: Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, 2020, pp. 1-14.

[3] A. Welch, O. Hernandez, and S. Poole, “Extending openshmem with

aggregation support for improved message rate performance,” in Euro-Par
2023: Parallel Processing, J. Cano, M. D. Dikaiakos, G. A. Papadopoulos,
M. Pericas, and R. Sakellariou, Eds. Cham: Springer Nature Switzerland,
2023, pp. 32-46.

A. Welch, O. Hernandez, W. Poole, and S. Poole, “Scalable small
message aggregation on modern interconnects,” in VIVEKfest 2024: In
Honor of Vivek Sarkar’s Contributions to Parallelism and Programming
Languages, part of SPLASH 2024, 2024, to appear. [Online]. Available:
https://2024.splashcon.org/home/vivekfest-2024

S. R. Paul, A. Hayashi, K. Chen, and V. Sarkar, “A scalable actor-based
programming system for PGAS runtimes,” CoRR, vol. abs/2107.05516,
2021. [Online]. Available: https://arxiv.org/abs/2107.05516

[6] M. Grossman, V. Kumar, Z. Budimli¢, and V. Sarkar, “Integrating

asynchronous task parallelism with openshmem,” in OpenSHMEM and
Related Technologies. Enhancing OpenSHMEM for Hybrid Environments,
M. Gorentla Venkata, N. Imam, S. Pophale, and T. M. Mintz, Eds. Cham:
Springer International Publishing, 2016, pp. 3-17.

W. Lu, T. Curtis, and B. Chapman, “Openshmem active message
extension for task-based programming,” in OpenSHMEM and Related
Technologies. OpenSHMEM in the Era of Exascale and Smart
Networks: 8th Workshop on OpenSHMEM and Related Technologies,
OpenSHMEM 2021, Virtual Event, September 14—16, 2021, Revised
Selected Papers. Berlin, Heidelberg: Springer-Verlag, 2021, p. 129-143.
[Online]. Available: https://doi.org/10.1007/978-3-031-04888-3_8

F. M. Maley and J. G. DeVinney, “Conveyors for streaming many-to-
many communication,” in 2019 IEEE/ACM 9th Workshop on Irregular
Applications: Architectures and Algorithms (IA3), 2019, pp. 1-8.

