
Performance evaluation and modelling of
single-precision matrix multiplication

on Cerebras CS-2
Ryunosuke Matsuzaki

Dept. of Computer Science, Meiji University
Kawasaki, Kanagawa, Japan

ce245011@meiji.ac.jp

Daichi Mukunoki
Independent researcher

daichi.mukunoki@gmail.com

Takaaki Miyajima
Dept. of Computer Science, Meiji University

Kawasaki, Kanagawa, Japan
takaaki.miyajima@cs.meiji.ac.jp

Abstract—Although recent supercomputers have been improv-
ing their computational performance, achieving performance
scaling with respect to the number of nodes is not easy due
to long inter-node communication latency. Many attempts have
been made to hide communication latency and maintain strong
scalability even for dense matrix multiplication. Matrix multipli-
cation is an ideal candidate for benchmarking the performance of
supercomputers. The Cerebras CS-2 system is an accelerator for
deep learning with the world’s largest chip, the wafer-scale engine
2 (WSE-2). The WSE-2 can be considered a distributed memory
system that comes with 745500 processing elements connected in
a low-latency 2D mesh topology. This paper presents the effective
maximum performance, weak and strong scaling performance,
and proposes a performance model for single-precision matrix
multiplication on CS-2. We observed the maximum performance
of 349.0 TFlops/s (matrix size: 33000×33000) and a weak scaling
efficiency of 1.00. The mean absolute percentage error between
our performance model and the actual measurement was 4.7%
at matrix size is around 2000×2000.

Index Terms—Cerebras CS-2, matrix multiplications

I. INTRODUCTION

Dense matrix multiplication is one of the key computational
kernels and is often used for benchmarking the computational
performance of supercomputers as a computation-intensive
task. As the number of nodes in supercomputers increases,
it is no longer easy to maintain strong scalability even for
matrix multiplication due to long inter-node communication
latency [1]. It is known that the communication time becomes
larger than the computation time when the problem size is
not large enough. The Cerebras CS-2 system achieves higher
scalability in parallel computing through one clock cycle
communication latency between processing elements (PEs).
Although performance evaluations in several specific appli-
cations has been conducted [2] [3] [4], performance analysis
of fundamental kernels such as matrix multiplication has not
been progressed. This paper presents the maximum perfor-
mance, weak and strong scaling performance, and proposes a
performance model for single-precision matrix multiplication
on CS-2.

II. BACKGROUND

A. Cerebras CS-2 System

The CS-2 system is equipped with one wafer-scale engine
2 (WSE-2), the world’s largest chip at the time of this writing.
The WSE-2 boasts a homogeneous array of PEs and operates
on a distributed memory architecture featuring a simple 2-
D mesh topology. With a staggering total of 745500 PEs
running at 850 MHz, arranged in a layout of 750 along
the x-axis and 994 along the y-axis. Each PE comprises a
router and a Compute Element (CE). The CE comprises a
48 KB local scratchpad memory and a six-stage in-order
pipeline computing core. They are connected by two 64-bit
read ports and one write port. Coherency among PEs is not
guaranteed and there is no conventional shared memory like
in CPUs and GPUs. The local scratchpad memory can be
accessed in one clock cycle if no bank conflicts occur. Each
router can efficiently transfer 32-bit data (either as one 32-
bit or two 16-bit transmissions) to neighbouring PEs within
a single cycle. Notably, communication and computation are
seamlessly overlapped, with communication operations not
consuming processor cycles.

Cerebras SDK and Cerebras System Language (CSL) are
provided to program scientific applications on CS-2 [5].
Built-in functions perform operations such as fused multiply-
accumulate (FMAC) on up to four-dimensional tensors. A
set of functions for collective communication in the x-/y-axis
direction is also provided as a library. For example, @fmacs
and broadcast functions perform single-precision floating-
point FMAC operation and broadcast a message among PEs,
respectively. Point-to-point communication is not provided for
CS-2. Because the routing must be determined at compile
time, it is impractical to implement communications where
the destination changes dynamically.

B. Parallel distributed matrix multiplication

Scalable Universal Matrix Multiplication Algorithm
(SUMMA) is a widely used parallel distributed matrix
multiplication algorithm [6]. It consists of a local matrix
product using FMAC operations and communication
consisting of broadcast operations in the x-/y- directions.
Compared to the Cannon algorithm, it requires lower
communication bandwidth but causes higher latency due to

727979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00101

the need for broadcasts with a distance equal to the matrix
size [7]. As the number of nodes increases while the size
of matrices remains the same, the number of transferred
data becomes small, but the communication latency cost
becomes non-negligible. Fine-grained communication often
becomes an obstacle to scaling on recent supercomputers
due to its long internode communication latency. On the
other hand, broadcast in the x-/y- directions on a 2D mesh
is a suitable communication pattern for systems with 2D
mesh topology such as CS-2. The low latency inter-PE
communication of CS-2 can mitigate the impact of distant
broadcast communication.

The Cerebras SDK provides a SUMMA implementation for
CS-2 named “GEMM with Collective Operations”. [8]. In this
program, the input matrices A and B are decomposed into
sub-matrices that fit into the PE’s memory size of 48 KB.
Then the sub-matrices are sent from the host machine to the
PEs on the CS-2, and the CS-2 performs SUMMA. Finally,
the CS-2 returns the result matrix C to the host machine. In
this implementation, the broadcast function is used for x-/y-
direction broadcast communication and @fmacs function is
used for local matrix multiplication.

III. PERFORMANCE EVALUATION

We evaluate the maximum performance, weak and strong
scaling performance of SUMMA on CS-2 using the “GEMM
with Collective Operations” program. The size of matrices to
be computed is M × M , and the size of submatrices to be
computed on each PE is Mt×Mt. The purpose of this paper is
to understand the performance characteristics of CS-2 and not
to evaluate the performance of the algorithm, so only square
matrices are used for evaluation. Evaluating the performance
of other shapes is a topic for future research. Since only
square matrices are evaluated, not all the PEs on WSE-2 are
used for maximum performance. Specifically, 750×750 out
of 750×994 PEs are used. Because the program requires two
temporally buffers equivalent to the size of the matrix, each PE
consumes a total of 5 buffers ×Mt×Mt× 4 bytes of memory.
In addition, the alignment of matrices is not optimised, and
bank conflicts are not avoided.

We use the CS-2 system with Cerebras SDK version:
1.0.0 and WSE-2 software version: 1.6.1 from TED AI Lab,
Tokyo Electron Device Ltd. The cycle counter provided by
the Cerebras SDK was used for the time measurement. The
elapsed time was calculated as the elapsed cycles divided by
the operating frequency of 850 MHz. The computational per-
formance (Flops/s) was calculated as the number of operations,
2×M3, divided by the elapsed time. As matrix multiplication
is commonly used as a part of certain applications, the
performance evaluation only covers the computation inside the
CS-2. It excludes the communication time of input and output
data between the host CPU and the CS-2.

A. Maximum performance

The CS-2 achieved a maximum performance of 349.0
TFlops/s with 750 × 750 = 562500 PEs (75.5% of the total

Fig. 1: Strong scaling: Trends of computational performance
at M ≈ 2000 to 32000.

750 × 994 PEs) for the matrix size of M = 33000 with
Mt = 44 (44 × 750 = 33000). In this case, the memory
footprint on each PE is 44×44×4 bytes×5 buffers=38.7 KB
and 21.78 GB on the overall computation. This is 80.6% of
the total 27.0 GB of memory for the 562500 PEs used and
60.8% of the total 35.78 GB of memory for the entire CS-2.

The ratio of computation and communication to the total
processing time is 98% and 2%, respectively, It indicates that
computation is a more limiting factor for performance than
communication. 349.0 TFlops/s is 73.8% of the attainable peak
performance of 477.5 TFlops/s with 750×750 PEs. Note that
the attainable peak performance is the peak performance of the
FMAC operations on a single PE multiplied by the number of
PEs used, not a theoretical performance. The major reason
for the performance decrement is that Mt is 44, which is too
small to achieve the peak performance of FMAC operations.
The peak performance of the FMAC operations is obtained
when processing more than 128 elements continuously, and
performance drops by around 10% from the peak performance
when processing 44 elements. It has also been known that the
performance of the FMAC operations can only be improved
by about 5% at 32 or 64 elements, even if bank conflict is
avoided [9]. Therefore, we believe that increasing the number
of elements to be processed contiguously is necessary to
improve computational performance.

B. Strong scaling

We measure the strong scaling performance when the num-
ber of PEs used is increased while keeping the problem size
the same. The number of PEs used is varied from 50×50 to
750×750 in increments of 50. The matrix size M is set to
around 2000, 4000, 8000, 16000, and 32000, but the actual
size varies slightly depending on the number of PEs used since
M may not be divisible by the number of PEs. For example,
when 600 PEs are used for a computation of M ≈ 4000, the
actual matrix size is M = 4200 with Mt = 7.

Figures 1 and 2 show the trend of the computational
performance of each matrix size, and the breakdown of the
processing time at M ≈ 2000, respectively. Figure 1 shows

728

Fig. 2: Strong scaling: Performance breakdown of the process-
ing time at M ≈ 2000.

that the computational performance progressively increases
when the M becomes larger. A noteworthy observation in
Figure 2 is that the communication still accounts for 60% even
when Mt = 3 which is extremely small. When the number
of PEs is increased while Mt = 3, the ratio of calculation to
communication remains almost the same. This is because com-
munication between PEs is one cycle. In the general case for
other supercomputers, communication latency dominates total
processing time, and computational performance asymptotes
as Mt becomes smaller. The effective performance decreases
as M becomes smaller since the execution efficiency of FMAC
operations decreases as Mt becomes smaller as explained in
Section III-A, and the ratio of communication to the total time
increases. Lastly, the computation and communication time
becomes smaller when Mt is smaller, and thus the control
cost becomes relatively visible.

C. Weak scaling

For weak scaling measurement, the computational per-
formance, power efficiency (GFlops/W), and parallelisation
efficiency were measured while keeping Mt equal to 47 and
increasing the number of PEs used. As with strong scaling,
the number of PEs used was varied in increments of 50 from
50× 50 to 750× 750. The maximum matrix size that can be
computed on CS-2 is 47×750 = 35250.

Figure 3 shows the computational performance and per-
formance per watt. Figure 4 shows the elapsed cycles and
weak scaling efficiency. Computational performance increased
linearly with the number of PEs while achieving a weak
scaling efficiency of 1.00. Weak scaling efficiency is calculated
as follows. When the number of PEs used is increased from
50×50 to 100×100, the amount of computation increases by
a factor of 8 while the number of used PEs increases by a
factor of 4. Consequently, the elapsed cycles doubled when the
parallel efficiency is 1.00. From Figure 4, when the problem
size is 23 times bigger, and the number of PEs used is 22 times
larger, the elapsed cycle exactly doubles. From this result, the
weak scaling efficiency is calculated as 1.00.

The performance per watt is improved linearly with the
number of PEs used, up to 79.66 GFlops/W. It can be

Fig. 3: Weak scaling: computational and performance per watt
at Mt = 47.

Fig. 4: Weak scaling: Elapsed cycles and weak scaling effi-
ciency per watt at Mt = 47.

considered a very high effective number because the power-to-
performance ratio calculated from the specification is approx-
imately 90.00 GFlops/W. Note that the ratio of computation
and communication to total processing time was 98% and 2%,
respectively, in all cases. The computational performance of
each PE can be calculated as 0.6 GFlops/s when dividing the
computational performance by the number of PEs used.

IV. PERFORMANCE MODEL

Our fundamental idea for creating a performance model is
to sum the time required for each processing step (x-/y-axis
broadcast and FMAC) because each step runs sequentially.

From preliminary evaluations [9], a model for elapsed cycles
of FMAC operations (Tfmac) and broadcast communication
(Tbcast) can be expressed as Tfmac = I × 2 + 10 and
Tbcast = I×1.60+250, respectively, where I is the number of
elements processed consecutively. The absolute error between
the Tfmac and the measured values was at most 2 cycles in the
range from 1 to 2048 elements. The mean absolute percentage
error (MAPE) between the performance model and the actual
measurement was 3.6%. A possible reason for the very high
accuracy of the model is that the CU is an in-order pipeline,
and all memory access latency is 1 cycle. MAPE between the

729

Fig. 5: Estimated performance by performance model, actual
measured performance, and error in estimated performance
relative to actual performance at M ≈ 2000

Tbcast and the actual measurement was 2.0% in the range of
1 to 4096 transferred elements. The constant number of 250
cycles is considered an overhead for router configuration, etc.

The total elapsed cycles (Ttotal) becomes as follows, where
Tcomp, Tcomm, and Tcntl, P are cycles for computation,
communication, control overhead, and the number of used
PE in the x-axis, respectively. We found that the Tcomp takes
longer than the FMAC operations with Mt × Mt elements.
In particular, the function @increment dsd offset calculating
a start address for DSD operation took too long to ignore.

Ttotal = {Tcomp + Tcomm + Tcntl} × P

= {(Tfmac + 0.5×Nloop + 10) + Tbcast + 100} × P

Finally, the computational performance model of matrix
multiplication Fperf [Flops/s] becomes follows.

Fperf =
2×M3 × (850× 106)

{(Tfmac + 0.5×Nloop + 10) + Tbcast + 100} × P

Figure 5 shows the estimated performance by the perfor-
mance model, the actual measured performance, and the error
in the estimated performance relative to the actual performance
at M ≈ 2000. Our performance model estimates actual perfor-
mance very accurately, with a MAPE of 4.7% at M ≈ 2000.
When the sub-matrix size is larger than five, the error becomes
large. The main reason for this is that the actual time of two
broadcasts in the x-/y- direction differed from the estimated
Tbcast as the number of transferred elements increased. We
assume that as the broadcast in the two directions cannot be
fully overlapped, the difference from the model became larger
as the data size increased.

V. DISCUSSION

Several parallel distributed matrix multiplication algorithms
have been proposed, such as SUMMA. It has been reported
that SUMMA can no longer improve strong scalability on
recent supercomputers [1] [10]. The 2.5D algorithm proposed
by Solomonik et al. [11] avoids communication and optimises
the amount of communication compared with SUMMA by

replicating input matrices. However, it requires extra memory
for replication. There are more advanced algorithms, such
as COSMA [10], and CARMA [12], which optimise load
balancing and the amount of communication even for tall-
skinny matrices. These algorithms can be combined with com-
munication overlapping techniques through blocking. How-
ever, communication overlapping does not work well when
the number of nodes is increased for strong scaling. This
is because the computation time becomes shorter, and the
communication time cannot be hidden [13] [10].

The result in Section III suggests that the CS-2 can main-
tain scalability without using advanced algorithms like other
supercomputers. This is because the broadcast in the x-/y-
direction of SUMMA is best suited to the 2D mesh topology
of CS-2, and the low-latency inter-PE communication of CS-
2 minimises the impact of distant communication. SUMMA
gives optimal communication for certain matrix shapes, such
as square matrices, when there is no extra memory.It also
perfectly balances the load for any matrix dimension. Even
if the amount of communication is reduced using the 2.5D
algorithm or communication is overlapped by blocking, no
significant performance improvement can be expected from
the results of Figure 2. Both techniques require extra memory;
thus, the negative impact is more significant for CS-2, where
the local memory is small. Please recall that each PE only has
48KB of local memory, and our evaluation uses more than
80% of them at most.

VI. CONCLUSION

This paper aimed to evaluate the performance of the single-
precision matrix multiplication and model its performance to
understand the applicability of CS-2 to large-scale scientific
computations. Our evaluation result showed good strong scal-
ability, including the case where the sub-matrix size on each
PE was extremely small (3×3). Communication took up 60%
of the total processing time in this case. Highly accurate
performance models for FMAC operations, broadcast commu-
nications and matrix multiplication were also presented.

REFERENCES

[1] D. Mukunoki and T. Imamura, “Performance analysis of 2d-compatible
2.5d-pdgemm on knights landing cluster,” in Computational Science –
ICCS 2018, Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees,
J. Dongarra, and P. M. A. Sloot, Eds. Cham: Springer International
Publishing, 2018, pp. 853–858.

[2] M. Orenes-Vera, I. Sharapov, R. Schreiber, M. Jacquelin,
P. Vandermersch, and S. Chetlur, “Wafer-scale fast fourier transforms,”
in Proceedings of the 37th ACM International Conference on
Supercomputing, ser. ICS ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 180–191. [Online]. Available:
https://doi.org/10.1145/3577193.3593708

[3] M. Jacquelin, M. Araya-Polo, and J. Meng, “Scalable distributed high-
order stencil computations,” in Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’22. IEEE Press, 2022.

[4] K. Rocki, D. Van Essendelft, I. Sharapov, R. Schreiber, M. Morrison,
V. Kibardin, A. Portnoy, J. F. Dietiker, M. Syamlal, and M. James, “Fast
stencil-code computation on a wafer-scale processor,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’20. IEEE Press, 2020.

730

[5] Cerebras Systems, “Documentation for Developing with CSL - SDK
Documentation (1.0.0),” https://sdk.cerebras.net, accessed: 2024-02-05.

[6] R. A. van de Geijn and J. Watts, “Summa: Scalable universal matrix
multiplication algorithm,” USA, Tech. Rep., 1995.

[7] E. Solomonik and J. Demmel, “Matrix multiplication on multidimen-
sional torus networks,” in High Performance Computing for Computa-
tional Science - VECPAR 2012. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 201–215.

[8] Cerebras Systems, “GEMM with Collective Operations - SDK
Documentation (1.0.0),” https://sdk.cerebras.net/csl/code-examples/
benchmark-gemm-collectives, accessed: 2024-02-05.

[9] T. Miyajima, R. Matsuzaki, and L. Fukuoka, “Stream benchmark on
cerebras wse-2 (poster),” in ISC High Performance 2024 Research Paper
Proceedings (39th International Conference), no. 10, mar 2024.

[10] G. Kwasniewski, M. Kabić, M. Besta, J. VandeVondele, R. Solcà,
and T. Hoefler, “Red-blue pebbling revisited: near optimal parallel
matrix-matrix multiplication,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’19. New York, NY, USA: Association for
Computing Machinery, 2019. [Online]. Available: https://doi.org/10.
1145/3295500.3356181

[11] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5d
matrix multiplication and lu factorization algorithms,” in Euro-Par 2011
Parallel Processing, E. Jeannot, R. Namyst, and J. Roman, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 90–109.

[12] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger, “Communication-optimal parallel recursive rectangular
matrix multiplication,” in 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, 2013, pp. 261–272.

[13] E. Georganas, J. Gonzalez-Dominguez, E. Solomonik, Y. Zheng,
J. Tourino, and K. Yelick, “Communication avoiding and overlapping for
numerical linear algebra,” in SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1–11.

ACKNOWLEDGEMENT

This work was supported by Japan Science and Technology
Agency (JST) as part of Adopting Sustainable Partnerships
for Innovative Research Ecosystem (ASPIRE), Grant Number
JPMJAP2341. This work was supported by JSPS KAKENHI
Grant Number 24K14972.

731

