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Abstract—As high-performance computing (HPC) systems ad-
vance towards Exascale computing, their size and complexity
increase, introducing new maintenance challenges. Modern HPC
systems feature data monitoring infrastructures that provide
insights into the system’s state. This data can be leveraged
to train machine learning models to anticipate anomalies that
require compute nodes to undergo maintenance procedures. This
paper presents a novel approach to predicting such anomalies by
creating a graph per measurement that encodes current and past
sensor readings and information related to the compute node sen-
sors. The experiments were performed with data collected from
Marconi 100, a tier-0 production supercomputer at CINECA in
Bologna, Italy. Our results show that the machine learning model
can accurately predict anomalies and surpass current State-Of-
The-Art (SOTA) models regarding the quality of predictions and
the time horizon considered to forecast them.

Index Terms—Artificial Intelligence, Machine Learning,
Graphs, HPC, Data Center, Anomalies Forecasting

I. INTRODUCTION

High-performance computing (HPC) is crucial for economic
competitiveness, scientific leadership, and national security
[1], [2]. Recognizing this, the European Commission launched
its HPC strategy in 2012 and created the EuroHPC Joint Un-
dertaking in 2018 [3]. Globally, similar efforts are advancing
HPC capabilities, as seen in the Top500 list, which includes
two exascale systems and eight pre-exascale systems [4].
While supercomputers lead in double precision FLOPs, gen-
erative artificial intelligence (AI) models like Meta’s LLaMA
3.1 require even greater computational power in reduced pre-
cision, surpassing exaflop levels and, in some cases, requiring
yottaflops of computational power [5].

As supercomputing performance increases, systems become
more complex and prone to failures, especially in exascale

This research was developed as part of the Graph-Massivizer project funded
under the Horizon Europe research and innovation program of the European
Union under grant agreement 101093202https://graph-massivizer.eu/ and sup-
ported by the Slovenian Research Agency.
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clusters. A single-node failure can disrupt large-scale jobs,
such as LLM training, if checkpointing is not in place. To
address this, AI and data-driven methods, known as Opera-
tional Data Analytics (ODA), have been introduced alongside
monitoring infrastructures [6]. The M100 Exadata [7], a public
dataset from the Marconi100 cluster at CINECA, offers around
50TB of telemetry data, aiding in the analysis and research
about managing large-scale HPC systems.

This work proposes a novel machine learning approach for
predicting compute node anomalies (unavailability) in HPC
systems. The models exploit two perspectives on data. First,
we pre-process sensor signals to identify informative states
and leverage their information to predict anomalies. Second,
we create graph representations encoding domain knowledge
and time series data at each point in time of a given compute
node and leverage the graph embeddings to determine whether
anomalies will take place in such compute nodes at a certain
point in time in the future. We train and test our models on
a subset of the abovementioned M100 Exadata dataset. The
experimental results show our models likely surpass current
SOTA models. Nevertheless, further work is required to fairly
compare both models and draw definitive conclusions.

The rest of this paper is structured as follows: Section II
describes the related work, Section III details the methodology
we followed to train and test the machine learning models, and
Section IV details the experiments we performed. The results
we obtained are reported in Section V and briefly discussed
VI. Finally, in Section VII, we present the conclusions and
outline future work.

II. RELATED WORK

Operational Data Analytics in HPC domain ODA frame-
works are essential for managing the complexity of mod-
ern HPC systems. They provide layers for data acquisition,
processing, and visualization to support administrators han-
dling large-scale systems. ODA frameworks, like Examon
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[8], collect real-time telemetry and log data. Integrated data-
driven models such as PROCTOR [9], GRAAFE [10], and
Wintermute [11] offer actionable insights, enhancing system
monitoring and anomaly detection capabilities. This helps
ensure more reliable operation and efficient management of
HPC environments.

Anomaly detection and prediction are critical for the
availability and sustainability of HPC systems, as noted by
Netti et al. [12]. Anomalies, such as node failures, are periods
where compute nodes are unavailable for jobs, as highlighted
in the largest open HPC dataset [7]. While log-based methods
like those of Tiwari [13] and Liu [14] predict component
failures, node telemetry data is more commonly used due to
privacy and performance concerns with log monitoring in large
systems [15]. The GRAAFE model, utilizing graph neural
networks, is the current state of the art, predicting anomalies
up to six hours in advance [10], and serves as the benchmark
for this paper’s proposed method.

Graph methodologies for HPC monitoring GRAAFE
[10], the current SOTA model, improves node anomaly predic-
tion by incorporating the physical layout of compute nodes as a
graph, where each node is a vertex connected to its neighbors,
and telemetry data is represented as vertex attributes. A line
graph topology representing a compute rack proved most
effective, with a graph convolutional network predicting node
failures in future windows through vertex classification. How-
ever, GRAAFE relies only on the last 15 minutes of telemetry
data for prediction [7]. Research suggests that considering
larger time windows enhances anomaly detection performance
[16].

III. METHODOLOGY

Dataset The dataset we use in our research is a collection
of sensor measurements gathered by Borghesi et al. from the
Marconi 100 supercomputer [17] and made publicly avail-
able at https://zenodo.org/records/7541722. Given its petaflop
computing capabilities, Marconi 100 corresponds to a Tier-
0 European HPC facility. The system was co-designed by
CINECA and replaced the former FERMI system in June
2016. Marconi 100 was replaced by Leonardo in 2023. For
this research, we considered a fraction of the abovementioned
dataset, the distribution file 1.tar, considering sensor measure-
ments of seventeen compute nodes located in the racks of
the supercomputer and taken between March 9th 2020 and
September 28th 2022. The records do not provide raw sensor
measurements but rather summarized values at fifteen-minute
intervals.

Data preprocessing We only considered the averaged
sensor values from the dataset, disregarding other available
information, such as the variance of the values measured
in the fifteen-minute intervals. Missing value imputation was
performed with the Last Observation Carried Forward (LOCF)
strategy, assuming that if the conditions in the compute node
did not change much, the sensor values should remain close
to the latest observed value. Furthermore, we observed that
most sensor values remained close to a certain value for

prolonged periods until a change level occurred. Therefore,
we preprocessed the sensor data with a change-level detector.
We simplified the data for each segment by replacing the
actual sensor values with the average value of the whole
segment. Furthermore, given the level changes were detected
considering changes in the sensor mean values, we could still
have sensor values that remained close to each other, signaling
similar conditions and expected node behavior outcomes.
We, therefore, decided to further simplify the sensor value
representations by encoding them according to whether they
belong to one of five quantiles for values observed for that
particular sensor.

Identification of states prone to or that lead to anoma-
lies After performing the pre-processing described above, we
proceeded to identify states for each of the compute nodes,
defining a state as a particular combination of sensor values
observed at a certain point in time. Each state was given an
ID. The states we obtained were used in two ways. First,
we performed some clustering to identify which states were
similar and had a higher density of anomalies. From this
procedure, we found that three states entirely coincided with
compute node anomalies. Second, we used the state IDs to
re-encode the original time series into a sequence of state IDs
and determine which states led to anomalous ones. With this
procedure, we found that certain state sequences led to states
associated with node downtimes.

Feature engineering As detailed above, we encoded sensor
values according to the quantile they belonged to for each
point in time. Therefore, we pursued two representations.
First, we encoded the states as vectors, concatenating the
one-hot encoded representations regarding which quantile a
particular sensor value belonged at a certain time. Second, we
created graphs describing the overall state of a node as sensed
by the sensors per state change. The graphs are undirected
and have a root node encoding the compute node ID. The
root node edges lead to nodes describing sensor types. These
nodes are linked to specific sensors of that type. Finally,
attached to the sensor-specific nodes, we provided a natural
visibility graph, considering the time series resulting from
the last ten quantile states observed for that particular sensor.
Natural visibility graphs [18] were considered given (i) the
data was pre-processed into quantiles beforehand, providing
a constrained set of time series values, (ii) they accurately
capture the topology of a time series, and (iii) their encoding
is positional, describing very well how transitions among last
n states took place. To turn the graphs into features, we
trained a Graph2Vec model and transformed each graph into
an embedding of 15 values that could be used downstream to
train machine learning models.

A. Model training

We considered two types of models: models trained only on
data from a particular compute node (local models) and models
trained on all available data (global models). Dividing the data
following this criteria resulted in datasets with between 8.000
and nearly 12.000 instances for local models. We used a split
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of 75% of the data for training purposes, 5% for validation,
and 20% for testing. Train, validation, and test sets were taken
sequentially to preserve the order in which the sensor data was
made available. In particular, the split dates considered were
February 15th and April 1st 2022.

The models aimed to predict whether an anomaly (compute
node unavailability) would take place at a specific node and
time horizon. The time horizons were determined by state
changes, which, on average, take place every 165 minutes.
We considered three time horizons, predicting anomalies about
495 minutes (more than eight hours) ahead. We trained a
CatBoost classifier for 250 iterations, considering a learning
rate of 0.1 and an L2 regularization factor of 0.3 while using
the cross-entropy loss and evaluating the models’ performance
on the validation set with a log-loss function.

B. Model evaluation

We evaluated the models’ discriminative performance with
the ROC AUC score. The score was computed at a compute
node level and then summarized to report the average (AVG),
minimum (MIN), and maximum (MAX) values obtained
across nodes for each experiment.

IV. EXPERIMENTS

We performed six experiments, training local and global
models for three sets of feature vectors:

1) one-hot encoded values representing the quantile values
to which each sensor reading belonged. This resulted in
a feature vector of 66 values.

2) Graph2Vec embeddings under the assumption that ran-
dom walks over the graph representation could be used
to create a richer representation than the one-hot encoded
values. This resulted in a feature vector of 15 values.

3) joint representation using one-hot encoded values and
Graph2Vec embeddings, to validate whether they could
provide complementary information to the model and
lead to better results. This resulted in a feature vector
of 81 values.

We refer to the experiments with IDs based on their feature
sets and model types. E.g., 1G would refer to a Global model
created with one-hot encoded values, while 3L would refer to a
Local model created with features from a joint representation.

V. RESULTS

In Table I, we present the results obtained for the six
experiments described in the previous section. When compar-
ing local and global models, we found that global models
resulted in the best absolute average performance and led
to the best performance ranges when considering compute
node-specific forecasts. Only two exceptions were observed,
with local models outperforming it when considering the
minimum performance achieved by models predicting one
state ahead and the maximum achieved performance of models
predicting three states ahead. When considering feature sets,
Graph2Vec embeddings displayed a very poor performance,
showing ROC AUC values close to 0.5, with some exceptions

reaching 0.6825. Nevertheless, when coupled to the one-hot
encoded values, they strengthened the models’ performance,
leading to average ROC AUC values close to 0.85 when
predicting one state ahead, with a slight decrease in perfor-
mance when predicting two states ahead and with a signifi-
cant performance drop (0.7886) when predicting three states
ahead. Nevertheless, when considering the ranges of ROC
AUC values achieved when forecasting anomalies for each
of the compute nodes, performance was high as 0.9518 when
forecasting one state ahead, achieving an even better score
when forecasting two states ahead (0.9706), and achieving
ROC AUC of 0.9060 when forecasting three states ahead.
We consider the 3G model (global machine learning model
trained with joint representation features) the best among the
trained models. This model most likely significantly surpasses
GRAFFE GNN, the current SOTA model. While the GRAFFE
GNN achieves an ROC AUC between 0.78 and 0.91 with a
four-hour look-ahead window, our 3G model achieves an ROC
AUC performance between 0.7138 and 0.9785 for a look-
ahead window of an average of 320 minutes (five hours and
a half). Furthermore, when predicting three states ahead (an
average of 495 minutes - eight hours and fifteen minutes), the
worst-case performance decreases to 0.6549, and the best cases
remain competitive, achieving an ROC AUC performance of
0.9060, while predicting more than twice ahead of the time
horizon considered by GRAFFE GNN. While the results are
promising, further work is required to strengthen the claims,
such as comparing both models across the same test set splits.

VI. DISCUSSION

While the work presented in this paper shows promising
results, we must acknowledge certain limitations. First, results
show the graph embeddings do a poor job on capturing
information relevant to the classification task. This can be
improved in many ways: trying different graph representations
(e.g., encoding the physical layout of compute nodes within
racks [19]), using different time series to graph encodings,
graph embedding methods, and hyperparameter tuning. Our
approach’s advantages against GRAFFE is that the model is
trained against meaningful state changes and not all sensor
readings. This would potentially enable inference using real-
time sensor data while not significantly increasing the dataset
size to train the model. For example, such preprocessing
reduces the effective dataset size about eleven times in the
current dataset. While smaller datasets imply lower model
training costs, no direct comparison against GRAFFE has been
performed. We consider the proposed method to be generic.
As long as data about sensor readings and metadata about
sensors exist, it should be easily applied to other datasets and
HPC environments to support exascale systems and enhance
maintenance capabilities. Nevertheless, additional experiments
are required to confirm this and remain a matter of future work.

VII. CONCLUSION

This paper presents a novel approach to predict compute
node unavailability in HPC systems for Exascale computing.
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Model type Feature set n+1 n+2 n+3

AVG MIN MAX AVG MIN MAX AVG MIN MAX

Global
1 0.8315 0.6962 0.9281 0.8475 0.6878 0.9525 0.7906 0.6707 0.9077
2 0.4928 0.4065 0.5802 0.5061 0.4024 0.6011 0.5219 0.4080 0.6555
3 0.8498 0.7147 0.9518 0.8485 0.7138 0.9785 0.7886 0.6549 0.9060

Local
1 0.8416 0.7311 0.9384 0.8408 0.6658 0.9706 0.7903 0.6006 0.9508
2 0.4908 0.3345 0.5883 0.5285 0.4462 0.6825 0.5342 0.3784 0.6671
3 0.8335 0.6186 0.9313 0.8107 0.5568 0.9525 0.7806 0.5948 0.8970

TABLE I: ROC AUC values for machine learning models predicting anomalies occurrence for the Marconi 100 HPC system for time
horizons of up to three states ahead. The best absolute results are underlined. The best results across feature sets are bolded.

The approach shows promising results and probably surpasses
current SOTA models, achieving ROC AUC between 0.6549
and 0.9785 while predicting anomalies up to eight hours and
a half ahead (more than twice the time horizon reported up
to now for anomalies forecasting). Two factors contributed
to the models’ performance: (i) throughout sensor signal pre-
processing to extract relevant information and remove noise,
(ii) a simple representation of such states, and (iii) a hybrid
graph representation of each state, combining time series
information with domain knowledge regarding the sensors
present in each compute node.

Future work will explore different graph representations
to capture sensors’ semantic attributes and better encode
information about the time series. In addition, we will work
closely with the authors of the GRAFFE GNN model to
compare both models and provide a conclusive assessment of
their performance.
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