
LIDC: A Location Independent Multi-Cluster
Computing Framework for Data Intensive Science

Sankalpa Timilsina
Computer Science Department

Tennessee Tech
Cookeville, TN

stimilsin43@tntech.edu

Susmit Shannigrahi
Computer Science Department

Tennessee Tech
Cookeville, TN

sshannigrahi@tntech.edu

Abstract—Scientific communities are increasingly using geo-
graphically distributed computing platforms. The current meth-
ods of compute placement predominantly use logically cen-
tralized controllers such as Kubernetes (K8s) to match tasks
to available resources. However, this centralized approach is
unsuitable in multi-organizational collaborations. Furthermore,
workflows often need to use manual configurations tailored for
a single platform and cannot adapt to dynamic changes across
infrastructure.

Our work introduces a decentralized control plane for placing
computations on geographically dispersed compute clusters using
semantic names. We assign semantic names to computations to
match requests with named Kubernetes (K8s) service endpoints.
We show that this approach provides multiple benefits. First,
it allows placement of computational jobs to be independent
of location, enabling any cluster with sufficient resources to
execute the computation. Second, it facilitates dynamic compute
placement without requiring prior knowledge of cluster locations
or predefined configurations.

I. INTRODUCTION

The field of scientific research is witnessing a growing de-
mand for compute-intensive tasks. Researchers typically carry
out these tasks on local computer clusters, shared community
resources, or cloud platforms, each of which presents its own
challenges. The cloud incurs high costs, and while institutional
and shared community clusters are generally well-suited for
small-scale scientific workflows [5], they remain difficult to
locate and utilize, vary in their capabilities, and often require
user accounts and configurations specific to the platform.

These institutional and shared compute clusters also op-
erate in isolation. Users must first identify which compute
cluster can handle their workflow [11], obtain the necessary
permissions, create individual user accounts, and manually
configure workflows to specify resource requirements such
as the number of CPUs and memory. As a result, users are
unable to place compute jobs universally and must tailor their
workflows to specific platforms.

The scientific community has attempted to mitigate these is-
sues through orchestration systems like Kubernetes (K8s) that
can manage resources and place computations in a platform
agnostic way. Tools such as Virtual Kubelet and Cilium Mesh
extend Kubernetes’ capability to handle workloads across
multiple clusters. However, these tools depend on complex
configurations, specific Container Network Interfaces (CNIs),

and manual setup processes [4]. More critically, they still
rely on a logically centralized control plane, managed by a
central entity. This model struggles to handle dynamic cluster
environments or integrate seamlessly across heterogeneous in-
frastructures. Additionally, users must continue tailoring their
workflows to specific clusters and adapt when infrastructure
changes [11].

Our work directly addresses these challenges in the cur-
rent compute placement model. Rather than using a central
controller, we propose a name-based framework, Location
Independent Data and Compute (LIDC), that creates and
utilizes a decentralized control plane at the network layer.
Our framework creates a loosely coupled overlay of compute
clusters using named cluster endpoints. User applications
use semantic names for computation jobs before sending
those requests into the network. Such semantically meaningful
names also capture job details such as job types and resource
requirements. Named Data Networking (NDN) primitives at
the network layer forward these compute requests to named
cluster endpoints, and once they reach a cluster, LIDC matches
compute jobs with a named K8s service endpoint that actually
performs the computation. By integrating name-based routing
both in the network and within Kubernetes, we enable a
seamless end-to-end job placement with LIDC. LIDC demon-
strates that name-based semantics effectively place compu-
tation across multiple clusters. Data for these computations
are also annotated with names, allowing compute platforms to
retrieve raw datasets from a data lake and publish intermediate
datasets back to the lake [13], [9].

This approach enables dynamic and transparent computation
placement without requiring users to know cluster locations or
configurations. By annotating the requirements and offloading
the matchmaking process to the network and the service end-
points, LIDC supports seamless job placement, addition and
removal of clusters in the compute overlay, and helps create
a more flexible and resilient computation overlay that adapts
in real-time to changes in load, network conditions, or cluster
availability.

II. LOCATION-INDEPENDENT COMPUTE DESIGN

The LIDC framework allows researchers to make computa-
tion requests across any available clusters. LIDC eliminates the

760979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00108

Fig. 1. Design of Compute Framework with NDN

need to locate a particular cluster, be familiar with the cluster-
specific details, and create cluster-specific configurations by
providing a location-transparent interface. The location trans-
parency is achieved using semantically meaningful names for
both computational jobs and service endpoints.

Figure 1 illustrates this approach. The semantically named
request describes the computation task the user intends to
perform and the requested resources. The framework then
chooses an appropriate cluster and executes computation tasks
based on various factors such as the applications being served
by different clusters, resource requirements (such as memory
and CPU), past performances, caching, and load balancing
capabilities. The framework uses Named Data Networking
(NDN) primitives to forward requests to the appropriate clus-
ters. Since the execution of computations requires processing
initial or intermediate datasets, the framework also integrates
data lakes built-upon content names for publishing and retriev-
ing datasets.

While this work utilizes NDN primitives for naming com-
putations and employs K8s named service endpoints for actual
compute placement, the framework does not need to be tied
to these specific technologies. Any orchestration platform,
whether currently available or built in the future, can be used
to create this framework. Similarly, HTTP(s)-based naming
of computational jobs can also match them to appropriate
endpoints.

III. LIDC: COMPONENTS

In this section, we describe the components of the LIDC
framework.

A. Kubernetes for Compute Orchestration

As we mentioned earlier, we utilize K8s for the compute
placement within a cluster. We used K8s because it is the most
widely used orchestration system, but other such systems can
also be used in its place.

The integration with Kubernetes serves several distinct
purposes:

• Naming Computations and Service Endpoints: Kuber-
netes’ built-in DNS allows for the use of static DNS

Fig. 2. Transparent Data and Compute Placement Based on Names

names that follow established naming conventions for ac-
cessing custom applications/service endpoints. This fea-
ture also enables us to customize the external endpoints
of Kubernetes, essentially the applications Kubernetes ex-
poses outside its cluster. As a result, we can use semantic
names to match computational jobs to the applications
based on names.

• Scalability: Kubernetes provides the ability to scale
horizontally and vertically, allowing adjustments to the
number of applications and platform resources such as
memory and CPU. This approach reduces the need for
frequent manual interventions to tune computing plat-
forms [4]. Once the resources are appropriately allocated,
Kubernetes handles performance degradation or failures,
meaning that the network can only serve as a simple
matchmaker between services and jobs rather than a
complete orchestration system.

B. Naming Computation and Services

The applications running inside Kubernetes, such as a file
server, can be accessed using a static Kubernetes DNS name.
Such naming is made possible through a Kubernetes service,
which is a logical abstraction for a group of deployed pods
in a cluster, all of which perform the same function. When
a Kubernetes service is created, it is assigned a DNS name
within its namespace, which resolves to the IP address of a
pod (the smallest execution unit inside Kubernetes) where the
application is running.

When named computing jobs are sent to clusters, they can
be directly linked to an application that serves the job. Since
we use NDN Interests to carry the jobs to the cluster, we can
directly map it to a static DNS name. This DNS name points
to a local NDN forwarder, sending it to an appropriate named
service within K8s.

The ability to name services and jobs means that the
originating workflows do not need to know any internal details
of Kubernetes clusters. Simply expressing a request to the
externally exposed point will take the request to the underlying
service. The utilization of names between workflows and
computation clusters is very powerful — it removes the neces-
sity to manually locate and place computation at a particular
compute cluster. Indeed, if multiple clusters expose the same

761

Fig. 3. Mapping LIDC to K8s Components

service over an NDN network, the network can bring the
compute request to the nearest (or the best) compute cluster.

C. Bridging Data and Computation

Figure 2 shows the high-level constructs of how data
and computation are placed together within a cluster. LIDC
supports multiple clusters as well.

A workflow uses an NDN Interest name to describe a
compute and/or data request, detailing both elements that is
needed for specific computations. These names conveniently
tie together the computation and data. An example
of such name might be “/ndn/k8s/compute/<compute-
name>&<compute-parameters>&<dataset-names>”. A
practical representation of this naming pattern can be
“/ndn/k8s/compute/mem=4&cpu=6&app=BLAST”, as Figure
2 shows.

Figure 3 shows how these requests map to existing K8s
components. External clients can connect to a Kubernetes ser-
vice using a NodePort. When using NodePort, the Kubernetes
control plane automatically assigns a port from a specified
range (e.g., 30000-32767) and makes the service accessible on
each node’s IP address at that port. In our setup, we expose the
Gateway’s NFD application as one of the Kubernetes services.
This means that an NDN client outside the cluster can establish
a direct socket-based connection to the exposed port and IP
address of the NFD application.

Figure 4 shows a custom gateway application running on
a Kubernetes cluster. After connecting to the cluster, external
clients can send Interests to the exposed Gateway application.
The Gateway acts as a decision-maker, determining how to
process the incoming Interest. If the Interest relates to com-
putational tasks, the Gateway parses the Interest to understand
details such as the specific application to be activated, the
target dataset, and other application parameters like memory
capacity and CPU needs. Once these details are clear, the Gate-
way initiates a Kubernetes job to run the desired computation
task.

Internally, one of the applications deployed on LIDC is an
NDN router [3]. This application can be accessed via a Ku-
bernetes DNS, for example, “dl-nfd.ndnk8s.svc.cluster.local”.
This router serves as a gateway to various internal applications,
including a data lake (which serves data under ‘/ndn/k8s/data’)
and a file server that provides Genomics files [6].

Fig. 4. Mapping NDN names to Kubernetes services

Once the computations are done, the intermediate results
can be stored back in the same data lakes. For future access
or reference, one can easily retrieve these results by sending
a standard data request, like “/ndn/k8s/data/<data-identifier>”,
back to the same cluster.

LIDC is an open-source implementation and is publicly
available at [12]. By default, the LIDC is setup with a single
Kubernetes node. This node is the gateway to the cluster and
is the only node that can be accessed.

IV. DEPLOYING A GENOMICS WORKFLOW USING LIDC

This section presents a real-world example of how LIDC
can facilitate the deployment of an actual Genomics workflow.
Figure 5 shows the protocol details.

This particular deployment is equipped with NCBI’s Magic-
BLAST application [2], a tool that aligns genetic sequences,
helping scientists match and compare DNA samples. While
we use BLAST, LIDC can incorporate any application.

Upon setting up the cluster, LIDC configures the following
components: (a) a gateway, in which a single NFD pod acts
as the gateway to the services running on this cluster, and (b)
a Kubernetes PVC (Persistent Volume Claim) and mounts it
to an NFS server, which functions like a remote data lake.
This is where predefined genomics datasets are downloaded
and accessed through the “/ndn/k8s/data” namespace.

The gateway NFD has prefix registrations for
“/ndn/k8s/data,” pointing to the data lake’s NFD, and
“/ndn/k8s/compute,” which the gateway node itself handles
through Kubernetes jobs.

The incoming Interest can have one of the following above
two prefixes: (a) “/ndn/k8s/data”: This indicates a request for
data from the data lake. Upon receiving the Interest, the gate-
way NFD will route the request to the data lake’s NFD. The
data lake’s NFD is complemented by a fileserver application,
which serves the data from the PVC. (b) “/ndn/k8s/compute”:
This prefix indicates a request for computation. The Interest is
first parsed on the gateway node to understand the computing
requirements. The gateway node then runs a Kubernetes job
with the specified resources. The gateway can directly spawn a
new computation task at runtime. The computation job can use
data directly from the data lake if needed, and any intermediate
or final datasets are stored back in the data lake.

The client can inquire about the status of a job by asking
the gateway, which then checks with the Kubernetes service
and responds. After learning that the task is done, the client
can retrieve the data from the data lake through the gateway.

762

:NDN Client :Gateway :Kubernetes
Service :Datalake

NDN Interest

Kubernetes Cluster

1

2

2

3

4

5

Intermediate
Datasets

Computation,
Status

Data
Retrieval

Data
Retrieval

Status

Fig. 5. LIDC: Workflow Details

A. Interests for named computations

The framework provides a sample client application [12],
to make computation requests. An example of this is a client
asking to BLAST [2] a known SRR ID against a human
genome reference dataset. The application parameters, in this
case like SRR ID, memory and cpu requirements are encoded
in the NDN Interest itself by the client application.

Besides the “/ndn/k8s/data” and “/ndn/k8s/compute” NDN
prefixes mentioned in the previous section, the framework
also offers a “/ndn/k8s/status” prefix for clients to perform
status checks of their computation tasks. Clients need a job id
from their initial “/ndn/k8s/compute” request to use this. When
checking the status, the LIDC responds with one of the
following states:

• Completed: The application has completed running. The
response contains the information as to how to retrieve
the results from the data lake.

• Failed: The application has errored. The response con-
tains error message.

• Running: The application is running.
• Pending: The application is starting.

B. Application Specific Validations

Finally, LIDC allows for application-specific validations.
These validations are built into the system in a modular manner
and can be managed separately for each application. For
instance, with Magic-BLAST [2], a specific check might be
confirming correct SRR IDs in the provided Interest. Another
application, like a file compression tool, might not need
SRR IDs and could have its own checks. These checks can
be set up individually for each application.

V. TESTBED DEPLOYMENT

For this work, we used Google Cloud Platform (GCP)
virtual machines to set up the Kubernetes cluster. This section
describes a lightweight Kubernetes distribution used to setup
the cluster and the specifics of publication and data retrieval.

A. MicroK8s on GCP

MicroK8s [1] is a streamlined Kubernetes distribution op-
timized for developers, edge computing, IoT, and small-scale

deployments. Its advantage lies in its simplicity, stripping away
the intricacies often tied to large-scale, multi-node clusters. For
this work, we leveraged Google Cloud Platform (GCP) to set
up MicroK8s on a single virtual machine (VM). To bolster the
communication and service discovery mechanisms within our
cluster, we enabled the DNS add-on, which employs CoreDNS
to provide address resolution services specific to Kubernetes.
Given that this DNS service often underpins the operation
of other add-ons, its activation is crucial to enable service
discovery using DNS names we described in earlier sections.

For our tests, we installed MicroK8s with a Network File
System (NFS) server. Next, we downloaded and setup the
human reference database and set up rice and kidney sample
Sequence Read Archive files from NCBI [8]. This setup was
automated using a script and is available at [12]. The NFS
server is analogous to a remote file server. We mount this
to the running MicroK8s Kubernetes cluster with declarative
configurations.

B. Creating and Loading PVCs

To evaluate the crucial step of creating and loading the
PVCs of the data lake with content to be published, LIDC
provides data loading tool [12] that downloads and sets up
human reference database and sample Sequence Read Archive
(SRA) genome files. We loaded two genomic datasets: a 36-
samples of sequenced human kidney tumor RNA [7], and a 99
samples of sequenced rice RNA [14]. Each dataset was loaded
onto two independent PVCs. This is an one time operation and
does not contribute to the overall delay in subsequent data
retrieval operations.

VI. RESULTS

As a proof-of-concept, we compared sample SRA exper-
iments with a human reference database to identify similar
genome sequences. This produces a compressed file from the
comparison. We recorded the input setup, computation time,
and output file size. This is shown in the Table I.

We BLASTed [2] sample rice and kidney datasets with a
human reference database. The computation was carried out
with different CPU and memory configurations, and we noted
down the total run time. The takeaway from this result could
be how different configurations are impacting the run time.
In our specific case, a variance of CPU and memory sizes is
not showing any significant changes in the run time. If we
deploy intelligence in the network, then the network can learn
from this data and be able to pick the optimal configuration
for future tasks.

VII. DISCUSSION AND FUTURE WORK

The work introduces a framework for computation that is
not tied to a specific location or underlying infrastructure. This
capability means that the network can dynamically identify
and utilize resources based on current conditions, eliminating
the need for manual interventions in cluster management.

The LIDC system enhances flexibility without significantly
increasing potential attack points. NDN inherently secures

763

TABLE I
COMPUTATION PERFORMANCE

SRR ID Ref. Database Genome
Type

Memory
(GB)

CPU Run Time Output Size

SRR2931415 HUMAN RICE 4 2 8h9m50s 941MB

SRR2931415 HUMAN RICE 4 4 8h7m10s 941MB

SRR5139395 HUMAN KIDNEY 4 2 24h16m12s 2.71GB

SRR5139395 HUMAN KIDNEY 6 2 24h2m47s 2.71GB

data and provides built-in data authentication and integrity.
Kubernetes includes security features such as role-based access
control (RBAC) and network policies, which can be integrated
with attributes based encryption [10]. By decentralizing con-
trol, LIDC reduces the risks associated with a single point
of failure and compromising a central controller. Additionally,
our approach uses semantic names instead of exposing cluster
locations or configurations, which may reduce potential attack
surfaces. However, further research is needed to create a
security framework for multi-cluster compute placement.

In the future, we plan to enhance the control plane by
introducing intelligence. For example, we aim to enable the
network to identify the most suitable cluster for executing
requests and optimize the system by leveraging machine
learning algorithms to predict completion times. Once the
network knows cluster capabilities, it can select the best cluster
based on computing and timing requirements, data size, past
performances, and other factors.

Additionally, implementing result caching in the framework
would be beneficial, primarily when multiple clients issue
identical requests. This can be achieved by uniquely iden-
tifying names and using various storage solutions such as
databases, file storage, or object storage to store the mapping
information.

VIII. CONCLUSION

While orchestration systems such as Kubernetes have made
significant strides in multi-cluster management and orchestra-
tion, our proposed framework offers a fundamentally differ-
ent approach by leveraging Named Data Networking (NDN)
to achieve true location independence, seamless data and
compute integration, and automated multi-cluster orchestra-
tion. This novel approach addresses several limitations and
complexities inherent in Kubernetes-based solutions, such as
manual configuration and adaptation to dynamic changes, par-
ticularly in data-intensive scientific workflows. By embedding
compute placement capability directly into the network layer,
the framework provides a more flexible, scalable, and user-
friendly platform that is well-suited to the evolving needs of
the scientific community.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. #2126148.

REFERENCES

[1] The lightweight kubernetes zero-ops, pure-upstream, ha kubernetes,
from developer workstations to production, 10 2023. [Online; accessed
18. Oct. 2023].

[2] Ncbi magic-blast documentation, 10 2023. [Online; accessed 17. Oct.
2023].

[3] Alexander Afanasyev, Junxiao Shi, Beichuan Zhang, Lixia Zhang, Ilya
Moiseenko, Yingdi Yu, Wentao Shang, Yanbiao Li, Spyridon Mastorakis,
Yi Huang, Jerald Paul Abraham, Eric Newberry, Steve DiBenedetto,
Chengyu Fan, Christos Papadopoulos, Davide Pesavento, Giulio Grassi,
Giovanni Pau, Hang Zhang, Tian Song, Haowei Yuan, Hila Ben Abra-
ham, Patrick Crowley, Syed Obaid Amin, Vince Lehman, Muktadir
Chowdhury, and Lan Wang. Nfd developer’s guide. Technical report,
NDN-0021, Revision 11, 2021.

[4] Prasanna Balaprakash, Jack Dongarra, Todd Gamblin, Mary Hall, Jef-
frey K. Hollingsworth, Boyana Norris, and Richard Vuduc. Autotuning
in high-performance computing applications. Proceedings of the IEEE,
106(11):2068–2083, 2018.

[5] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. The International Journal
of High Performance Computing Applications, 15(3):200–222, 2001.

[6] Cătălin Iordache, Susmit Shannigrahi, Yuanhao Wu, Sichen Song,
Faruk Volkan Multu, Justas Balcas, Raimondas Širvinskas, Sankalpa
Timilsina, Davide Pesavento, Harvey Newman, et al. A named data
networking based fast open storage system plugin for xrootd. In EPJ
Web of Conferences, volume 295, page 01004. EDP Sciences, 2024.

[7] NCBI. Transcriptome sequencing (rna-seq) of non-tumor kidney tissues
from 36 patients undergoing nephrectomy for exploring the metabolic
mechanism of sorafenib and identifying the major transcriptional regu-
lation factors in sorafenib metabolism in kidney, 2017.

[8] NCBI. Ncbi sequence read archive, 2019.
[9] Justin Presley, Xi Wang, Xusheng Ai, Tianyuan Yu, Tymothy Brandel,

Proyash Podder, Varun Patil, Alexander Afanasyev, Frank Feltus, Lixia
Zhang, et al. Hydra: A scalable decentralized p2p storage federation
for large scientific datasets. In 2024 International Conference on
Computing, Networking and Communications (ICNC), pages 1–7, 2024.

[10] David Reddick, Justin Presley, Frank Alex Feltus, and Susmit Shanni-
grahi. Wip: Aabac-automated attribute based access control for genomics
data. In Proceedings of the 27th ACM on Symposium on Access Control
Models and Technologies, pages 217–222, 2022.

[11] Jyoti Sahni and Deo Prakash Vidyarthi. Workflow-and-platform aware
task clustering for scientific workflow execution in cloud environment.
Future Generation Computer Systems, 64:61–74, 2016.

[12] Sankalpa Timilsina. NDN with Kubernetes, 2023.
[13] Xi Wang, Xusheng Ai, F Alex Feltus, and Susmit Shannigrahi. Gnsga:

A decentralized data replication algorithm for big science data. In 2023
IFIP Networking Conference (IFIP Networking), pages 1–9. IEEE, 2023.

[14] Olivia Wilkens. Rice gene expression in heat stress and dehydration
stress - time series, 2015.

764

