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Abstract—Programmable data planes have provided great
flexibility in defining the behaviors of packet forwarding switches,
routers, and network interface cards (NICs). The In-band
Network Telemetry (INT) technology further increased network
operators’ potential to manage packet flows by enabling real-
time and customizable monitoring of packets without creating
much overhead on the network. These recent advancements
in networking technology have generated significant research
interest and activity, including studies on INT-based DDoS
detection and mitigation mechanisms. However, in practice, INT
technology has not been fully realized yet, especially in detecting
network anomalies in real-time. There is also a gap in the
literature that provides a comparative evaluation of INT-based
solutions against existing alternatives. In this paper, we aim
to implement a holistic real-time INT-based DDoS detection
mechanism. The proposed mechanism will retrieve INT data from
the network, analyze it using machine learning (ML) models in
real-time, and send the information to the control plane. We
will also compare the performance of using INT to detect DDoS
attacks against sFlow-based detection.

Index Terms—P4 programmable plane, INT, DDoS detection,
Machine Learning

I. INTRODUCTION

One of the significant challenges in network security is
Distributed Denial of Service (DDoS) attacks, which aim
to disrupt the normal functioning of a system, rendering
it incapable of delivering legitimate services. This is
accomplished by either exhausting the system’s resources or
overwhelming its response mechanisms [1]. Over the past
decade, there has been a significant increase in cybersecurity
incidents, with DDoS and malware attacks emerging as the
most prevalent threats [2]. For example, in the AmLight
Research and Education (R&E) network' alone, 193 major
and 346 low-to-medium DDoS attacks were detected since
March 2020. These threats are rapidly evolving, becoming
increasingly sophisticated and challenging to counter [2]. As a
result, defensive strategies on production networks must adapt
and remain dynamic to effectively combat emerging threats.

' AmLight is an intercontinental network that provides production network
infrastructure for research and education in the United States, Latin America,
and South Africa.
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Simultaneously, we have witnessed significant advancements
in network management. Software-defined networking (SDN)
has enabled centralized and software-based management of
networks, providing greater flexibility and programmability [3].
The Protocol-independent Packet Processors (P4) programming
language further enhanced this flexibility by allowing
customization of packet processing logic [4]. Building on
this infrastructure, In-band Network Telemetry (INT) was
introduced for real-time monitoring of the network at the packet
level [5]. INT provides granular data that can be used for various
tasks, including traffic engineering, Quality of Service (QoS)
management, and security monitoring [6].

Our previous work described the implementation of Software-
Defined Networking (SDN) and In-band Network Telemetry
(INT) technologies on the AmLight Network [6], [7]. AmLight
later leveraged INT technology to detect and record microbursts
[8]. Building on these foundations, this paper focuses on
addressing security threats, particularly Distributed Denial of
Service (DDoS) attacks, on the AmLight network. We explore
the potential of INT to detect these threats and enhance
overall network security. INT offers sub-second visibility
into network operations, enabling faster and precise threat
detection and response [6]. By utilizing this granular, real-time
data, cybersecurity detection capabilities can be significantly
improved.

On the other hand, INT data presents its own challenges in
terms of storage and processing of the data, especially in a
network with more than 1.2 Tbps of aggregated international
capacity [6]. In the AmLight network, one minute of INT
data would amount to 30 GB of data, and includes telemetry
information on more than 80 million packets. Given the novelty
and challenges of this technology, there is a lack of knowledge
of the real-time application of INT in DDoS threat detection.
From a research perspective, although there are studies that
utilize INT data in ML-based DDoS detection [9], [10], a test
of the concept with real data is lacking, and to our knowledge,
an automated INT detection mechanism has not been proposed.

This paper aims to address this gap in the literature and
provide a proof of concept for using INT in automated DDoS



detection. As the AmLight network has already deployed INT,
we have the unique opportunity to leverage this technology
specifically for DDoS detection. In future work, we also plan
to scale this mechanism for implementation in the production
AmLight network.

In this paper, we make the following contributions:

Firstly, we compare DDoS detection based on INT data with
alternative methods that utilize sampled data. We specifically
focus on sFlow data, which is widely utilized in the industry
for intrusion detection systems (IDS). We use production data
retrieved from the AmLight network to compare sFlow and
INT performances in detecting DDoS attacks.

Secondly, we propose an automated DDoS detection
mechanism designed to detect and report DDoS attacks at
line rate. This mechanism employs machine learning (ML)
models to predict normal and attack flows.

Finally, we discuss the challenges and limitations of using
INT-based IDS and how our findings will guide its deployment
on a real production network.

This paper is organized as follows: The next section provides
background information on networking and intrusion detection
systems and discusses related work. Section III introduces the
proposed DDoS automated detection mechanism. Section IV
discusses the experimental setup and results. Section V provides
a discussion of challenges of using INT data. Finally, Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Network Measurement and Monitoring

1) sFlow: sFlow is a network measurement tool that employs
proxy reporting through device-level sampling to provide
comprehensive network status information. It utilizes two
distinct sampling methods. The first is packet-count based,
which samples packet information at equal intervals of packet
counts. The second is time-based, sampling packet data at equal
time intervals [11].

The sFlow monitoring architecture consists of two key
components. The first is the sFlow Agent, positioned on
switches or routers, which collects sampling information. The
second is the sFlow Collector, which acts as the analyzer,
receiving and processing the data transmitted by the sFlow
Agent [12].

sFlow provides valuable insights into network performance
and behavior, and is widely used in the industry for traffic
monitoring and anomaly detection. On the other hand, there
are not many studies that utilize sFlow in their analysis [13].

2) INT: In-band Network Telemetry (INT) enhances
network monitoring by using programmable data plane
technology to gather real-time information from data packets
as they travel through the network. This approach has
various applications, such as INT itself, In-situ Operations,
Administration, and Maintenance (I0OAM), Alternate Marking
Performance Measurement (AM-PM), and Active Network
Telemetry (ANT) [5].

INT is built on the P4 language. While it is possible to
directly utilize P4 to extract telemetry data, INT provides a
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standard method to embed and extract telemetry data within
packet headers. It involves embedding telemetry information
into packets as they traverse the network; therefore, it has
minimal impact on packet processing performance [12].

There are three types of switches involved in the process:
source, transit, and destination/sink (See Figure 1). At the
source switch, an INT header is inserted that specifies what
telemetry data should be collected. Based on these instructions,
telemetry data is added as metadata at the transit switches. At
the sink switch, the metadata is extracted and sent to the INT
collector [9], [14].

Despite its advantages, INT has some limitations. By
including telemetry data, it reduces the payload ratio for normal
packets and increases the switch’s workload due to gathering
and processing of telemetry data [5]. However, as demonstrated
in [6], it is possible to effectively mitigate and minimize these
drawbacks within the network.
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Fig. 1: INT data collection.

B. DDoS attacks

Denial of Service (DoS) attacks aim to overwhelm a target’s
resources with malicious traffic, preventing it from serving
legitimate requests [1]. When this type of attack is carried out
by multiple distributed sources, it is called a Distributed Denial
of Service (DDoS) attack. Examples of such attacks include
SYN flood, MSSQL, DNS amplification, and NTP amplification
attacks [15].

To provide more detail about these attacks, let’s examine one
common type of TCP based attack: the SYN flood. This attack
exploits the TCP handshake process. In the TCP protocol, a
client initiates a connection by sending a SYN packet to a server.
The server responds with a SYN-ACK packet to acknowledge
the request and indicate readiness to establish the connection.



The client then completes the handshake by sending an ACK
packet.

In a SYN flood attack, the attacker sends a flood of
SYN packets, but never responds with the final ACK packet.
This leaves the server with numerous half-open connections,
consuming its resources and preventing it from handling
legitimate requests.

C. The Intrusion Detection System (IDS)

Intrusion Detection Systems (IDS) are critical defense and
security mechanisms that monitor and analyze network traffic
to identify unusual or potentially malicious activities within a
network. In terms of utilized detection techniques these systems
can be broadly classified into three categories: signature-based,
anomaly-based and hybrid techniques.

The signature-based technique relies on the careful analysis
and recording of previous malicious activities [16]. Once
sources of malicious activities are well-established and the
patterns are recognized, they are used to identify, block, and
eliminate similar malicious flows. This method is highly
accurate for detecting known threats. However, it is less
effective against new or unknown threats and requires constant
updates to maintain its effectiveness.

In anomaly-based techniques, normal and expected behavior
of a network is defined based on historical network traffic
data. This network profile is then used to manage flows and
identify abnormal behavior. Based on this technique, an IDS
can perform well against unseen threats; however, it is prone
to false alarms as network behavior can show quite varying
patterns, which could make it difficult to capture all normal
flow behaviors [16].

Finally, the hybrid techniques combine and exploit the
strengths of both methods to provide a more robust defense
against intrusions. For instance, one way to combine these
methods is to use threat records to identify abnormal behavior,
and thus recognize normal patterns in a network [16].

IDS is a general term for all defense mechanisms against
intrusions. In this paper, we implement an anomaly-based
technique and utilize machine learning models to differentiate
normal flows from malicious behavior and detect DDoS threats.
Therefore, we will specifically refer to DDoS detection systems
rather than using the general term IDS.

D. Related Work

Nam et al. [9] proposed a network intrusion detection system
(IDS) based on the ONOS SDN controller, where INT data is
used as input to the RNN-based machine learning detection.
They implemented their model in a Mininet environment and
gathered INT data. Then they used this data for training and
testing. They achieved an F1-score of 92.41% with their test
set. Although the paper utilizes INT data for detection, the
data is not from a production environment, and the detection
process is not automated.

Cao et al. [14] presented a DDoS detection and mitigation
scheme that employs spatial-temporal graph convolutional
network models. They used INT data to gather spatial and
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temporal information on the network state. Their models
require data from every switch at specific time intervals,
necessitating a larger dataset. To address this challenge, they
implemented equal interval sampling. While their work outlines
a comprehensive detection and mitigation framework, it does
not address the implementation of an automated detection and
mitigation system.

Aslam et al. [17] proposed a real-time DDoS detection
and mitigation application in an SDN-based environment.
The application consists of four modules: the main method,
detection, mitigation, and flow-rule generation modules. The
main method module connects the application to the
ONOS controller and Python server and also manages the
communication between all modules. It processes the flows
into features and statistics and sends them to the detection
module. The attack detection module deploys the ML models,
the mitigation module traces the origin of the attack, and
the flow-rule generation module creates flow rules to discard
malicious flows. This paper is a great example of an automated
DDoS application. However, it utilizes data retrieved through
the OpenFlow protocol. As a result, the number of features that
can be derived from this method may be somewhat limited.

Some studies utilize the P4 language to extract packet-level
data and analyze network activity. Seufert et al. [18] investigate
how this method can be applied to monitor large-scale networks
with high volumes. They explore the use of packet-level data
in traffic classification, Quality of Service (QoS), IoT device
classification, and intrusion detection tasks. Their work offers
valuable insights into the parameters required to deploy such
mechanisms on a real production network. This study could
be further developed by including the use of INT technology.

Musumeci et al. [19] employed the P4 language to
extract network traffic information for detecting DDoS attacks.
They compared packet mirroring, header mirroring, and P4
metadata extraction, demonstrating that P4 metadata extraction
significantly reduces feature extraction and processing time for
ML prediction. Similarly, Diana et al. [20] used the P4 language
to extract data and analyze DDoS attacks on a 5G network.
They designed and implemented an IDS system that detects live
DDoS attacks and mitigates the problem. Their paper provides
a comprehensive road map for creating an autonomous IDS
based on P4. Although both of these studies are similar to ours
in terms of using packet-level data and providing automated
detection, they extract information directly from the switches
using the P4 language, rather than utilizing INT data. As
discussed earlier, our experience with INT in the Amlight
network gives us the unique opportunity to complement these
studies with INT-based DDoS detection.

III. PROPOSED AUTOMATED DDOS DETECTION
MECHANISM

DDoS attacks can be short-lived and unpredictable, requiring
continuous monitoring of the network. Detection of DDoS
attacks should also be quickly followed by taking appropriate
measures. Thus, a dynamic and automated process is needed



to defend against DDoS attacks.? The proposed mechanism
will continuously extract packet information, process the data,
and feed it into machine learning (ML) models for anomaly
detection. This mechanism was developed by expanding on
[20]’s work.
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Fig. 2: Automated DDoS detection mechanism.

Figure 2 presents the proposed automated DDoS detection
mechanism. It is composed of four modules: INT data
collection, Data processor, CentralServer, and Prediction, as
well as the database. Below, we discuss them in further detail.

1) INT Data Collection: This module gathers INT data from
the INT Collector (). It primarily runs a Python script that
reads the INT telemetry header, metadata, and the IP header
information. Then, the module sends this information to the
Data processor module ). The following packet-level features
are collected from the IP header:

o Source and destination IP addresses
o Source and destination ports

e Protocol: TCP or UDP

« Packet length

From the INT header and metadata we retrieve the following:

e Queue occupancy: Queue depth when the packet is
removed from the queue.

o Ingress time: The 32-bit timestamp in nanoseconds of
when the packet enters a switch

o Egress time: The 32-bit timestamp in nanoseconds of
when the packet exits a switch

2) Data Processor: This module runs a JavaScript script
to process the packet INT data. The module creates packet-
level data such as Inter arrival time by taking the difference
between consecutive Ingress time. It also creates flow-level
features based on Flow ID. Drawing on the literature, Flow
ID is defined by a five-tuple variable consisting of: Source IP
addpress, Destination IP address, Source port, Destination port,
and Protocol [17].

2We should note that in this paper, we do not address mitigation.
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The module keeps a counter for the Number of packets, Flow
duration, and Total packet size by aggregating them based on
the Flow ID. Moreover, with these variables the module creates
flow-level variables such as Packets per second and Packet size
per second.

The module first searches if there is any record of the Flow
ID for the incoming packet. If there is no record, it creates
a new entry with packet information, default values of flow-
level information (which are mostly O at initiation), and the
timestamp of the new record. If there is already a record for
the Flow ID, it updates all flow-level information but replaces
all packet-level data with the data from the new packet.

After data is processed, it is sent to the database for storage (3).
This data processing step primarily helps us create flow-level
features and enhance our capabilities to differentiate abnormal
flows from normal flows. It also reduces the workload for the
database, as we only keep one record for each flow at a given
time.

Additionally, the Data Processor module receives predictions
from ML models from the CentralServer (7). It aggregates them
into one prediction label and sends it to the database with the
timestamp and Prediction Latency, measured by the difference
between prediction time and the time of the packet’s registration
®.

3) CentralServer: This module continuously communicates
with the database to check whether there is an update in the
records (#). It does not consider new entries with new Flow
IDs, but focuses on existing records from their first update to
the end. If there is an update, it sends this information to the
Prediction module (5).

The CentralServer module also continuously listens to the
Prediction module for predictions and retrieves them whenever
they are available (8). It then sends these predictions to the
Data processor module for an aggregated prediction (7).

4) Prediction: This module primarily provides ML
predictions. When initialized, it uploads the pre-trained ML
models and the coefficients of scaler transformation, which are
used to standardize the feature values to unit variance. The
module receives packet- and flow-level information from the
CentralServer when there is an update in the records (&). The
module then standardizes this new feature set and feeds it to
the pre-trained models for prediction. These predictions are
subsequently retrieved by the CentralServer (5).

IV. EXPERIMENTAL EVALUATION

In this section, we have two experimental stages. In the first,
we evaluate the effectiveness of INT and sFlow data for DDoS
attack prediction across various machine learning models using
AmLight production data and simulated attacks. In the second,
we present and discuss the results of experiments conducted
with our proposed automated DDoS detection mechanism,
implemented on a physical testbed.

A. Evaluation Metrics

We use machine learning models to analyze network data
and differentiate attack flows from normal flows. To measure



performance, we utilize conventional ML metrics that leverage
True Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN). The following metrics, with their
respective formulas, are used [21]:

Accuracy = (TP+TN)/(TP+TN + FP+ FN)
Recall = TP/(TP + FN)

Precision = T'P/(TP + FP)

Fl-score = 2 x (Precision x Recall)/(Precision + Recall)

In all four of these metrics, the minimum value is O and the
maximum value is 1, with 1 being the perfect score.

We also employ a Confusion matrix metric, which is a two-by-
two matrix of positives (P) and negatives (N) [22]. It shows how
many data points fall into each quadrant, either as a quantity or
a percentage. PP and NN quadrants indicate correctly classified
data, while PN and NP represent misclassified data.

B. DDoS Prediction Using INT and sFlow Data

In this experimental analysis section, we compare the
effectiveness of INT and sFlow data in detecting DDoS attacks.
While INT offers advantages over other monitoring tools in
terms of its granularity and minimal burden on the network
while gathering data, our focus here is on INT’s performance
relative to sFlow in identifying DDoS attacks.

One important difference between INT and sFlow is that
INT gathers information from every packet, while sFlow uses
sampling. In our production environment, sFlow monitors
network flows by selecting 1 out of every 4,096 packets.

This analysis will provide insights into the strengths
and limitations of both INT and sFlow in network security
applications, considering the nature of the collected data and
whether sampling is applied or not.

1) Data Collection: The INT and sFlow data were collected
from a subnet of the AmLight network, specifically focusing on
traffic interacting with a production web server. We captured all
traffic to this server from June 6 to June 11, 2024, recording all
normal flows during this period. However, we used a smaller
set of INT data for training, as it was sufficient to achieve
reliable model performance.

TABLE I: Simulated Attack Flows

Attack Type  Date Attack Episode

SYN Scan 06.10.2024  13:24:02 - 13:57:03
SYN Scan 06.10.2024  16:30:51 - 16:35:20
UDP Scan 06.10.2024  16:36:20 - 16:53:00
UDP Scan 06.10.2024  16:56:45 - 16:59:99
SYN Flood 06.10.2024  20:48:01 - 20:49:01
SYN Flood 06.10.2024  20:52:11 - 20:54:12
SYN Flood 06.11.2024  20:13:31 - 20:15:31
SYN Flood 06.11.2024  20:16:41 - 20:17:01
SYN Flood 06.11.2024  20:17:17 - 20:17:37
SlowLoris 06.11.2024  20:27:37 - 20:28:37
SlowLoris 06.11.2024  20:29:12 - 20:31:12

We also generated traffic by simulating various attack types,
including TCP SYN scan, UDP scan, TCP SYN Flood, and
SlowLoris. These attacks varied in duration. We simulated
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attack flows using the Hping tool [23] and performed the
SlowLoris attack using a Python script as described by [24].
Table I details the attack flows, including their types, dates,
and specific times. For example, the first row shows that we
conducted a SYN Scan attack on the target from 13:24:02 for
approximately 33 minutes.

2) Feature Selection: We utilized all available information
from both sFlow and INT data. Therefore, we preserved all
packet-level details while also generating flow-level statistics.
The goal was to create as many differentiating features as
possible for normal and attack flows. As discussed earlier,
we defined flows using the five-tuple: Source IP address,
Destination IP address, Source port, Destination port, and
Protocol. Based on the Flow ID, we calculate the duration
of each flow, the number of packets within it, and the total
bytes transmitted. From these primary variables, we then derive
additional flow-level metrics including mean and standard
deviation of these features.

TABLE II: Features used to detect DDoS attacks

Features INT sFlow

Protocol

Packet Size*
Number of packets
Queue Occupancy*
Hop Latency*

Inter Arrival Time*
Flow rate (Gbit/s)
Packet rate (Packet/s)
Note: * Includes packet-level, cumulative, average, and
standard deviation of the variables. The cumulative inter-arrival
time denotes flow duration.

NN NENENEN
LUAX X LS

Table II displays the features for both INT and sFlow. As can
be seen from the table, both network monitoring tools provide
similar metrics on network traffic. The main difference is that
INT provides additional information on Queue occupancy and
Hop latency. It should be noted that we did not utilize Hop
Latency in our analysis as we were not able to retrieve it on
the same scale for all flow types.

3) Machine Learning Models: We employed various ML
models, including Random Forest (RF), K-Nearest Neighbors
(KNN), Gaussian Naive Bayes (GNB), and Neural Networks
(NN) [21], [22]. The first three traditional ML models
require less computational power and training time, while also
providing good prediction performance in DDoS detection [21].
We also used a Neural Network for its effectiveness in handling
more complex tasks. We implemented a shallow neural network
which comprises three hidden layers with 32, 16, and 8 neurons.

The outcome label is binary, with normal flows coded as
0 and attack flows as 1. Therefore, we implemented binary
classification tasks using these four ML models [25].

Due to the large volume of data, we focused our INT analysis
on specific time frames: June 10th from 1:00 PM to 3:00 PM
and June 11th from 7:00 PM to 9:00 PM. It should be noted
that we saw no need to use the entire sample, as the model
trained well with this subset. For sFlow data, we utilized all



TABLE III: Performance Comparison of ML Models for DDoS
Attack Detection using INT vs sFlow Data

Data Model  Accuracy Recall  Precision Fl-score
INT RF 1.0000 0.9999  0.9999 0.9999
sFlow RF 9.9996 0.9900  1.0000 0.9950
INT GNB 0.9978 0.9849  1.0000 0.9924
sFlow  GNB 0.9951 0.9925  0.9041 0.9462
INT KNN*  0.9995 0.9992  0.9984 0.9988
sFlow  KNN 0.9992 0.9875  0.9949 0.9912
INT NN 0.9997 0.9987  0.9981 0.9984
sFlow NN 0.9995 0.9875  1.0000 0.9937

Note: * We utilize a smaller training and testing set, one
thousandth of the whole sample, for KNN to facilitate easy
convergence.

available data from June 6th to June 11th. To train the models,
we employed a 90:10 train-test split ratio.

4) Experimental Results: Table III presents a comparative
analysis of machine learning model performances using INT
versus sFlow data. The table lists results from the four ML
models based on whether they utilized INT or sFlow data. As
discussed, we provide accuracy, recall, precision, and F1-score
as performance metrics.

Table III shows that using sFlow and INT data for detecting
DDoS attacks yields consistently similar and high accuracy
across all models. The F1-scores for both sFlow and INT data
in the RF, KNN, and NN models are above 99 percent. The
results for GNB are slightly lower for sFlow; however, it still
reaches a significant 95 percent level.
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Fig. 3: Confusion Matrix for Random Forest Model Using INT
Data

We also drew the confusion matrices from the RF model
to discuss the misclassified data more closely. Figure 3
illustrates the confusion matrix for the INT data. It shows
that out of approximately 1.7 million attack packets, 186
were misclassified, while 126 packets from normal flows were
misclassified as attack flows. Similarly, Figure 4 displays the
confusion matrix for the sFlow data. As can be seen from the
figure, the RF model perfectly predicted the normal flows but
misclassified 4 of the attack packets.
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Fig. 4: Confusion Matrix for Random Forest Model Using
sFlow Data

To get a better comparison between INT and sFlow, we also
ran the analysis with a different training and testing setup. We
assigned the flows from June 11, 2024, as the test set; the flows
from remaining days were assigned to the training set.

The attack flows from June 11 include both SYN Flood and
SlowLoris attack types. Since SlowLoris is not included in the
training set, this setup allows us to evaluate how the models
perform with a zero-day (unseen) attack, specifically SlowLoris
attacks. It should also be noted that SlowLoris attack flows are
relatively harder to detect compared to other DDoS attacks,
such as SYN and UDP Flood [26]. Thus, this setup provides
a more challenging test for sFlow and INT data.

TABLE IV: Performance Comparison of ML Models for DDoS
Attack Detection with Zero-day attacks

Data Model  Accuracy Recall ~ Precision  Fl-score
INT RF 1.0000 1.0000  0.9999 1.0000
sFlow  RF 0.9999 1.0000  0.9907 0.9953
INT GNB 0.9919 1.0000  0.9959 0.9959
sFlow  GNB 0.9959 1.0000  0.6057 0.7544
INT KNN 0.9988 0.9993  0.9984 0.9988
sFlow  KNN 0.9997 1.0000  0.9550 0.9770
INT NN 0.9996 1.0000  0.9992 0.9996
sFlow NN 0.9937 0.0000  0.0000 0.5000

Table IV presents the analysis for zero-day attacks. Given
the presence of unseen data in the test set, we expect lower
performance from the models. Analysis with the INT data
shows high accuracy, exceeding 99 percent for all models.
For instance, the results from RF show 100 percent Accuracy,
Recall, and F1-score, with a Precision level of 0.9999. Analysis
using sFlow data shows relatively lower accuracy, particularly
for the GNB and NN models. However, the results from the
RF and KNN models achieve the same level of accuracy as
those from the INT data.

The results from both Table III and IV show that both
INT and sFlow data offer valuable and comparable advantages
in detecting DDoS attacks. To further understand the role
of sampling in prediction performance and to deduce any
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Fig. 5: Real Data versus RF Model Predictions from INT and
sFlow Data

insights from comparing the two data sources, we visualized
the performance of the INT and sFlow data using the RF model
results. Figure 5 presents this comparison. In the figure, the
dashed vertical lines indicate the simulated attack episodes. The
colored horizontal dots represent the true values and predictions
from INT and sFlow, respectively. For instance, in a scenario
with 100 percent accuracy, the purple and red dots for the
sFlow data should align perfectly.

Figure 5 shows that the predictions from INT successfully
identified all attack periods, although some misclassifications
were observed. In the figure, the INT true values are represented
in light blue, indicating a value of 1 during the attack intervals
and O otherwise. The predictions are shown in green and
should align with the light blue intervals for perfect accuracy.
Consequently, any green dots (predictions of 1) outside the
attack intervals are considered misclassifications.

In contrast, for sFlow, the actual data is missing from the last
two attack episodes. Due to sampling, sFlow did not capture
any information on Slowloris, and therefore did not provide any
predictions. However, when it did sample data, as seen in the
first three periods, it provided strong predictions. Thus, from our
analyses, we found that both INT and sFlow provided similar
accuracy levels in predicting DDoS attacks. However, INT data
has an advantage over sFlow, as it captures all packet data
information. Analyses with sFlow data could underperform, if
the attack episode is shorter than the sampling rate, or if the
sampling interval does not coincide with the attack flows.

Finally, in Table V, we present the top five important features
for each ML model. The subscripts cum, avg, and std denote
cumulative, average, and standard deviation, respectively. The
table shows that across all four models, Inter Arrival Time,
Packet Size, Queue Occupancy, and Protocol are the most
important features for detecting DDoS attacks. However, the
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TABLE V: The Five Most Important Features for Detecting
DDoS Attacks with INT Data based on model types

Features RF GNB KNN NN
Inter Arrival Timecym v v - v
Inter Arrival Timegq v - v v
Packet Size - v v -
Packet Sizeayg v oV v v
Packet Sizegq v - - -
Queue Occupancy,, v - v v
Queue Occupancyy - v - -
Protocol - v v v

variants of these features, individual, cumulative, average or
standard deviation, that make the top five differ across models.

C. Automated DDoS Detection

In this experimental analysis section, we discuss results from
our proposed automated DDoS detection mechanism. In this
mechanism, the network traffic information is collected from
live packets using INT tools. The data are then automatically
processed into packet-level and flow-level features and stored
in a database. This data is subsequently fed to pre-trained
models, and the predictions are stored back in the database
(See Figure 2).

We implemented this automated DDoS detection mechanism
on a physical testbed using INT-enabled switches. In this
experiment, our goal is primarily to provide a proof of concept
by discussing DDoS prediction accuracy and prediction time.

1) The INT Testbed: The INT testbed consists of three
key components: a source agent, a target agent, and a switch.
Figure 6 displays the topology of the testbed. The source and
target agents are connected through a switch, which regulates
the data flow between them. In our network configuration,
packets traverse from ports 1 and 2, but also traverse ports 3
and 4 of the switch, with one port acting as the source and the
other functioning as the sink. We execute all module scripts
from the source agent. Additionally, our INT Data Collection
scripts, also running on the source agent, gather INT data from
port 5. The source and target servers powered by dual AMD
EPYC 7451 24-core processors and 128GB of RAM. Each
server utilizes a Mellanox ConnectX-5 network card capable
of 100Gbps throughput. The switch is an Edgecore Wedge
DCS800.

2) Dataset: In the experiments, we utilized production
data from a subnet of the Amlight network, as described in
Section I'V-B. In order to create a training set, we replayed a
segment of the data including both benign and attack flows
(See Table I) in the INT TestBed. Then this training set is
used to pre-train the ML models offline. We did not train the
model with SlowLoris attack types, as we want to use it as an
zero-day (unseen) attack in the analysis, as we did in the first
experimental section. In the testing phase, we replayed around
2500-packet data for each flow type, including benign and
attack flows (see Table VI), to provide live/real-time detection.
We ran the following command to replay the flows:
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Fig. 6: The INT Testbed Topology

tepreplay -i (interface) -p (number of packets) (pcap file path)

3) Machine Learning Models: We aimed to replicate the
analysis in Section IV-B on the INT TestBed, however we
made some minor changes. We utilized the Random Forest
(RF) and Gaussian Naive Bayes (GNB) models without any
modifications. Instead of the Neural Network model used in
the previous section, we implemented a Multi-layer Perceptron
(MLP) classifier from the Scikit-learn Python library [27]. This
MLP model functions similarly to the NN, with 3 hidden layers
containing 64, 32, and 16 neurons, respectively, but requires less
storage for trained model. We did not employ KNN, because
of its relatively slower prediction times.

Regarding features used in the models, we utilized those
listed in the INT column of Table II except Hop Latency. In
total, we employed 15 packet-level and flow-level features.

4) Experimental Results from automated DDoS Detection:
We conducted experiments in our INT Testbed by replaying
normal flows and four types of attack flows. As discussed
earlier, anomaly-based DDoS detection techniques are prone to
false alarms [16], [28]. To minimize this issue, we employed
ensemble voting [29] by combining the outputs from the MLP,

RF, and GB models for each packet to create a single result.

Specifically, if two or more of the predictions are 1, then it is
classified as an attack flow; if they are 0, it is classified as a
normal flow. However, we do not classify predictions as attack

or normal flow immediately. We wait for three predictions.

If two or more of the last three predictions are 1, then it is

classified as an attack flow; the same applies for normal flows.

For instance, if the last three predictions were [1, 0, 1], the
final decision would be 1, indicating an attack flow.

Table VI presents the prediction performance from the
automated DDoS detection mechanism. We achieved over 99
percent accuracy in predicting most of the attack types. The
accuracy for benign flows is relatively lower, however, it still
reaches a respectable 94 percent level. For SlowLoris attack
flows, which are treated as zero-day attacks in the tests, the
results achieved 97.95 percent accuracy. The second column
of the table shows the total number of predicted packets and,
among them, the number of misclassified ones. For SlowLoris
attacks, 16 out of 779 packets were misclassified as normal
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TABLE VI: Performance Comparison of Automated DDoS
Detection Based on Attack Types

Attack Type  Accuracy Misclassified/ Average Max
Number of Prediction Prediction
Predicted Time (s) Time (s)
Packets

UDP Scan 0.9947 14/2628 0.12 0.73

SYN Scan 0.9961 1072542 0.44 1.81

SYN Flood 0.9984 27/2814 0.09 0.4

SlowLoris 0.9795 16/779 0.05 130.85

Benign 0.9417 136/2331 103.14 734.55*

Note: * Note: For benign flows, we report the 99th percentile of
prediction time rather than the maximum value.

flows, while the rest were correctly classified as attack flows.

As discussed, in the experiments, we replayed each type of
attack flow and normal flow as shown in Table VI, and evaluated
the models’ success in classifying their types. Figures 7a and
7b present the predictions for benign flows and SlowLoris
attack flows, respectively. In the data, benign flows are denoted
as 0, so a prediction of 1 indicates a misclassification. For
attack flows, such as SlowLoris, the reverse is true. Figure 7a
shows that the misclassification of benign flows occurs more
frequently at the beginning and continues throughout as new
flows are registered. On the other hand, the misclassification of
SlowLoris attacks happens exclusively at the beginning of flows
(Figure 7b). This pattern is also correct for the remaining attack
types. Overall, our solution demonstrated strong performance
in detecting attack types even for unseen and difficult to detect
attack flows.

Table VI also shows the average and maximum prediction
times for each attack type in the third and fourth columns. For
most of the attack types, the prediction times are less than 0.5
seconds on average and remain under 2 seconds. However, the
results show higher numbers for SlowLoris and benign flows.
This is due to the high volume of these flows. This indicates that
scaling up the project would require a mechanism with faster
processing capabilities to handle production-level volumes and
provide detection in a shorter amount of time.

V. DISCUSSION

The information extracted from the INT data proved effective
in detecting DDoS attacks for both seen and unseen data. The
comparison with sFlow data also shows that both tools offer
comparable and quite accurate performance. However, due to
sampling, sFlow may fail to capture some attack episodes and,
as a result, may miss detecting these attacks.

The analysis also shows that an automated detection
mechanism can be successfully created based on INT data.
The experiments on the testbed provided highly accurate and
timely DDoS attack predictions. However, working with INT
data poses some challenges. In this section, we will focus on
these challenges and discuss how these experiences could help
us realize a deployment of an automated DDoS detection on a
production network based on INT data.

Effectively storing, processing, and analyzing this data
requires significant computational resources and efficient
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Fig. 7: The distribution of predictions from Benign (a) and
SlowLoris attack (b) flows. Attack flows are labeled as 1 and
Benign flows are labeled as 0.

techniques. In our implementation, we used Python and
JavaScript to retrieve and process the data and feed it
to ML models. We used much lower packet rate levels
than we would observe in attack flows in order to run
experiments smoothly. For production-scale implementation,
faster processing capabilities will be required. Additionally, the
high volume of data poses a challenge if longer periods are
needed to account for temporal patterns in the flows. In our
implementation, we do not consider any temporal patterns.

There is already ongoing research on how to optimize the
use of INT data (See [30], [31]). Both in training and detecting,
optimized usage of INT may reduce the workload in deployment
of the system in a production network. In future work, we are
planning to build on these studies to address the challenges
associated with high-volume network data.

The second challenge was the lack of a timestamp with day
and hour information in the INT data. The timestamp provided
by INT is limited to 32 bits in nanoseconds, which effectively
restarts every 4.3 seconds. This limitation can make the inter-
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arrival time derived from INT susceptible to errors, as it is
calculated by taking the difference between consecutive packet
egress times. This issue could pose a greater challenge if we
want to construct a longer time frame to detect and control for
cyclic behavior in network traffic.

Finally, our setup did not allow us to fully utilize all INT-
based variables. We considered a subset of the production
traffic for the experiments. Given our network capacity of 100
Gbps, there were very few instances where attack flows had a
significant effect on Queue occupancy levels.

VI. CONCLUSION

In this paper, we leveraged the INT technology implemented
in the Amlight network to detect DDoS attacks. By comparing
INT data with sFlow, we first demonstrated that features
extracted from INT can be used to accurately detect DDoS
attacks in the network. We then implemented an automated
DDoS detection mechanism and showed that this mechanism
can provide real-time DDoS detection with high accuracy.

For future work, we plan to further explore the use of INT in
a limited production environment to identify the requirements
needed for implementation in a production network. Our initial
goal is to improve the processing capabilities of the DDoS
detection system to handle high-volume network traffic. We
then aim to eventually scale it up for full implementation in a
production network.
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