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Abstract—Large-scale scientific simulations present significant
challenges in data processing efficiency. This paper addresses
the critical issue of I/O and data processing performance bot-
tlenecks within the domain of extreme-scale Smoothed-particle
Hydrodynamics (SPH) and gravity simulations. We present a
novel I/O software architecture implemented in the scalable
SPH-EXA framework [1], incorporating a variety of in-situ and
post-hoc data analysis pipelines, facilitating rapid analysis and
visualization of extreme-scale physical datasets. The performance
of our I/O architecture is evaluated through comprehensive
benchmarking across a wide range of data scales, conducted on
the Piz Daint supercomputer [2].

Index Terms—in-situ visualization, HPC, extreme-scale, SPH

[. INTRODUCTION

The rapid growth in supercomputer data transfer capabilities
has been remarkable, but meeting the increasing demands of
data transfer and processing for scientific simulations remains
challenging. Especially during extreme-scale simulations, I/O
performance often becomes a critical bottleneck. Furthermore,
data processing demands have become more diverse, with
a shift towards in-situ and in-transit methodologies [3], [4].
The challenge lies in efficiently processing vast volumes of
data, providing domain-scientists with timely and meaningful
analysis. Moreover, to better connect analysis and simulations,
real-time interaction can sometimes offer a more coherent
and insightful exploration [5], [6]. Especially in extreme-
scale simulations, monitoring and controlling specific physical
parameters is crucial, thus fast collection and analysis of large-
scale datasets become critical.

Compression can be a possible solution to meet these re-
quirements. Historically used to reduce data size, compression
now applies to simulations as well. In simulations, lossless
compression is used for checkpointing to ensure no precision
loss happens. Lossy compressors are preferred when data
fidelity is not the primary focus. Until recently, compression
methods in extreme-scale simulations were underexplored,
because the advantage of integrating compressors into the
data analysis pipeline becomes apparent only when I/O is
the bottleneck of such simulations. Reaching exascale era, the
demand for high-performance data analysis and I/O becomes
dominant. The need for an architecture that incorporates such
functionality thus becomes crucial.

In this work, we explore extreme-scale I/O in SPH sim-
ulations using SPH-EXA framework, which generates spa-

979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00121

tially distributed particle data for various analyses. SPH-EXA,
designed for extreme-scale smoothed particle hydrodynamics
simulations, features efficient scaling, compatibility across
architectures, and a sophisticated data analysis pipeline, such
as probability density function (PDF) generation, and compre-
hensive visualization tools.

We have implemented an I/O pipeline in SPH-EXA and con-
ducted benchmarking experiments with compressors enabled.
Our findings offer valuable insights for architects designing
high-performance I/O and data analysis infrastructures in
particle-based simulations.

II. BACKGROUND AND RELATED WORK
A. In-Situ Data Analysis Tools

An in-situ data analysis pipeline performs data analysis
within the same computational node as the simulation, mini-
mizing data transfers as well as allowing real-time analysis. In
scientific simulations, in-situ architectures like Ascent [7], and
ParaView [8] are widely used, providing immediate insights
without the delays of post-hoc analysis.

Ascent is a lightweight in-situ framework for data analysis
and visualization with integrated renderers. It supports efficient
and extensible data analysis pipelines using CUDA, OpenMP
and MPI. Ascent allows customization via YAML files and
on-the-fly data processing through the Conduit API [9]. Fur-
thermore, it doesn’t have a GUI and can integrate easily into
HPC environments.

ParaView/Catalyst is a toolset of in-situ visualization
where users can define visualization pipelines with ParaView
GUI and connect simulation codes with Catalyst. ParaView is
a post-hoc visualization tool from the joint effort of Kitware
and LANL [10], [11], and based on that, the in-situ compo-
nent Catalyst was later developed. Latest Catalyst2 API also
uses Conduit [9] for describing data structures and storing
parameters. The extended ParaView/Catalyst toolset runs the
visualization pipeline in parallel on the same compute nodes
as the simulation. They contain MPI-parallelized data analysis
and visualization algorithms processed within a supercomput-
ing cluster, with the main process collecting results for final
analyses.

Data analysis of a high-performance SPH framework like
SPH-EXA requires a lightweight architecture, easy to deploy,
portable across multiple architectures, and capable of handling



large data volumes with high parallelism. It should also be
flexible enough to integrate with various custom data pipelines
and offer interactivity for real-time data inspection by domain-
scientists. We chose Ascent for our implementation due to its
high customizability and robust performance.

B. Compression

Compressors are typically applied after data generation to
reduce data transfer between hardware, but as data sizes grow
in the Exascale era, compact data size becomes crucial for
intra-node transfer as well. In the context of in-situ data
operations, compression can occur directly in host and GPU
memory, optimizing data handling across different phases.
Achieving in-memory compression requires compressors to
have direct access to simulation data, with an efficient descrip-
tion of the dataset. This access should facilitate the integration
of compression techniques into the data processing pipeline,
enhancing overall efficiency and effectiveness.

Lossless Compression. Lossless compressors originated
from the goal of creating an encoder that achieves the min-
imum code length required for encoding data without losing
information [12]. Modern lossless compressors can be up to 90
times faster than the original Zlib (DEFLATE) algorithm [13],
while still approaching its theoretical compression limits.

They are primarily used where data fidelity is fundamental,
such as in checkpointing procedures, ensuring the simulation
restarts from the original dataset without errors.

Lossy Compression. Lossy compressors reduce data size
by prioritizing size over precision, sacrificing some accuracy.
Commonly used compressors like SZ [14], ZFP [15], and
MGARD+ [16] each have unique error criteria, with ZFP
and MGARD optimized for multidimensional, spatial data.
Most lossy compressors support parallelization to speed up
compression, including GPU-based versions like CUDA for
SZ and ZFP, and HIP for ZFP [17]. However, they are not
suitable for all cases, as simple error criteria may not capture
complex physical details. Accurate analysis requires validating
data correctness with domain-specific methods.

C. PFarallel I/0 Architecture

For large-scale scientific simulations, I/O operations can
heavily burden resources. Maintaining parallel and asyn-
chronous I/0 is crucial to prevent bottlenecks and ensure
smooth data analysis. Among the widely adopted I/O tech-
nologies specially designed for HPC clusters are: HDF5 [18]
and ADIOS2 [19], tailored for their unique storage systems.

HDFS is a widely used file format in scientific computing,
known for handling vast and complex data. It integrates
popular compressors like Szip [20] for lossless and SZ for
lossy compression. Recent HDFS5 updates [21] include Virtual
Object Layer (VOL) [22] features, which enable asynchronous
I/O and optimize performance in data-intensive workflows.

ADIOS?2 is an I/0 framework for HPC environments, offer-
ing a unified API for both in-memory and external file storage
of large datasets. It uses in-memory communication within
nodes and MPI-based inter-node communication for parallel
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1/O operations. ADIOS2 also supports asynchronous /O,
ensuring simulations are not delayed by data operations, and
integrates various compressors. Moreover, it supports various
file formats like HDF5 and Dataman, enhancing interoperabil-
ity and integration with existing data storage infrastructures.

Various architectures have been proposed to enhance data
analysis performance in HPC environments. Dorier et al. [23]
introduced an in-situ analysis architecture that enables elastic
visualization through integration with ParaView Catalyst and
Ascent, but it lacks extreme-scale experimental results and
does not address the I/O subsystem bottleneck. Ravi et al. [4]
proposed Runaway, which supports in-transit data compression
with a focus on large-scale I/O options, though it is not
integrated with data analysis. For extreme

Among the options, HDF5 has a long history and a large
user base. However for SPH-EXA, which handles various
data formats and compression methods and requires robust,
native non-blocking I/O for large-scale data analysis and
checkpointing, the I/O foundation must also integrate easily
into various pipelines across different programming languages.
We chose ADIOS?2 for our I/O architecture because it is highly
extensible and provides excellent performance across various
architectures.
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Fig. 1. Data analysis and visualization architecture of SPH-EXA.

III. WORKFLOW ARCHITECTURAL DESIGN

The SPH-EXA design of data analysis and I/O architecture
is motivated by the need for efficient data management and
real-time analysis in high-performance simulations. With the
data I/O APIL, users can easily define and manage their
data fields, ensuring seamless analysis of simulation states.
The integration of Ascent for in-situ data analysis allows
immediate insights during simulations, reducing the need for
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Fig. 2. Lossless compression of SPH-EXA checkpoints: (a) Compression rates, (b) Checkpoint sizes, (c) Checkpoint writing time of different compressors.

post-processing. The custom API connecting Ascent directly
to the ADIOS binary-pack (BP) format enhances efficiency
by eliminating intermediate steps. Overall, SPH-EXA aims to
streamline simulation workflows and maximize computational
efficiency for researchers. The proposed data analysis and
visualization architecture is illustrated in Figure 1.

A. Checkpoints and Snapshots

SPH-EXA provides a unified API for simulation check-
pointing and data I/O. During runtime, users define the data
fields attached to fluid elements (i.e. SPH particles) they
wish to export and specify the frequency within SPH-EXA.
If no specific output field is defined, SPH-EXA exports a
checkpoint which can then be used to restart the simulation.
Snapshots retain specific portions of the simulation data as
specified by the user which can then be used for further
analysis. Both for checkpoints and snapshots, the SPH-EXA
output process is structured as follows: 1). Initializing the
file within the file system. 2). Adding file attributes: adding
metadata essential for the entire simulation process or for
parsing the file. 3). Opening a step. 4). Writing step attributes
that are associated with the step only. 5). Writing individual
data fields associated with the step. 6). Closing the step handle.
7). Flushing the file buffer and closing the file.

During checkpoint loading, SPH-EXA initially reads meta-
data from file attributes, then it distributes the datasets to each
MPI rank in accordance with the metadata obtained.

B. In-situ Data Analysis

For adaptable in-situ data analysis, we use Ascent as our
foundation. Leveraging Conduit with Ascent facilitates the
retrieval of hierarchical simulation data from shared memory,
enabling further analysis via ADIOS2. By compiling Ascent
with OCCA and Raja, we establish a robust infrastructure for
high-performance parallel data analysis with MPIL.

Instead of using Fides [24] to convert ADIOS2 data to
VTK-m, we developed a direct API between Ascent and
the ADIOS2 BP format. This allows ADIOS2 to transmit
compressed datasets directly to Ascent for decompression.
Additionally, we extended Ascent to include ADIOS2 output
functionality, enabling SPH-EXA to pre-process and export
datasets for post-hoc analysis.
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C. Post-hoc Analysis

Post-hoc data analysis involves importing snapshots and
checkpoints into offline analysis and visualization tools such
as Python scripts, Blender, and VTK. ADIOS2 provides built-
in Python support for processing compressed ADIOS?2 data,
but users can also opt to output data in HDF5 format, which
is widely supported by most mainstream tools such as Matlab
[25] and openFOAM [26].

IV. PERFORMANCE EVALUATION
A. Experimental Setup

We evaluated compression effects on checkpoint perfor-
mance and size, with SPH-EXA on simulations on turbulent
flows on the XC50 Compute Nodes of Piz Daint [2]. Each
Piz Daint node has an Intel Xeon E5-2690 v3 (12 cores,
64 GB RAM) and a NVIDIA Tesla P100 GPU (16 GB
RAM). GPUs handle the main SPH computational tasks, while
CPUs manage data compression and I/O. Since the GPU-based
implementation of lossless compressors are not supported by
ADIOS?2 yet, we chose to run lossless compressors on CPUs,
while lossy compressors (SZ, ZFP) run on GPUs.

Simulation experiments data sizes range from 400° to 30003
particles, with 14 exported data fields for both snapshots and
checkpoints. Experiments are also evaluated in both strong
scaling and weak scaling scenarios.

Weak Scaling: We maintained 64 million particles per node
across simulation scales of 4003, 8003, 10003, 20003, 30003,
using 1, 8, 16, 128, and 432 nodes respectively. For 30003,
each node processed 62.5 million particles.

Strong Scaling: We fixed the simulation size at 1000® and
varied the number of nodes (16, 20, 24, 28, 32). In both scaling
scenarios, each GPU was assigned 1 MPI rank, consistent with
the rule of thumb in GPU-centric simulations.

B. Lossless Compression Results

The benchmarked lossless compressors include Zlib [27],
LZ, LZ4 [13], and LZ4HC [13]. For these lossless compres-
sors, we opted for the maximum compression level of 9 since
empirical experiments indicate the performance improvement
by increasing the compression level is negligible with respect
to the compressed file size.



We first evaluate the compression rates of various
compressors  (Figure 2(a)), with compression rate as
C %. The baseline indicated by original
denotes an uncompressed checkpoint. Zlib achieves the lowest
compression rates below 70%, while LZ ranges from 73% to
76%. The differences among these methods are notable but not
significant compared to the baseline. Compression efficiency
slightly increases with larger simulation scales due to more
compression possibilities. Lossless compressors reduce file
size by at least 23%, with Zlib performing best, especially
at larger scales (Figure 2(b)).

Regarding checkpoint compression, both file size and over-
head matter. Figure 2(c) shows that Zlib and LZ4HC incur
higher write time overheads.

Zlib offers higher compression ratios, resulting in smaller
checkpoint sizes, but it also increases write overhead. On the
other hand, LZ4 reduces checkpoint size by up to 27.27% with
a 4.23x overhead increase compared to the original (7.37s
more when running on 28 nodes), making it a viable option.

Moreover, checkpoint writing shows high scalability. While
Zlib’s overhead increases, other compressors maintain con-
sistent I/O overhead as simulation scales up. This stability
indicates our I/O solution’s effectiveness in parallelized writ-
ing, with minimal overhead even when multiple nodes write
simultaneously even with fast storage writing like LZ and LZ4
(~1.5 TB in 20 seconds).
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Fig. 3. Comparison of the checkpoint writing time using lossless compression
with the strong scaling of the simulation size (lower is better).

In strong scaling benchmarks, we reduced the workload per
node while keeping the total workload constant. Again we
observed that checkpoint writing time is proportional to the
workload on each MPI rank (Figure 3). Compression ratios
were unaffected by local workload, as they depend more on
the values being compressed than on data size.

C. Lossy Compression Results

We benchmarked lossy compressors cuSZ [28] and
cuZFP [15] with error bounds of 1073, 10~°, and 10~7
on double-precision datasets. Lossy compression was used
for snapshots, while lossless compression was reserved for
checkpointing.
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Figure 4 shows that both SZ and ZFP reduce snapshot
sizes effectively. SZ achieves up to 68% reduction for 3000°
simulations at 10~7 accuracy, and 92% at 10~3. For 1000°
simulations, ZFP achieves a 57% reduction at 10~7 accuracy,
and 84% at 1072, Note that ZFP results are not available for
10~7 accuracy due to code limitations.

Figure 5 shows snapshot writing times for different lossy
compression methods and error bounds. The non-compressed
snapshot takes up to 5 seconds as a baseline. Lower accuracy
compression reduces writing time, but even at the highest
accuracy (10™7), the overhead increase is minimal. For SZ
with 3000% simulations, the snapshot writing time of under
80 seconds is negligible considering these simulations run for
days and months with the benefit of snapshot reduction from
2052 GB to 657 GBs.

These results highlight the benefits of snapshot size reduc-
tion, though the impact on accuracy must be considered for
simulation correctness and analysis. The effect of accuracy
reduction for the visualization is further discussed in IV-D.
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D. Data Analysis and Visualization Pipelines

We evaluated lossy compressors in various scenarios for
subsonic turbulence analysis and snapshots during simulations:

In-Situ Density PDF Calculation: We computed the Prob-
ability Density Function (PDF) in order to test in-situ analysis
with heavy parallel computation. This calculation invokes par-
allel rasterization of all particles followed by a redistribution.
The resulting output is a 2D image depicting the distribution
function, rendered using Matplotlib [29] on the CPU.



(a) SZ, error bound = 1 x 103

(b) SZ, error bound = 1 x 10~5

(c) SZ, error bound = 1 x 107

Fig. 6. Slice of a turbulence simulation with 30003 particles at t = 11.0 physical time. Data is compressed with SZ with different error bounds.

2D Particle Visualization: We visualized particles in a thin
slice around | Z| = 0, comparable to the local spatial resolution
where the colors represent the velocity magnitude |v].
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Fig. 7. Time taken for in-situ generation of (a) probability density function,
and (b) 2D slice for visualization in various simulation scales.

Results in Figure 7(a) show that the time to generate a
PDF in-situ remains consistent as simulation scale increases,
due to constant data processed per node during weak scaling.
Figure 7(b) shows that the time to extract and visualize a
2D slice fluctuates slightly but remains roughly constant,
indicating the architecture is efficiently scaling up with a
highly balanced workload distribution.

Figure 8 shows that the lossy SZ compressor reduces 2D
slice generation time as accuracy decreases. Despite data
reduction, visualization time remains stable. Compression does
not significantly speed up the process. Only at lower accuracy
(e.g., 1073) the time for compression and visualization (5.99s)
approach the time without compression (1.53s).

Figure 6 represents 2D visualizations generated using the
aforementioned pipelines with 3000® simulation scale. As
illustrated in Figure 6(a), when the error bound is high
up to 1073, compression artifacts become clearly visible.
Conversely, at 10~° accuracy, the visualization retains almost
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the same level of detail as at 10~7 accuracy, bringing in an
81.2% reduction in transferred data size. The benefits of using
lossy compressors to reduce data size during visualization are
substantial for easier in-transit or post-hoc data analysis. How-
ever, for in-situ data analysis, the use of lossy compressors can
introduce additional overhead due to the need for compressing
and decompressing the data, requiring further analysis.
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Fig. 8. Time for generating an in-situ visualization of a 2D slice, compressed
with lossy SZ compressor, with different accuracy settings. 66 nodes were
used for processing the 16003 simulation data. 432 nodes were used for
processing 30003 simulation.

V. CONCLUSION

Compression and asynchronous I/O are two efficient so-
lutions for reducing storage requirements and improving I/O
performance in scientific simulations. However, most existing
simulation frameworks do not integrate the two, limiting the
further possibilities of extreme-scale in-situ data analysis. To
address these challenges, we proposed an I/O architecture
integrated into SPH-EXA, that enables parallel I/O and flexible
data analysis linked by a compressed data flow. Future work
will focus on extending compatibility to a broader range of
computing architectures, and developing more domain-specific
data analysis algorithms designed for SPH-based physical
simulations.
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