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Abstract—Interconnects have always played a cornerstone role
in HPC. Since the inception of the Top500 ranking, interconnect
statistics have been predominantly dominated by two competing
technologies: InfiniBand and Ethernet. However, even if Ethernet
is very popular due to versatility and cost-effectiveness, Infini-
Band used to provide higher bandwidth and continues to feature
lower latency. Industry seeks for a further evolution of the Eth-
ernet standards to enable fast and low-latency interconnect for
emerging AI workloads by offering competitive, open-standard
solutions. This paper analyzes the early results obtained from two
systems relying on an HPC Ethernet interconnect, one relying
on 100G and the other on 200G Ethernet. Preliminary findings
indicate that the Ethernet-based networks exhibit competitive
performance, closely aligning with InfiniBand, especially for large
message exchanges.

I. INTRODUCTION

As artificial intelligence (AI) and high-performance comput-
ing (HPC) continue to push the boundaries of computational
capabilities, the demands on networking infrastructure have
become increasingly stringent. Modern AI workloads, includ-
ing large language models and deep learning recommendation
models, require significant computational resources distributed
across large clusters of GPUs. The efficiency of these work-
loads critically depends on the underlying network’s ability to
move data with minimal latency and maximal bandwidth [1],
[2], [3].

As we move towards the post-exascale era, the scale of the
clusters is growing and has resulted in higher requirements on
network performance, scalability, and resilience.

The development of Remote Direct Memory Access
(RDMA) architectures [4] was, in particular, driven by the goal
of reducing latency and increasing bandwidth. With RDMA,
part of the data transport is offloaded to the network interface
card (NIC) [5], allowing servers to read and write memory
locations on other servers without (almost) any host involve-
ment, thus reducing latency and CPU utilization. This enables
communications between servers within 1 µs [6]. Traditionally,
RDMA was often implemented through proprietary proto-
cols [7], [8], [9]. However, nowadays, there is an increasing
effort towards standardization.
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For example, the InfiniBand (IB) [10] specification is main-
tained and developed by the InfiniBand Trade Association
(IBTA) [11]. Nevertheless, InfiniBand hardware is only pro-
vided by a few vendors, increasing the risk of vendor lock-
in. For this reason, the industry is moving towards RDMA
solutions relying on Ethernet, due to the wider availability
of Ethernet hardware, its standardization, and the fact that
it can enable convergence with other types of traffic (e.g.,
north-south traffic in data centers) [12]. One step towards this
direction is represented by RDMA over Converged Ethernet
(RoCE) (also maintained by IBTA) [13]. RoCE is a specifica-
tion of InfiniBand running on top of Ethernet rather than the
IB link layer. Last, efforts such as iWARP [14], [15] run an
RDMA protocol on top of TCP but suffer, however, from TCP
limitations [16].

One challenge for Ethernet-based RDMA is packet loss,
which can severely impact performance. Despite the efforts,
available solutions are still far from being optimal. Namely,
RoCE works better on lossless networks. However, lossless
Ethernet heavily relies on Priority Flow Control (PFC), which
has been shown to require excessive buffering, and creating
congestion trees and PFC storms and deadlocks [12], [17].
Although some of these issues are partially addressed by
congestion control algorithms such as Data Center Quantized
Congestion Notification (DCQCN) [18], the co-existence with
other types of traffic is often problematic and can create
unfairness [19].

Thus, although Ethernet-based network solutions have a
good chance of becoming competitive to HPC-optimised net-
work solutions like InfiniBand, we are not there, yet [20], [21].
For these reasons, some technologies like Slingshot provide a
custom high-performance Ethernet implementation, optimized
but fully interoperable with Ethernet [22]. On the other hand,
initiatives such as the UltraEthernet Consortium (UEC) [23]
aim to leverage the widely used Ethernet technologies and its
standards to define a new Ethernet tailored for HPC and AI
applications.

This work is motivated by the growing convergence of HPC
and AI networking requirements and the need for more scal-
able, cost-effective, and high-performance network solutions.
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Nanjing Haicgu (Ethernet partition) Haicgu (InfiniBand partition)
CPU 2× 48-core Kunpeng920

2600MHz
2x64-core HiSilicon Kunpeng 920-6426

NICs Mellanox 200G(MCX653106A-
HDAT)

Mellanox/NVIDIA ConnectX-5 MCX555A-ECAT (4x25)100GE/100GBit EDR IB

Interconnect 200GE connect with NIC 100GE connect with NIC 100Gbps InfiniBand connect with NIC
Topology two-level fat-tree with CE9855

switches
single-level leaf-switch CE8850 single-level leaf-switch InfiniBand EDR

Software
Environment

OpenMPI 4.0.3 + GCC 9.3.0 (
UCX 1.15.0 , without verbs, MCA
pmix v2.1.0)

GCC 14.1.0 + OpenMPI 5.0.3 (relying on UCX 1.16.0, UCC 1.3.0, PMIx 5.0.2)

TABLE I: Main characteristics of the analyzed systems.

The main contribution of this work is the evaluation of new
HPC-tailored Ethernet technologies; in particular, we focus on
analyzing Huawei’s HPC Ethernet [24]. We compare it with
InfiniBand in a series of MPI-based benchmarks, to determine
whether advanced Ethernet technology can meet the demands
of next-generation AI and HPC workloads. Both clusters pro-
vide a controlled environment for directly comparing different
interconnect technologies.

The rest of this paper is organized as follows. In Section II,
we describe the characteristics and configurations of the two
HPC systems used in our benchmarks. Section III outlines
the benchmarking methodology and the performance tuning
applied to optimize the testing environment. It also presents
the experimental results, providing a comparative analysis of
Ethernet and InfiniBand performance across various scenarios.
Finally, in Section IV, we discuss the paper’s findings and their
implications for future HPC and AI networking solutions.

II. SYSTEMS DESCRIPTION

In the following, we describe the main features of Huawei’s
HPC lossless Ethernet fabric [24], and the analyzed systems’
main characteristics (summarized in Table I). Huawei’s HPC
Ethernet runs on an open architecture and ecosystem in which
the involved technologies, devices, and components are all
based on Ethernet standards. On top of that, the following
advanced proprietary features (not part of the Ethernet spec-
ification) are provided, to support the needs of HPC and AI
workload requirements:

• Loss prevention: By exploiting Priority-based Flow
Control (PFC), packet losses are avoided, thus providing
the lossless, low-latency, and high-throughput network
environment needed for RoCEv2 traffic, meeting high-
performance requirements.

• PFC deadlock prevention: Service flows that may cause
deadlocks are identified, and queue priorities of these
flows are changed to prevent PFC deadlocks.

• Artificial Intelligence Explicit Congestion Notification
(AI ECN): AI ECN can intelligently adjust the ECN
thresholds of lossless queues based on the observed traffic
characteristics to ensure low latency and high throughput
with zero packet loss, maximizing the performance of
lossless services.

• Network Scale Load Balancing (NSLB): To adaptively
route the traffic over the network based on the observed
traffic characteristics.

• ECN Overlay: applies ECN to a VXLAN network,
enabling the traffic receiver to detect congestion on the
overlay network in a timely manner and instruct the traffic
sender to reduce its packet sending rate to relieve network
congestion.

(a) HAICGU cluster partitions with an InfiniBand and Ethernet
network with 10 nodes each.

(b) Nanjing lab setup showing CE9855 switches connected in a
spine-leaf configuration to 8 nodes.

Fig. 1: Interconnect architectures of the clusters used for
benchmarking.

A. OEHI (Ethernet/InfiniBand)

The Huawei AI and Computing at Goethe University
(HAICGU) [25] is installed at the Goethe University of
Frankfurt and maintained by the Open Edge and HPC Initiative
(OEHI). This cluster is designed with two partitions: one for
InfiniBand (cn-ib) and another for Ethernet (cn-eth) to support
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their respective interconnects. Each partition consists of 10
nodes.

Node architecture: Each compute node features two sock-
ets equipped with 2× Kunpeng 920-6426 CPUs (64-bit
ARMv8.2-A cores running at 2.6GHz). Each node has 16×
8GiB DIMMs of registered ECC DDR4-2933 memory, for
a total of 128GiB CPU memory. There are 40× PCIe v4.0
lanes, used for communications between the host CPU and the
Mellanox ConnectX-5 NIC.

Inter-node connectivity: All nodes are connected via a
Huawei Switch S5735-S48T4X 10 GbE Ethernet switch for
deployment and management. The cn-ib and cn-eth partitions
each consist of 10 compute nodes with identical hardware
specifications and software stacks. In the cn-ib partition, the
10 nodes are connected via a non-blocking Mellanox Switch-
IB 2 EDR (MSB7890-ES2F) 100 Gb/s fabric, enabling high-
bandwidth, low-latency communication. In the cn-eth partition,
nodes are interconnected through a 100GE network using
a Huawei CE8850 (CE8850-64CQ-E) switch. The Mellanox
ConnectX-5 adapters support both IB and Ethernet traffic and
have been configured accordingly for each partition.

Switch properties: CloudEngine 8850 [26] are Ether-
net switches designed for data centers, featuring high-
performance, high-density, and low-latency. Built on an
advanced hardware structure, the switches support high-
density 100GE/40GE/25GE/10GE ports. The CloudEngine
8850-64CQ-EI supports 12.8 Tbps switching capacity, 4482
Mpps forwarding performance, and L2/L3 line-speed forward-
ing. The CloudEngine 8850-64CQ-EI supports up to 64×
100GE QSFP28 ports and 64× 40GE QSFP+ ports and can
function as a core or aggregation switch.

B. Nanjing

The HPC environment in Nanjing uses the spine-leaf ar-
chitecture and consists of three Huawei CE9855 switches and
8 compute nodes. One CE9855 functions as the spine node,
and two CE9855s function as leaf nodes. Each leaf node is
connected to four compute nodes, and the network is wired as
a non-blocking fat tree.

Node architecture: Each server has 2× sockets with one
48-core CPU per socket. Each node has 16× 32GiB CPU
memory organized in 16 slots.

Inter-node connectivity (Ethernet): Nodes are intercon-
nected through a 200GE network, and each node is equipped
with one Mellanox ConnectX-6 NIC. The spine-leaf architec-
ture is used, using 400GE connectivity between spine and leaf
switches.

Switch properties: CloudEngine 9855 [27] series switches
are next-generation high-performance and high-density 400GE
access switches designed for HPC and AI scenarios. They
have an advanced hardware architecture, offer high-density
400GE access ports, and support 400GE uplink ports. They
support a maximum of 32× 400GE high-performance QSFP-
DD ports. Each 400GE QSFP-DD port is backward compatible
with 200GE/100GE/40GE interfaces, and can be split into four
100GE ports or two 200GE ports. The split ports support IEEE

1588v2 (PTP) and provide flexibility in networking. A 400GE
port working as a 200GE/100GE/40GE port cannot be split.

C. Performance Tuning

To maximize the performance of the ConnectX NICs, we
transitioned from the default inbox drivers to OFED drivers.
Table II summarizes all the applied tuning configurations.

Action Command
Check whether the NIC is
working on RoCE v2 cma_roce_mode -d mlx5_0 -p 1

Ensure that queue 3
enables PFC function

mlnx_qos -i eth4 --pfc
0,0,0,1,0,0,0,0 --trust dscp

Change maximum packet
size to 9000 bytes ifconfig eth4 mtu 9000

TABLE II: System tuning operations.

III. EXPERIMENTAL RESULTS

A. Benchmarking Methodology

All experiments were conducted with exclusive execution,
ensuring that noise from concurrently running jobs did not af-
fect results. We always use a single MPI process per node. All
the experiments did not include the communicators’ creation
time and, depending on the buffer size, were repeated between
100 times and 1,000 times. Regarding collective communica-
tions, we report the maximum time (or minimum throughput)
across all the involved ranks [28]. The bandwidth is always
reported in Gbit s−1 and, regardless of the benchmark, we
compute it as the aggregated message size transmitted on
the wire, divided by the maximum time employed by all
the processes to complete the operation. Unless specified
otherwise, the theoretical peak is equivalent to the system’s
unidirectional data-transfer peak of the NIC (100Gbit s−1 in
case of the HAICGU and 200Gbit s−1 in case of the Nanjing
lab cluster).

B. Point-to-point Performance

The point-to-point tests aim to measure the latency and
the maximum bandwidth that can be achieved between two
nodes. During the point-to-point test, we assign two processes
to two different nodes, and we make them exchange a fixed-
size buffer several times. This test represents the simplest
benchmarked scenario and, since the network is non-blocking,
we expect to fully saturate the available bandwidth. Figure 2
presents the peer-to-peer results for the HAICGU and Nanjing
clusters.

On the HAICGU cluster, we compare the Ethernet network
performance with InfiniBand performance (respectively cn-
eth, cn-ib); these data underline how the two interconnections
expose qualitative and quantitative comparable performance
over large messages. Whereas InfiniBand always outperforms
Ethernet, on messages larger than 256KiB, this difference
in performance is always lower than 4%. Conversely, for
small messages (smaller than 512B), InfiniBand significantly
outperforms Ethernet up to a factor of 1.6×. This is partially
due to the higher overhead introduced by the larger headers
(Ethernet, IP, and UPD) in the Ethernet/RoCEv2 case.
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(a) Nanjing (b) HAICGU

Fig. 2: point-to-point results over the considered systems. The x-axis represents the buffer size exchanged by the two MPI
processes; the y-axis ranges from 0 to the theoretical peak and represents the achieved bandwidth.

Observation 1: Measured performance gap between Eth-
ernet and InfiniBand on message sizes greater equal than
32KiB is always lower than 4%.

Because in the Nanjing cluster the nodes can be connected
either through one or three switches, we analyze how the net-
work distance affects the point-to-point performance. Figure
2a report as intra-switch the point-to-point bandwidth related
to nodes connected to the same switch and as inter-switch the
one for nodes that communicate through the spine switch.

As expected, the impact of network distance is significant on
small messages (∼2× slow down for 1-512B message sizes)
and becomes smaller as the messages grow (∼1.4× for 4-
256KiB and ∼1.04× for 1-128MiB).

The impact of traversing through multiple switches can
be assessed by comparing the intra-switch and inter-switch
results. Since all the switches and all the links are equivalent,
by halving the difference between the intra-switch and the
intra-switch time for transferring 1B, we can estimate the
latency for crossing one link and one switch as 1.11 µs.

C. Incast micro-benchmark

In contrast to the point-to-point scenario, the incast micro-
benchmark stresses network congestion control by directing
all messages to a single process. It synthetically simulates a
completely unbalanced communication scheme which often
occurs in practice and it has been shown to be a challenging
scenario for congestion control algorithms [29]. During that
test, we first select a main process i among the n involved
ones, and then all the other n− 1 processes will send a fixed-
size buffer to i. Since all the messages are received by the same
process, the theoretical bottleneck is the injection bandwidth
of any given process divided by n−1, since the receiver node
bandwidth must be shared among all the sender processes.

Figure 3 shows the results for the incase test using three
different setups: 4 nodes of the Nanjing lab cluster, the full
Nanjing system, and the full HAICGU system. On Nanjing, in

the 8 nodes case half of the traffic is forced to cross the spine
switch. When using 4 nodes we consider both the case where
the four processes are under the same lower-level switch, and
then the case with two processes per leaf (i.e. a part of the
communication is forced to pass through the spine switch). It
is worth recalling that in the HAICGU cluster, all the nodes
are under the same switch.

On HAICGU, differently from point-to-point tests, the in-
cast comparison shows that Ethernet is competitive also for
small message sizes; the Ethernet/InfiniBand gap is lower
than 20% on all the considered sizes and negligible or absent
(≤ 1%) on messages greater than 32KiB.

Nanjing’s results confirm the same behaviors of point-to-
point tests; tests can achieve near-optimal performance (96%
of theoretical peak), and the impact of network distance is
significant for small messages and is highly amortized as the
message size grows.

Overall, incast tests highlights that Ethernet does not strug-
gle with unbalanced communication and traffic congestion, in
fact, in all the instances, tests always achieve at least the 96%
of the maximum theoretical bandwidth.

Observation 2: On incast traffic, Ethernet is comparable
with InfiniBand. For all the message sizes, the performance
gap is always lower than the 20%. Furthermore, as the mes-
sage size grows over 32KiB, this gap becomes negligible
(≤ 1%).

D. All-reduce and all-to-all communication
All-reduce and all-to-all are widely used primitives in

distributed programming, and they represent the main com-
munication bottleneck in many real-world applications. Due to
their wide applicability and efficiency, they are often among
the most commonly used collectives across many application
domains, including many HPC and AI applications [30].

During the all-to-all collective, all the involved processes
exchange a fixed-size message with all the other involved
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(a) Nanjing Incast 4 nodes (b) Nanjing Incast 8 nodes (c) HAICGU Incast 10 nodes

Fig. 3: incast results over the considered systems, Nanjing was measured on both the system-wide and the leaf-wide test cases.
The x-axis represents the message size that each MPI process sends to the main process; the y-axis ranges from 0 to the
theoretical peak and represents the achieved bandwidth. The theoretical peak is computed as the injection bandwidth of any
given process divided by the number of sender processes.

processes; so, each of the n processes will concurrently send
and receive n − 1 messages, one per process. In contrast, in
all-reduce, all the processes own a different local buffer and,
once the collective operation is complete, all the processes
must own the same buffer obtained as the reduction of all the
starting buffers.

We measure performance using goodput, by assuming the
bandwidth-optimal implementation of the collective is used.
We compute it by dividing the assumed number of exchanged
bytes by the achieved time-to-solution. Essentially, goodput
is equivalent to bandwidth if and only if the most efficient
collective implementation is used. For example, for allreduce
we assume that the ring algorithm is used, and that 2b·(n/(n−
1)) bytes are transmitted, where b is the size of the vector
to be reduced and n is the number of ranks participating in
the allreduce [31], [32]. For the all-to-all, we consider each
process sends b · (n − 1) bytes, where b is the number of
elements received from any process.

Figure 4 reports the collectives’ performance over the two
considered systems.

1) All-to-all: Figure 4b shows the all-to-all performance
over the Nanjing cluster. As for the previous tests, the achieved
bandwidth grows until reaching the 66% of the theoretical
peak for message sizes of 16MiB.

HAICGU cluster exposes similar behaviours but it is inter-
esting to note that for messages of size 128MiB, the Ethernet
regression to 58% of peak is way more drastic than the 81%
achieved by InfiniBand; this is the bigger gap that our analysis
found between Ethernet and InfiniBand performances, and we
are currently running further analysis to better understand this
issue.

2) All-reduce: On all-reduce, we encountered an unex-
pected upper bound of approximately 20 Gbit/s on both the
Nanjing lab cluster and HAICGU. While network congestion
and reduction operations can introduce some overhead, they
can not justify the substantial gap observed between all-to-all
and all-reduce. While switch-level counters did not indicate
any bottlenecks at the hardware level, the error appears to
be systematic and related to both InfiniBand and Ethernet,

strongly suggesting that the issue is independent of the net-
work and likely related to some host-specific problems. To fur-
ther validate our hypothesis, we connected two hosts directly
and still observed the same upper bound limit on goodput,
around 20 Gbit/s. This hypothesis is further supported by the
fact that the observed bottleneck is consistent across both the
Nanjing lab cluster and HAICGU, which have identical hosts
but completely different networks. Additionally, the bottleneck
remains unaffected by the number of involved processes.
We are continuing to investigate the issue and are currently
conducting additional analysis.

Observation 3: With the exception of all-to-all with mes-
sage size 128MiB, for all-to-all and all-reduce communi-
cation patterns with message sizes larger than 32KiB, the
difference between Ethernet and InfiniBand performance is
below 3%.

IV. CONCLUSIONS

In this work, we investigate Ethernet technology as an
alternative to the InfiniBand interconnects for HPC and AI
workloads.

We perform our analysis on two systems: the HAICGU and
the Nanjing clusters. On the one hand, HAICGU provides
two equivalent partitions to benchmark Ethernet and standard
InfiniBand interconnections up to 10 computation nodes, on
the other, the Nanjing lab’s cluster comprises 8 computation
nodes interconnected by an Ethernet-based network with a
two-level fat-tree topology.

Over these systems, we tested point-to-point, incast, all-
to-all, and all-reduce, which are the most important and
commonly used communication patterns in HPC and AI work-
loads. Although the poor performance measured for all-reduce
requires further investigation, our results demonstrate that on
messages larger then 32KiB, and across all the performed
tests, Ethernet and InfiniBand exhibit a performance gap of
less than 10%. However, from a latency prospective, Infini-
Band still significantly outperforms Ethernet by a factor of
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(a) Nanjing all-reduce (b) Nanjing all-to-all

(c) HAICGU all-reduce (d) HAICGU all-to-all

Fig. 4: Collective results over the system-wide test cases. The x-axis represents the message size that each MPI process
exchanges with each other process; the y-axis ranges from 0 to the theoretical peak and represents the achieved bandwidth.
The significant gap between the expected and measured all-reduce performance is under investigation and related to host
configuration issues rather than the network.

approximately 1.4×. These results suggest that Ethernet shows
significant promise and performs comparably to InfiniBand in
many scenarios, but it still requires further development and
optimization to fully meet the demands of high-performance
computing and AI workloads, especially in preparation for the
upcoming Ultra Ethernet specifications.

This work opens up multiple directions for further explo-
ration. We aim to extend our findings by applying them to real-
world HPC and AI applications, thereby demonstrating the
relevance of our micro-benchmarks. Additionally, in response
to the growing interest in GPU-centric communication [33],
[34] within HPC and AI workloads, we plan to test the
investigated interconnections in a GPU-centric scenario. This
will help us assess how our results vary with different system
configurations and setups.
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