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Abstract—Checkpointing is one of the fundamental techniques
to resume training while system fails. It has been generally
used in various domains, such as high-performance computing
(HPC) and machine learning (ML). However, as machine learning
models increase in size and complexity rapidly, the cost of
checkpointing in ML training became a bottleneck in storage
and performance (time). For example, the latest GPT-4 model
has massive parameters at the scale of 1.76 trillion. It is highly
time and storage consuming to frequently writes the model to
checkpoints with more than 1 trillion floating point values to
storage. This work aims to understand and attempt to mitigate
this problem. First, we characterize the checkpointing interface
in a collection of representative large machine learning/language
models with respect to storage consumption and performance
overhead. Second, we propose the two optimizations: i) A periodic
cleaning strategy that periodically cleans up outdated checkpoints
to reduce the storage burden; ii) A data staging optimization that
coordinates checkpoints between local and shared file systems for
performance improvement. The experimental results with GPT-2
variants show that, overall the proposed optimizations significantly
reduce the storage consumption to a constant while improves
performance by average 2.1x for checkpointing in GPT-2 training.

I. INTRODUCTION

Machine learning has achieved remarkable success in a
variety of fields, such as self-driving cars [1], LLMs [2],
image analysis [3], speech and object recognition [4]. Machine
learning training has been a long running workload that can
last for a few weeks or even months depending on the hardware
platform in use. For example, AlphaFold2, a large machine
learning model for protein structure prediction, can take about
11 days to train on 128 Google TPUv3 nodes with more than
100TB datasets [5]. On the other hand, faults and failures are
found more frequently at those systems as they have been
exaggeratedly used by computation- and data-intensive training
workloads like crypto mining machines [6]. Checkpointing has
been a key component of training workloads to guarantee that,
in a system failure, the training can restart from checkpoints
rather than from scratch [7].

However, as large machine learning models grow at a rapid
pace in size (see Table I), checkpointing a large machine learn-
ing model with millions or billions of parameters frequently
became a burden to storage and bottleneck to performance.
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TABLE I: Large language model examples.

Model Model size Checkpoint size
GPT2-large [9] 774M 2.9GB
GPT2-x1 [9] 1.5B 5.9GB
Vicuna [10] 7B 13.4GB
OpenOrca [11] 7B 14.5GB
LLama-2 [12] 70B 140GB
GLM [13] 130B 70GB
BLOOM [14] 176B 329GB
GPT3 [15] 175B 700GB

Table I provides a few examples of large language model,
including the model size (number of parameters) and storage
consumption to write the model to checkpoints. For example,
the GPT-3 model has 175 billion parameters; checkpointing
the whole GPT-3 model to storage takes 700GB when each
parameter takes four bytes. Large language models are still
increasingly growing in size. For example, the latest GPT-4
model has 1.76 trillion parameters [8], which is 10x larger
than GPT-3.

There have been a few works trying to solve this problem
for large model training. For example, Nicola et al. [16]
propose Deepfreeze, a checkpoint technique that introduces an
asynchronous technique to hide serialization and I/O overhead
among all participating processes for better I/O perforamnce.
Moha et al. build CheckFreq [17], a method that introduces
two-stage checkpoint scheme to avoid GPU stagnation and
reduce checkpoint overhead. Guo et al.used PARIS [18], a
machine learning method for predicting application resilience,
to speed up the recovery of errors. However, they focus on
I/O optimizations while fail to take into account the training
workload as well as the supermassive data written to storage.

To reduce the storage burden for checkpointing in large
model training, we propose a periodic cleaning strategy, which
significantly reduce the storage consumption to a constant, and
a data staging optimization scheme that improves the check-
pointing performance by 2.1x on average. Our contributions
are as follows.

1) We characterize the checkpointing with respect to storage
and performance in large model training with representa-
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tive large language models.

2) We introduce a periodic cleaning strategy, by deleting old
checkpoints periodically, which keeps the checkpointing
storage consumption to a constant.

3) We propose a data staging optimization that coordinates
checkpoints between local and shared file systems.

4) Evaluation on GPT-2 variants that includes comparison
against the original checkpointing strategy.

II. BACKGROUND

We will first introduce the concept of introducing check-
points in deep learning, and explain the common methods
of checkpoint optimization, its use in deep learning, and the
situation in training model restart.

A. Checkpoint application

Checkpoints are widely used in deep learning projects.
First, they are used to implement breakpoint recovery in the
training process. This means that if the training process is
interrupted in the middle, such as due to hardware failure
or other reasons, the progress of the training process can be
resumed by loading the most recent checkpoint, without the
need to start over [19]. This not only saves valuable time,
but also reduces waste of resources. Secondly, checkpoints
play an important role in transfer learning. Transfer learning
is a method of using knowledge of already trained models
to accelerate the training of new tasks. Checkpoints preserve
the knowledge and parameters of the model, allowing it to be
transferred and reused between different tasks. This knowledge
transfer can speed up the training process for new tasks because
the model already has a certain knowledge base.

B. Existing checkpoint optimization

In order to solve the problem of storage and computing
resource consumption caused by checkpoint, researchers have
proposed a variety of checkpoint optimization strategies.
Among them, model compression is a common strategy to
reduce storage requirements by reducing model size [20] [21].
Model pruning is another strategy to reduce the computational
complexity of the model by cutting unnecessary parameters [22].
In addition, the quantization method reduces the size of the
model by reducing the precision of the weight parameters [23],
thus improving the efficiency of the model. These strategies
can reduce the size of checkpoints without affecting the
performance of the model and improve the efficiency of
resource utilization.

Despite the existence of multiple checkpoint optimization
strategies, there are still some challenges in practical application.
For example, how to effectively crop checkpoints to reduce
model size while maintaining model performance is still an
open question. This study aims to solve this problem, and
proposes a checkpoint clipping method based on network
layer combination, combined with dynamic storage strategy, to
reduce the size and speed of checkpoint storage, while ensuring
the accuracy of restart.
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Fig. 1: Original: the checkpointing size and number of
checkpoint files at each epoch by GPT2 variants in training.

III. PROBLEM AND OPTIMIZATION

The current checkpointing technique in machine learning
training stores all the model parameters (the whole model) to
checkpoints periodically. Moreover, the outdated checkpoint
files are not removed, which would cause storage overflow
as the training proceeds. We characterize the problem with
representative GPT workloads and propose two optimizations
for performance improvement.

A. Problem definition/description

As the large model training proceeds, we observe an increas-
ing growth in the number of accumulated checkpoint files and
storage consumption for checkpointing (see Figure 1). The
checkpointing latency slowly increases for later checkpointing
as the storage is taken progressively (see Figure 3). We also
note that the time spent on writing checkpoints became a
performance bottleneck depending on checkpointing frequency.
For example, in the experiment we designed, for the GPT2-xl
model, the epoch time of a single training is about 1s, but the
time to save a checkpoint is more than 15x of the training time,
the whole experiment stage is displayed for one hour, but the
cost of saving the check tape is as high as 42 %. Although
this is because checkpoints are designed to be frequent, it still
shows that checkpoints account for a significant portion of the
time.

B. Periodic cleaning strategy

The current checkpointing technique retains all checkpoints
including outdated in model training, resulting in continuous
growth of storage footprint for checkpointing. As the training
progresses, the significance of new checkpoints relative to
old ones gradually increases. Moreover, for the purpose
of resilience only the latest checkpoints are required for
restarting the training upon a failure. As inspired, we propose a
periodic cleaning strategy. By regularly removing unnecessary

897



600 600
—— xI

500 large -500

4001 —— medium |,q,
—e&—- count

w
(@]
o
File Count

200

Checkpointing Size (GB)

100

0 " " u v " " y 0
0 250 500 750 10001250150017502000
Epoch

Fig. 2: Periodic cleaning strategy: the checkpointing size and
number of checkopint files at each epoch by GPT?2 variants.

outdated files asynchronously, it ensures that only the latest
model parameters are retained in storage. This significantly
reduces storage space requirements and avoids excessive storage
footprint.

C. Data staging optimization

The default checkpointing technique writes checkpoints to
shared file systems directly. Shared file systems are perfect
for coordinating data access among many processes across
distinct compute nodes. Unfortunately, shared file systems have

much slower I/O than node-local file systems, such as ramdisk.

Also, shared file systems are accessed by many compute nodes

concurrently and are more likely to encounter I/O congestion.

Therefore, we propose a staging optimization which first writes
checkpoints to local file systems, particularly ramdisk, and then
transfers checkpoints to shared file system, asynchronous to
the model training. This approach is designed to enable faster
and more efficient checkpointing.

IV. EVALUATION

Experimental setup. We use the GPT2 model [9] and its
variants for evaluation as it is the largest model that can fit to
our machine. We limit the training course to three hours for
each test we run. We set the checkpointing frequency to the
default setting (every 20 epochs).

Platforms. All experiments were run on a Linux server with
two AMD EPYC 7763 CPUs, each with 64 cores, and eight
A100 GPUs, each with 80 GB of memory and 2.0 TB of
memory. Python3.8 is used as the programming language and
TensorFlow 2.4.0 are used.

We selected GPT2 model suitable for text generation task
for experimental verification.We scaled the experiment time to
3 hours to show the early effect of the experiment, and set the
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Fig. 3: Periodic cleaning strategy (opt) vs. original: checkpoint-
ing time at each epoch by GPT2 variants.

storage checkpoint frequency to store once every 20 epochs to
observe the storage time comparison under various methods.

A. Periodic cleaning

In this section, we will describe the experimental design
and methodology of a periodic cleaning strategy to verify
how storage efficiency can be improved by removing early
checkpoints. During model training, as the training time goes by,
the number of checkpoints used to store the model in training
increases, so does the required storage consumption, as shown
in the Figure 1. By developing a periodic cleaning strategy,
we are able to get the storage consumption under control and
retain a constant storage consumption(see Figure 2).

In addition, we observe that, as training proceeds, the time
of writing a single checkpoint increases slowly. So regularly
cleaning up early checkpoints is an effective way to reduce the
burden on the system. By continuously testing different types
of models, using optimization methods and collecting the time
to store a single checkpoint, when no optimization is performed,
the minimum storage checkpoint time for GPT2-x1 is 13.7s
and the maximum time is 20.2s over the first 2000 epochs
observed. For GPT2-large, the minimum time is 7.2s and the
maximum time is 11s. For GPT2-medium, the minimum time
is 4.1s and the maximum time is 7s. As shown in Figure. 3,
periodically cleaning checkpoints can reduce the time required
for single storage to a certain extent, reduce the entire training
process and the memory requirement of the project.

B. Staging

In order to improve the storage speed and reduce the
overhead of data transmission, the local storage, such as
ramdisk, at a compute node can be used to store checkpoints.
Local storage is much faster than shared storage, thereby
local storage is more preferred if available. However, the
capacity of the local storage at compute nodes is limited.
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Fig. 4: Staging (opt): checkpointing time at each epoch by
GPT?2 variants.

Therefore, it is necessary to coordinate data movement between
local and shared storage to avoid storage overflow. We test
different storage methods for the same model training process
and compare the performance difference between storing
checkpoints using compute node vs. storing them using shared
storage. In the experiment, the checkpointing time is measured
for comparison, demonstrating advantage of the checkpoint
staging optimization. Figure 4 shows the time of writing a
single checkpoint at each epoch by GPT?2 variants with staging
optimization. The performance is improved by 1.9x on average
compared with the original checkpointing.

C. Putting all together

Finally, we combine the two optimization methods together.

As shown in Figure 5, the combined optimization scheme
achieves 2.1x speedup on average compared with the original
checkpointing. Overall, the checkpointing time of the three

GPT models (xI, large, and medium) is improved significantly.

V. DISCUSSION AND FUTURE WORK

Disscussion In this study, the exploration of dynamic
memory strategies and temporary memory storage checkpoints
provides valuable insights into the efficiency and adaptability of
neural networks. Dynamic memory strategies reduce memory
load by dynamically adjusting checkpoint memory usage based
on model requirements and changes in computing resources.
Temporary memory storage checkpoints can save the state of
the model more quickly during training so that training can
continue. From the experiments conducted, there are several
points that can be discussed: (1) Losing early checkpoints may
increase the risk of model training, and later in training, the
model may be more difficult to converge, because losing early

checkpoints may result in the loss of some useful information.

(2) If the compute node’s native memory is insufficient to
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Fig. 5: Putting all together (opt; including periodic cleaning
and staging) vs. original: checkpointing time at each epoch by
GPT2 variants..

accommodate the entire checkpoint data, memory overflow and
training interruption may result.

Future Work In future research on neural network check-
point storage optimization, these methods can be explored:

1) Exploring intelligent checkpoint management strategies
based on dynamic adjustment of the model training
process to achieve a more efficient balance between
memory utilization and model performance, and consider
using reinforcement learning or adaptive algorithms to
automatically select which checkpoints to keep, thereby
improving the stability of training

2) Investigating more efficient asynchronous memory write
algorithm to reduce the time cost of memory write opera-
tion, exploring the implementation of faster asynchronous
write process in the local memory of computing nodes,
and improving the overall training efficiency.

3) Researching on the integration of distributed storage
systems and asynchronous transmission to optimize data
distribution and synchronization.

VI. RELATED WORK

Checkpoint/Restart. Checkpoint technology has been exten-
sively studied in distributed systems, and checkpoint optimiza-
tion usually involves reducing memory latency, coordinating
multiple checkpoint to achieve reliable restarts. In order to
further explore different optimal checkpoint schemes, many
studies have made different directions of exploration. An
approach called GEMINI aims to achieve fast failure recovery
for distributed training through checkpoints in memory [24]. A
traditional checkpoint approach might involve writing model
parameters to disk, but GEMINI chose to save the checkpoint
in memory to reduce the time it takes for the checkpoint
to recover. There is also a model algorithm that optimizes
the lifetime and memory location of tensors used to train
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neural networks [25]. The method automatically reduces the
memory usage of existing neural networks. This algorithm
designs a method that requires only O(4/n) memory to train
an n-layer network, requiring only one additional forward
propagation computation in each small batch to exchange the
computation for the possibility of memory, providing a more
memory-efficient training algorithm.

ML performance optimization. Current machine learn-
ing deep learning checkpoint storage optimization can be
summarized in two main aspects. One is model parameter
optimization, which includes quantizing the weights of floating
point numbers to integers of lower numbers [21] [23] [26],
removing pruning of unimportant or redundant weights in the
model. The other is to optimize the storage and transmission,
hierarchical checkpoints, and incremental saving of weight
parameters [27], compression algorithms and heterogeneous
storage to reduce memory overhead, network transmission opti-
mization to optimize the loading speed [28]. Our optimization
solution focuses on some improvements in storage transfer
and optimized memory architecture, eliminating useless early
checkpoints in order to save storage space, load time, and
data overhead. Using temporary memory can improve training
efficiency and reduce disk I/O overhead. This has a positive
impact on deep learning model training.

VII. CONCLUSION AND FUTURE WORK

This paper presents a new systematic method for preserving
training checkpoints for deep learning models. This method
maintains sufficient storage and reduces storage load by actively
removing early useless checkpoints, and saves training check-
points with temporary storage coordination, which significantly
reduces the time consumption of a single save checkpoint. At
the same time, on the premise of protecting the security of
checkpoints, the time cost of transferring redundant checkpoints
is reduced.
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