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Abstract—Tuning parallel applications on multi-core architec-
tures is an arduous task. Several studies have utilized auto-
tuning for OpenMP applications via standardized user-facing
features, namely number of threads, thread placement, binding
and scheduling policy. However, they fall short on utilizing the
additional parameters provided by an OpenMP implementation.

In this paper, we analyze OpenMP application runtime
through an exhaustive exploration of all relevant configuration
options of the LLVM/OpenMP runtime.

Our findings allow to identify trends in tuning potential,
architecture-aware tuning suggestions, and good default configu-
rations per architecture. We will open-source the 240,000 unique
samples collected during experiments for use by the community.
These runs have been conducted on three different CPU archi-
tectures vital in the HPC and datacenter community. Choice of
applications includes popular benchmark suites and microbench-
marks namely, NAS Parallel Benchmarks, Barcelona OpenMP
Task Suite, XSBench, RSBench, SU3Bench and LULESH.

We employ the Linear Models class of Machine Learning
algorithms to perform analysis, explain, and form qualitative
relations between features comprising of the underlying architec-
ture, application, input size, number of threads, and considered
environment variables. This is further used to recommend
different configurations given an application type/architecture.

Index Terms—HPC, parallel programming, tuning, machine
learning

I. INTRODUCTION

The OpenMP API has evolved from supporting simple fork-
join shared-memory parallelization to additional forms of par-
allelism not strictly limited to shared memory. This evolution
has occurred over nearly three decades encompassing exten-
sions and additions to the specification. OpenMP now includes
support for not only software-defined parallelism types such as
structured (loop-based) and unstructured (asynchronous task-
based parallelism), but also hardware-implemented parallelism
such as SIMD (single instruction multiple data) and accel-
erators [1]. These extensions are available to an application
developer by a rich set of directives in the C, C++, and Fortran
base languages. Due to its ease of use, program and per-
formance portability across heterogeneous architectures, most
compilers (open source and proprietary) provide support for
OpenMP. While the standardized API exposes various tuning
opportunities to users, the actual implementations are often
even more configurable. In this paper, we look at the entire set
of environment variables controlling the LLVM/OpenMP CPU
runtime that influence the execution of parallel applications.

OpenMP applications can be configured via pragmas, library
routines, and environment variables. For standardized features,
these methods influence the value of Internal Control Variables
(ICVs) which control different aspects of the OpenMP run-
time. For non-standardized, implementation-defined features,
runtimes generally use environment variables as a control
mechanism. We, therefore, focus on environment variables to
influence the LLVM/OpenMP runtime behavior.

The problem our study addresses is the identification of
important environment variables and the selection of their
values to improve performance of parallel applications. In
the LLVM/OpenMP runtime various aspects can be influ-
enced, including ICV values, like the maximal number of
threads operating in parallel, thread placement, binding, and
scheduling policy, but also the alignment of internal data
structures and the reduction algorithm. It is easy to set an
environment variable during execution but deciding the value
for all possible variables is not trivial. Running applications for
all combinations is often prohibitively expensive. This means
tuning for real-world applications needs to be guided to avoid
the full search space exploration which grows combinatorially
in the number of choices. Further, as we will show, the various
configuration options are not equally important and time is
best spent trying only selected values for a subset of the
environment variables.

To guide users we studied the effect of performance-critical
environment variables that influence the LLVM/OpenMP run-
time by collecting over 240,000 unique samples on three
CPU architectures. We then analyze the results statistically
to identify trends and determine the most important features
to drastically reduce the search space while preserving the
optimization potential. Finally, we provide recommendations
based on application type/architecture that have the potential
of outperforming the default configuration.

Prior studies have primarily looked at tuning the number
of threads, thread placement, binding, or scheduling policies.
These are important factors to consider for improving
performance, as evident by their standardized ICVs. However,
we take a step further by including all implementation defined
environment variables that may affect the performance of
an application. While implementation-specific environment
variables are not generally portable, the popularity of
LLVM/OpenMP library and adoption by other compilers
makes this study useful for almost all HPC systems.
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Fig. 1: Performance observed during full search space exploration of the environment variables on the Alignment bench-
mark [2] with different processors. The points marked in all figures refer to the configuration that yielded the best performance
in one (architecture and input size) setting and the corresponding location of the same on other settings.

Our analysis and results include a qualitative approach
to defining the influence of these variables on application
runtime. This is achieved by first collecting performance
data with exhaustive runs of variable-value pairs on popular
benchmark suites and applications on different CPU architec-
tures. Exhaustive runs of this capacity can help us understand
the underlying search space and guide the methodology to
tune and recommend promising environment variables and
associated settings for different applications. For instance, we
see the distribution of performance data points in Fig. 1 for
the Alignment benchmark from the BSC OMP Task Suite [2]
when the input size is varied on all architectures in consid-
eration. Note that the best performing configurations on one
architecture and input size, highlighted by differently colored
and shaped marks, are not always top-contenders across all
execution environments. Further, all our benchmarks show a
speedup potential compared to the default configuration, albeit
the default performs very well across the board.

As large-scale data collection is non-trivial, we will make all
our raw data, for ARM, AMD X86, and Intel X86, available
to the community. Further contributions include:

• Insights on the available environment variables for
LLVM/OpenMP and a quantitative analysis of their im-
pact on application runtime across various hardware
platforms and benchmarks.

• Open sourcing all of our data collected during large-
scale sweeps of the parameter space, visualization of the
results, and all tooling used in the process.

• Recommendations of environment variables and values to
try based on an architecture and application type.

This paper is structured as follows: Section II compares our
study to others that tune OpenMP applications. We explain the
effect of all considered LLVM/OpenMP environment variables
in Section III, along with their potential values and defaults. In
Section IV, we introduce the experimental paradigm adopted
in our study and share details of the architectures, applications,
data collection, cleaning and validation methodology. Raw
results and derived insights are presented in Section V before
we conclude in Section VI with final remarks and future work.

II. RELATED WORK

With increasing heterogeneity in computing hardware, tech-
niques utilizing machine learning are gaining popularity. ML
algorithms are a natural fit for decision-making problems or
generating heuristics when vast amounts of data are available.
Some seminal works have leveraged ML at different levels
of the software stack to tackle decision making problems and
provide adaptive heuristics. Trofin, M, et al. [3] conducted
a study that applied machine learning (ML) to replace the
heuristic for inlining-for-size in the LLVM compiler
infrastructure. Their framework enables direct integration of
ML algorithms into the compiler through a compiler pass.
Another group created an end-to-end pipeline [4] for apply-
ing deep learning to learn optimization heuristics by using
entire application source code as input data, and showed
the effectiveness of their approach on two tasks, namely,
predicting optimal mapping for heterogeneous parallelism and
GPU thread coarsening factors. VenkataKeerthy, S., et al. [5]
worked on learning robust distributed embeddings from LLVM
IR to represent source code in continuous space. They also
demonstrate the effectiveness of their embeddings on the tasks
of predicting optimal mapping for heterogeneous parallelism
and determining thread coarsening factors.

Additionally, some studies have leveraged ML techniques
to optimize parallel applications commonly developed using
the OpenMP programming model. A couple of these works
have looked at autotuning OpenMP loops to exploit thread-
level parallelism and thread placement strategies. FDT [6] is
a framework that adapts the number of threads of OpenMP
applications by considering contention for locks and mem-
ory bandwidth. LIMO [7] monitors the application at run-
time and adapts the execution accordingly. Parcae [8] is a
framework that comprises a compiler and runtime system
to optimize performance. Popov et. al, [9] demonstrate a
practical way to automatically explore the sample space of
optimization of configurations consisting of thread- and page-
mapping, NUMA degree, degree of parallelism, and inter-
region interactions however their method is applied to specific
parallel regions. They show energy savings on ARM servers.
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Dutta et al. [10] have leveraged representation capabilities of
graph neural networks to autotune OpenMP loops. Bolet, G,
et. al, [11] have explored global optimization strategies for
tuning whole OpenMP programs with comparative analysis
of Bayesian Optimization, Particle Swarm Optimization and
Covariance Matrix Adaptive Evolution Strategy. Parasyris et.
al, [12] develop a record and replay technique in LLVM
for OpenMP target offloaded programs. They further show
how this can be utilized for per-kernel tuning of performance
related parameters pertaining to GPUs such as, number of
threads, grid size, launch bounds, etc.

Few works have also looked at optimizing thread-level
parallelism from a reduced power usage or energy efficiency
perspective. Bolet et. al [11] tune a small set of OpenMP
applications on a single CPU architecture. Nornir [13] is
a runtime system that monitors the application execution
and adjusts the resource configurations (DVFS, number of
threads, and thread placement) to satisfy either performance
or power consumption requirements. Schwarzrock et. al, [14]
and Luan et. al, [15] have both developed their own online
approach to thread throttling and CPU frequency tuning with
the goal of optimizing energy usage in the form of Energy
Delay Product (EDP). Their approaches are useful in cases
when one must change the thread count during program
execution. OpenMPE [16] is designed for energy management
and enables programmers to insert new directives in regions
where energy savings can be potentially achieved. This work
requires a particular compiler and runtime system. Curtis-
Murray, M, et. al, [17] present a user-level library for on-
line adaptation of multithreaded code for power-aware high-
performance execution. Further, researchers have employed
graph neural networks [18] for power-constrained autotuning
of OpenMP loops, demonstrating the potential of advanced
machine learning techniques in optimizing parallel computing
tasks.

However, most works targeting CPUs focus on the same
limited set of control mechanisms, namely standardized ICVs,
X86 architectures, and their applications are overwhelmingly
using structured parallelism, i.a., parallel loops. What sets our
study apart is the scale and breath. We use a diverse set of
configuration options, which include implementation-defined
environment variables, a large selection of applications with
parallel loops as well as task-parallelism, and evaluate the
vast configuration space on three HPC-relevant architectures.
Due to the size of the explored space, we limit ourselves
to per-application configurations. This is not a conceptual
requirement but matches practical real-world tuning practices.

III. OPENMP ENVIRONMENT VARIABLES

We focus on exploring the parameter space with more
variables than those considered in the literature. These include
standard-defined and implementation-defined variables.
Hereon, variables can be considered as features. We
consider and describe the following variables: OMP_PLACES,
OMP_PROC_BIND, OMP_SCHEDULE, KMP_LIBRARY,
KMP_BLOCKTIME, KMP_FORCE_REDUCTION and

KMP_ALIGN_ALLOC. It is worth noting that the behavior of
OMP_WAIT_POLICY is derived from KMP_BLOCKTIME and
KMP_LIBRARY. We therefore exclude OMP_WAIT_POLICY
in favor of the two KMP_* variables in our experiments.

Information pertaining to default values and potential values
has not been well articulated by other studies. Further, the
default values of certain variables in the LLVM/OpenMP are
dependent on other settings. In the following we explain the
meaning and potential values for each variable and how the
default is computed.

1) OMP_PLACES: This variable defines how threads
are distributed among places. The possible values
include threads, cores, ll_caches, sockets,
numa_domains, and “unset”. If a place was chosen,
the OS will allocate threads to that place, while the
default, unset, allows threads to be moved. The place
numa_domains requires the hwloc library to be available
to the LLVM/OpenMP runtime. This has been omitted in our
current experiments and left for future work. Since we did
not evaluate “hyper-threading” CPUs, we also ignored the
threads value.

2) OMP_PROC_BIND: The OpenMP standard defines the
following five binding/affinity strategies when a parallel re-
gion is encountered – master (deprecated, now primary),
close, spread, true, false, and “unset”. This value is
unset by default which corresponds to false, however, if
OMP_PLACES is set, then the default value is spread. If
the affinity policy is set to false, then the threads are free
to move from one place to another. The LLVM/OpenMP also
respects the KMP_AFFINITY variable which has an additional
set of values, however, we do not consider those.

3) OMP_SCHEDULE: This variable controls the schedule
kind and chunk size of worksharing-loop directives. A a chunk
size is determined by the runtime if not provided or implied.
We consider all choices – static, dynamic, guided, and
auto, but no chunk sizes. The default value is static.

4) KMP_LIBRARY: This variable selects the
LLVM/OpenMP runtime library execution mode. Possible
values are serial, throughput, and turnaround. The
default value is throughput. We do not consider serial
since it forces parallel applications to run in a serial manner.

5) KMP_BLOCKTIME: This variable specifies the duration,
in milliseconds (ms), that a thread may wait after completing
a parallel region before entering a sleep state. Setting it to
infinite prevents the thread from sleeping, whereas 0
forces the thread to sleep immediately. A user may select any
whole number from [0, INT32_MAX] for this variable. The
default value is 200. However, we only consider the following
values for experiments – 0, 200, and infinite.

6) KMP_FORCE_REDUCTION: This variable, which is
currently undocumented, determines how a cross-thread reduc-
tion is performed. We consider all possible explicitly options –
tree, critical, and atomic. The default value is “unset”
and a heuristic will determine the method at runtime. If the
number of threads is one, no synchronization is needed and a
special code path is used. If the number of threads is between
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CPU Architecture #Cores #Sockets #NUMA Nodes Clock Frequency Memory Type Memory Capacity
Fujitsu A64FX 48 - 4 1.8 GHz HBM 32
Intel Xeon Gold 6148 (Skylake) 40 2 2 2.4 GHz1 DDR4 188
AMD EPYC 7643 (Milan) 96 2 8 2.3 GHz1 DDR4 251

TABLE I: Hardware configuration used in this work.

two and four, the critical method is used. Larger thread
counts utilize the tree method.

7) KMP_ALIGN_ALLOC: This variable, which is also un-
documented, is used to define the memory alignment of inter-
nal data structures allocated by the LLVM/OpenMP runtime
using the __kmp_allocate routine. The default value is
the cache line size of the architecture. The A64FX processor
has a cache line size of 256 bytes whereas the X86 processors
considered here have a cache line size of 64 bytes. Therefore,
for the A64FX processor we consider 256 and 512, with 256
as the default, and for the X86 processors, we consider 64,
128, 256 and 512, with 64 as the default.

IV. METHODOLOGY

Our study is devoted to finding the parameters that work
best for the whole application while minimizing the intrusion
during development and deployment. Consequently, configu-
rations are not chosen on a “per-kernel”, i.a., parallel region,
basis but for the entire run. This does not only reduce the
search space considerably, but also reflects the fact that users
cannot practically tune and modify each kernel in isolation
when an application is set up on a system.

Another key aspect of this study is a ground up approach to
analyzing the results i.e., we apply visualization tools and sta-
tistical techniques to understand and explain relations among
different variables, applications, and architectures. We utilize
linear and logistic regression models and discuss their benefits
and shortcomings. This analysis, described in Section IV-D, re-
veals underlying relationships which allows us to characterize
the influence environment variables per architecture.

We use and evaluate the performance of LLVM/OpenMP
over multiple benchmarks in this study. All applications are
compiled with LLVM/Clang 15.0.32 compilers. This version
is fixed across the aarch64 and x86 machines. For our
evaluations, we use three different CPU micro-architectures
spanning two instruction sets, commonly deployed in HPC
systems. Key facts about the CPUs are presented in Table I.

A. Benchmark Applications

The considered benchmarking suites and applications are
briefly described here. For all the benchmarks, we use the
host OpenMP implementation for our experiments.

1Clock frequencies of Intel and AMD processors mentioned here reflect
their base frequency. Their true clock frequency is variable and is determined
by the CPU frequency governor which is set to performance mode.

2We utilized this version at the start of our data collection process. Given
the stability of the LLVM/OpenMP host runtime across recent versions, our
analysis remains valid and applicable to the latest LLVM release.

1) NAS Parallel Benchmarks: The NAS Parallel Bench-
marks (NPB) [19] are a small set of programs designed to
help evaluate the performance of parallel supercomputers. The
benchmark suite has been extended to include new benchmarks
for unstructured adaptive meshes, parallel I/O, multi-zone
applications, and computational grids. Problem sizes in NPB
are predefined and indicated as different classes. We use the
following benchmarks written in C and OpenMP: BT, CG, EP,
FT, LU, MG.

2) BSC OpenMP Tasking Suite: The objective of the suite
is to provide a collection of applications that allow to test
OpenMP tasking implementations [2]. We consider the follow-
ing applications: Alignment, Health, NQueens, Sort, Strassen.

3) RSBench: RSBench [20] is a mini-app representing a
key computational kernel of the Monte Carlo neutron trans-
port algorithm. Specifically, RSBench represents the multipole
method of performing continuous energy macroscopic neutron
cross section lookups.

4) XSBench: XSBench [21] is a mini-app representing a
key computational kernel of the Monte Carlo neutron transport
algorithm. Specifically, XSBench represents the continuous
energy macroscopic neutron cross section lookup kernel.

5) SU3Bench: The kernel is based on the mult_su3_nn
SU(3) matrix-matrix multiply routine in the MILC Lattice

Quantum Chromodynamics (LQCD) code. Matrix-matrix (and
matrix-vector) SU(3) operations are a fundamental building
block of LQCD applications.

6) LULESH: LULESH [22] approximates hydrodynamics
equations discretely by partitioning the spatial problem do-
main into a collection of volumetric elements defined by an
unstructured hex mesh.

B. Data Collection, Cleansing and Pre-Processing

All applications were compiled with the same version
of LLVM/Clang built for respective architectures with -O3
-march=native -fopenmp compilation flags and there-
fore, improvements in runtime, if any, are reported over the
optimized binaries. For Fujitsu A64FX, -march is replaced
with -mcpu to instruct the compiler to generate SVE instruc-
tions where possible.

The benchmarks were executed multiple times in a cluster
environment. Execution was batched in a way that all config-
urations were explored for a setting iteratively. This decision
was made to preserve the relative performance of parameter-
ized environment variables for that setting if multiple such runs
were not possible. We decided to vary the number of threads
and input sizes for applications, but not simultaneously due
to the large search space. The performance data distribution
generated in each setting is useful for observing how the
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trends emerge and change when these variations in number
of threads or input sizes are applied. For instance, the NAS
Parallel Benchmarks and BSC OpenMP Task Suite are both
configured for varied input size, while keeping thread count
constant and remaining proxy applications are configured for
varied thread counts with default input size.

The raw data is stored and tabular datasets for each setting
are created after extracting and processing. Both, the raw
output and processed datasets will be open sourced for use by
the community. Afterwards, the datasets are further enriched
with the runtime of the default settings discussed in Section III.
Speedup is then calculated from the observed runtime of
an experiment compared to the default configuration. These
data files collectively include over 240,000 unique samples,
processed from the raw output of application execution and
converted into tabular data files. The distribution of samples
is shown in Section IV-B.

Architecture Applications #Samples
Fujitsu A64FX 15 53822
AMD Milan 13 99707
Intel Skylake 12 90230

TABLE II: Dataset description.

C. Statistical Significance Of The Collected Data

We conduct a Wilcoxon signed-rank test [23] to evaluate the
significance of runtime differences of the same configuration
when run multiple times i.e., we want to see the variation
in observed results per configuration. The test is conducted
in pairs of observations for each configuration. These pairs
are referred to as R0, R1 and R2. And we showcase the
consistency in performance for all pairs of a configuration.
This test is applied because the distribution of runtime data is
not normally distributed as we can see in Fig. 1.

As an example, we perform this test for the Alignment
benchmark on all three processors. The results are shown in
Table III. Results are generated as a statistic and corresponding
p-value. A high p-value indicates there is no statistically
significant difference in the results observed between those
pairs. Thus, the runtime measurements across multiple runs are
consistent on that architecture. Low p-values, as seen for both
X86 processors, indicate that there is a statistically significant
difference in the runtime measurements. This implies that there
are inconsistencies (aka. noise) in the runtime measurements
of the benchmarks on these processors.

Table IV shows that the mean and standard deviation
calculated for each execution of the Alignment benchmark
on an architecture are similar. The means for runtime mea-
surements on A64FX are the same, with minor differences
in the std. deviation. For the Milan and Skylake, the means
and standard deviation calculated for all measurements are
similar for the respective architecture. This was observed
across all benchmarks on the X86 architectures. To mitigate
variations in runtime of configurations, we average all runtime
measurements per configuration.

Architecture-Benchmark Pair Test Stat p-value

a64fx-alignment-small
R0, R1 1157254.5 0.73
R1, R2 1161973.0 0.86
R2, R3 1155559.5 0.72

milan-alignment-small
R0, R1 4095517.0 3.23e-12
R1, R2 1529843.0 0.0
R2, R3 1564503.5 0.0

skylake-alignment-small
R0, R1 4555474.0 0.19
R1, R2 2497324.0 4.19e-154
R2, R3 2598135.0 1.77e-140

TABLE III: Wilcoxon test results for runtime comparisons
across architectures.

Architecture-Application Runtime Idx Mean (sec) Std Dev (sec)

a64fx-alignment-small
Runtime 0 0.131 0.310
Runtime 1 0.131 0.310
Runtime 2 0.131 0.311

milan-alignment-small
Runtime 0 0.135 0.308
Runtime 1 0.109 0.265
Runtime 2 0.111 0.274

skylake-alignment-small
Runtime 0 0.061 0.140
Runtime 1 0.062 0.142
Runtime 2 0.062 0.139

TABLE IV: Runtime statistics for different architectures.

D. Analysis Methodology

The combination of environment variables, application
parameters, and underlying architecture create a high-
dimensional search space. To extract meaningful insights from
such high-dimensional data, we need to reduce the number
of dimensions. We have considered linear techniques, namely
linear and logistic regression to model the data. Linear tech-
niques offer the benefit of providing a certain level of inter-
pretability in the machine learning models and their results.
However, they have limitations that make them less effective
for accurately modeling high-dimensional data. In such cases,
non-linear techniques are more appropriate.

The distribution of points in Fig. 1 indicates that our data
does not satisfy the requirements for fitting a linear regression
model. This is experimentally observed with low confidence
scores associated with poor model fitting. To address this
challenge, we reformulate the problem as a classification task.
We further annotate our processed data by labeling each
sample and apply a classifier to find a separation boundary in
high-dimensional space. The samples are labelled as “optimal”
if speedup > 1.01, “sub-optimal” otherwise (corresponding to
at least 1% improvement in application performance).

To analyze samples across applications or architectures, we
encode applications and architectures as “features” in the data.
This encoding is a naive numeric scheme. These features
act as placeholders for the underlying characteristics they
represent. More robust and sophisticated encoding schemes
can be applied to more accurately represent architecture details
and application embeddings. However, for the purpose of
our experiments, this naive encoding scheme works well as
indicated by high model prediction scores.

All analysis scripts are written in Python 3 and we use
Pandas and Scikit-Learn to clean, aggregate, and normalize

923



data where necessary. Default features in all cases include
the input size, number of threads, and environment variables
under consideration. Additional features are added based on
the grouping style explained here:
1) Per Architecture-Application – here data includes samples

from an application when run on a specific processor.
This includes additional features of variation from input
sizes/thread counts.

2) Per Application – here data includes samples from an ap-
plication across all architectures, input sizes/thread counts.

3) Per Architecture – here data includes samples from all
applications run on a specific processor. Additional features
include applications, varied input sizes/thread counts.

To gather insights from the machine learning model, we
use the coefficients of the learned logistic regression model.
These absolute values of the magnitude of coefficients act
as hyperparameters that control the separation (classification)
boundary. Once we get these magnitudes, we weight normalize
them and analyze the result. These are described in the
following section.

V. RESULTS

We share the insights gathered from our outlined analysis in
the form of research questions, heat maps and tables for the
benefit of the reader. Darker shades imply larger influence.
We note that these analyses are solely data driven, and do not
include profiling and any other performance analysis software.

1) What is the upshot potential for applications and does
this translate to other architectures?

The observed improvement in runtime expressed as speedup
varies from 1.0x to 4.85x across all data collected in this study.
A64FX shows this wide range in highest observed speedup
from 1.0x to 4.85x with a median improvement of 1.02x. On
the Milan architecture, the observed highest speedup ranges
from 1.011x to 2.6x with a median improvement of 1.15x.
Range of highest speedup on Skylake is from 1.0x to 3.47x
with a median of 1.065x.

The same application running on different architectures can
have different upshot potential. For instance, in Table V, we
show the range of maximum speedup for the Alignment and
XSBench benchmarks. The latter only improves minimally
on A64FX and Skylake platforms, whereas on Milan more
than 2.6x can be achieved. The Alignment benchmark shows
consistent potential across architectures.

Application Architecture Speedup Range (x)

Alignment
A64FX 1.032 - 1.101
Milan 1.022 - 1.186

Skylake 1.065 - 1.111

XSBench
A64FX 1.004 - 1.015
Milan 1.016 - 2.602

Skylake 1.001 - 1.002

TABLE V: Speedup range for different applications on differ-
ent architectures.

The range of speedup observed per application across archi-
tectures can be found in Table VI. Here, the range represents

the highest upshot potential observed over the default for each
architecture.

Application Speedup Range (x)
Alignment 1.022 - 1.186
BT 1.027 - 1.185
CG 1.000 - 1.857
EP 1.000 - 1.090
FT 1.010 - 1.545
Health 1.282 - 2.218
LU 1.020 - 1.121
LULESH 1.004 - 1.062
MG 1.011 - 2.167
Nqueens 2.342 - 4.851
RSBench 1.004 - 1.213
Sort 1.174 - 1.180
Strassen 1.023 - 1.025
SU3Bench 1.002 - 2.279
XSBench 1.001 - 2.602

TABLE VI: Speedup range for different applications.

2) Does the same set of environment variables define this
upshot across architectures for an application?

In our experiments we find that the same set of environment
variables may result in speedups across architectures. The
performance of an application program can be characterized by
the underlying architecture, program representation, input size
and number of threads along with the environment variables
chosen for this study. The results in Fig. 2, summarize our
findings. Columns names “Architecture” and “Input Size” are
added to reflect varying architectures and inputs corresponding
to the data used for grouping in this analysis.

The deeper colours imply that those features are responsible
for explaining the runtime performance more than the others.
The architecture column includes the fraction of influence
accounted for that application (row). We observe that many
applications exhibit some degree of reliance on the architec-
ture, indicating that the same environment variable-value pairs
were not consistently beneficial for a given application across
all architectures in our study. We also note that the applications
from BSC OMP Task Suite show very low reliance on the
architecture suggesting that tuning the environment variables
once is sufficient to obtain good performance on all architec-
tures.

Note that Sort and Strassen benchmarks show no reliance
because they were not executed on the Skylake and Milan
processors due to higher traffic on the cluster.

3) Are there any specific variables that work best for an
architecture?

Fig. 3 highlights the variables that are generally influential
in determining the sway in performance on an architecture. In
decreasing order, OMP_NUM_THREADS, OMP_PROC_BIND
and OMP_PLACES influence runtime across all considered

architectures for the applications we have chosen. This result
validates other studies which have primarily focused on tuning
these variables or corresponding ICVs.

There is some impact of KMP_LIBRARY and
KMP_BLOCKTIME on performance on all architectures.
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Fig. 2: Heat map highlighting the influence of features when
data is grouped by application.

Fig. 3: Heat map highlighting the influence of features when
data is grouped by architecture.

Since, OMP_WAIT_POLICY is derived from both in
LLVM/OpenMP, one may choose to optionally only tune this
variable instead of the corresponding KMP_* variables. We
see very low relevance of KMP_FORCE_REDUCTION and
KMP_ALIGN_ALLOC when applications are grouped by the
underlying architecture. However, some reliance is observed
in the per-application grouping strategy in Fig. 4.

For an architecture if the “Application” column shows
darker shades in Fig. 3, one may choose to look at the next
figure describing the impact seen across applications in Fig. 2.
Now, if the “Architecture column” has a darker shade in
Fig. 2, one may look at the finer grouping of Per Architecture-
Application in Fig. 4. This is the hierarchical style of modeling
we have adopted here. A user may choose to look at the impact
of environment variables at different levels of granularity to
identify the most impactful ones to tune for their specific
application kind and architecture.

4) What trends (if any) are associated with the worst
performance?

A commonly observed trend related to the worst perfor-
mance is observed with the specific thread placement on
cores and threads bound to the master/primary thread when
the application was run with large number of threads. This
behaviour is expected because the master/primary binding
policy will bind the threads to the same “place” as the
master/primary thread. In the OpenMP fork-join execution
model, the application is executed by the primary thread,
and multiple threads are forked when a parallel region is
encountered. Based on the master binding policy, these new
forked threads will also be located on the same “place” as the
primary thread which is not desirable with large number of
threads and we recommend this pair of settings to be avoided.

App Arch Variable Value
Nqueens All KMP LIBRARY turnaround

CG*

A64FX defaults defaults

Milan KMP BLOCKTIME 200
OMP PROC BIND spread/true

Skylake

KMP BLOCKTIME 200

OMP PLACES cores/sockets/
ll caches

KMP FORCE tree/atomic
REDUCTION

TABLE VII: Best Performing Environment Variables and
Values.

The high variance in distribution of performance data as
portrayed by violin plots, and non-uniformity in factors im-
pacting application performance as shown by the heat maps,
makes drawing conclusions and stating which parameters and
associated values are better performing very challenging. For
example, we share the most impactful performing variables
and values for two applications that in Table VII. On one
hand, KMP_LIBRARY=turnaround significantly improves
the NQueen applications performance across all architectures,
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whereas we see a different set of variables and associated
values affecting the performance of the CG application on
different architectures. Therefore, we direct the reader to the
heat maps to understand the impact of the additional factors
to performance such as architecture, input sizes and thread
counts before selecting parameters and respective values.

VI. CONCLUSION AND FUTURE WORK

We have performed large scale parameter space exploration
of a wide variety of applications on three different CPU
architectures. This effort has led to the collection of over
240,000 data samples that have been cleaned and transformed
into tabular data files. The distribution of performance data is
visualized using violin plots. Initial observations reveal a wide
range of performance variations and a non-normal distribution
of the data. Additional violin plots displaying the distribution
of performance data have been included in the appendix for
the reader’s reference.

Linear modeling techniques have been specifically cho-
sen for their interpretability aspect. To circumvent inherent
restrictions within linear models, we show how data anal-
ysis was performed with a surrogate task of classification.
This “simplest-first” approach to modeling data is useful in
understanding when different variables influence application
performance. Fig. 2 and 3 share the features found to be
most impactful for both architecture and application grouping
strategies respectively.

The results from qualitatively defining the impact of vari-
ables can serve as a search space pruning technique. As we
have seen, not all environment variables contribute equally to
application performance. Therefore, tuning a subset of envi-
ronment variables can help achieve near optimal performance.
The impact of an environment variable is further subject to
the application and underlying CPU architecture. Therefore,
tuning a subset of variables for that architecture or application
can be less expensive to the user.

The outcome of the performed analysis above can also be
used in other autotuning studies that aim to find near-optimal
configurations by applying discrete search space traversal
algorithms. For example, hill climbing algorithms vary the
parameter value of one variable at a time while keeping others
fixed till all have been parsed. While randomizing the order
of variable settings reduces the likelihood of encountering
local minima, having information on the impact of variables
can further decrease this probability, especially when the
dependency relationships between parameters are unclear.

We acknowledge the limitation of this study. All of these
analyses were made possible due to the large scale exploration.
Given the length of this effort in terms of time, this approach
is not scalable from a user’s perspective. Another limitation
includes the reduced exploration of thread counts for the
applications and architectures in consideration. We will add
more thread counts and latest CPU chips in the data collection
strategy. Given the importance of thread counts, we direct the
user to other studies that can recommend thread counts given
an application and architecture.

These results can be adopted by users if their OpenMP
applications have similar computation patterns to the bench-
mark applications here. However, this isn’t always the case.
By viewing the heat maps in Fig. 2 and 3, we see that there is
no clear winner for an application or an architecture. There-
fore, there is no guarantee this knowledge can be transferred
to new unseen applications or architectures. However, our
methodology can guide future studies and help gain insights
in different kinds of applications. The development of non-
linear approaches to model such data and devising methods
to fine-tune these models with limited data of prior unseen
applications is a suitable path forward.
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APPENDIX

We share more violin plots of the performance data distribution
for the reader’s benefit in Fig. 5 to 7.
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Fig. 5: Performance observed during full search space exploration of the Environment Variables on the BT benchmark [19]
with different processors.

Fig. 6: Performance observed during full search space exploration of the Environment Variables on the Health benchmark [2]
with different processors.

Fig. 7: Performance observed during full search space exploration of the Environment Variables on the RSBench proxy
application [20] with different processors.
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