PIMnast: Balanced Data Placement for GEMV
Acceleration with Processing-In-Memory

Mohamed Assem Ibrahim
Advanced Micro Devices, Inc.
mohamed1.ibrahim @amd.com

Abstract—With unprecedented demand for generative Al
(GenAl) inference, acceleration of primitives that dominate
GenAl such as general matrix-vector multiplication (GEMYV) is
receiving considerable attention. A challenge with GEMYVs is
the high memory bandwidth this primitive demands. Multiple
memory vendors have proposed commercially viable processing-
in-memory (PIM) prototypes that attain bandwidth boost over
processor via augmenting memory banks with compute capa-
bilities and broadcasting same command to all banks. While
proposed PIM designs stand to accelerate GEMYV, we observe
in this work that a key impediment to truly harness PIM
acceleration is deducing optimal data-placement to place the
matrix in memory banks. To this end, we tease out several factors
that impact data-placement and propose PIMnast methodology
which, like a gymnast, balances these factors to identify data-
placements that deliver GEMYV acceleration. Across a spectrum
of GenAl models, our proposed PIMnast methodology along
with additional orchestration knobs we identify delivers up to
6.86 x speedup for GEMVs (of the available 7 x roofline speedup)
leading to up to 5x speedup for per-token latencies.

Index Terms—Generative AI, GEMY, Processing-in-Memory

I. INTRODUCTION

Generative Al (GenAl), powered by transformer architec-
ture, has revolutionized human-computer interactions with its
ability to respond to natural language prompts. However,
unlocking the promise of GenAl will necessitate that a non-
trivial subset of above Al capabilities be executed locally on
edge/client devices (e.g., laptops, automotive compute, etc.).
Motivations for this are manifold: steep costs (e.g., a tradi-
tional search query costs 10x less and consumes 100x lower
energy as compared to one powered by cloud GenAl) [1]-[3],
better personalization via access to rich user context, stronger
privacy preservation, and lower latency. As such, in this work,
we focus on the deployment of such GenAl techniques on
client devices, specifically, laptops.

An important primitive that dominates GenAl inference
is general matrix-vector multiplication (GEMV) and a key
characteristic this primitive manifests is the high memory
bandwidth it demands. A promising technology which stands
to deliver acceleration for GEMV primitives via memory band-
width boost is processing-in-memory (PIM). Multiple memory
vendors have proposed commercially viable PIM prototypes
that, via augmenting memory banks with compute capabilities
and broadcasting same command to all banks, attain bandwidth
boost over processor that only accesses a memory bank at a

979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00137

Mahzabeen Islam
Advanced Micro Devices, Inc.
mahzabeen.islam @amd.com

970

Shaizeen Aga
Advanced Micro Devices, Inc.
shaizeen.aga@amd.com

Data-placement
dictates PIM acceleration
Arrﬁl

Channel0

Baseline

Factors affecting data-placement

PIM Memory
archi e J{_configuration
GenAl GEMV
needs needs

Factors affecting data-placement

— J
|

i
i

Channell

Bank0 Bankl Bank0 BankT:/

‘ PIM ALU N ‘ ‘
N

Potential data placements

(b)

Optimized data placement

(a) (0

Fig. 1: PIMnast balances myriad factors to identify data-
placement delivering GEMV-PIM acceleration.

time. While proposed PIM designs' stand to accelerate GEMV,
we observe in this work that a key impediment for attaining
PIM acceleration is deducing optimized data-placement to
place the matrix in memory banks.

Traditional processors such as CPUs and accelerators such
as GPUs decouple computation units (e.g., cores, compute
units in GPUs) and memory allowing any computation unit to
access any memory module (e.g., channels/banks). In contrast,
as depicted in Figure la, PIM closely couples computation
unit (PIM ALU) and associated memory (e.g., memory bank
in commercial PIM prototypes) with the computation unit
only accessing data present in associated memory module.
By localizing the ALUs and data, along with broadcasting
same command to all memory modules, PIM attains memory
bandwidth boost over processor. However, this collocation
requires further thought to what data is placed in which
module.

Given the importance of data-placement in determining
resultant PIM acceleration, in this work we first tease out
myriad factors that impact data-placement. We identify four
key categories of factors depicted in Figure 1b which lead
to a rich space of potential data-placements. Specifically, PIM
architecture (e.g., PIM ALU design, load-balancing over mem-
ory banks, etc.), memory configuration (e.g., data interleaving,
row buffer locality, etc.), application/ML needs (e.g., data-
formats, scale-factors, etc.), and GEMV needs (e.g., shape/size
of GEMV). We discuss how each of these factors places

Note, we consciously choose to confine our work to memory vendor
proposed, and hence commercially viable, PIM prototypes and focus on
maximizing GEMV acceleration for these prototypes.

unique demands on an optimized data-placement.

Armed with above holistic view of factors of import, we
propose PIMnast methodology (Figure 1c), which like a
gymnast, balances said factors and their demands to help
identify data-placement that delivers PIM acceleration. We
present algorithms which help guide the choice of data-
placement and discuss system implications of attaining said
data-placement. Additionally, we also identify orchestration
knobs which deliver further PIM acceleration via careful
scheduling of computation and resource management to fa-
cilitate reuse.

Overall, key contributions of this work are:

o This work focuses on maximizing acceleration for
GEMYV, a critical GenAl primitive, using commercial
processing-in-memory (PIM) solutions. To this end, we
argue that data-placement has a major impact on resultant
PIM acceleration and as such, we carefully tease out
factors which affect data-placement and identify their
intricate interplay.

« Armed with above holistic view, we propose PIMnast, a
methodology which, like a gymnast, balances above myr-
iad factors to guide data-placements which maximizes
GEMV-PIM acceleration under given set of architecture
and application constraints.

« We also identify that optimized data-placement can be
coupled with meticulous computation orchestration and
resource management to deliver further PIM acceleration
via exploiting reuse.

e Our analysis with GEMVs manifesting in variety of
GenAl models demonstrates that our proposed PIMnast
methodology coupled with orchestration knobs we iden-
tify attains up to 6.86x speedup for GEMVs of the
available 7x roofline speedup leading to up to 5x end-
to-end speedup for per-token latencies.

II. BACKGROUND
A. GEMV: Memory Bandwidth-bound GenAl Primitive

Transformer architecture powered GenAl inference, de-
picted in Figure 2a, comprises both compute-heavy prompt
phase (process user specified natural language prompt) and
memory-bandwidth-heavy token generation phase (generate
response to user prompt a token at a time). Token generation
dominates the runtime (Section VI) specifically for client/edge
scenarios (e.g., laptops, the focus of this work) where op-
portunities for batching multiple user requests are low. Espe-
cially with batch-size 1 (typical for laptop scenarios), token
generation is dominated by general matrix-vector (GEMV)
computations. As GenAl models of interest are comprised of
billions of parameters, they manifest large memory footprints
(typically several GB or more), rendering caches ineffective
and resulting in DRAM bandwidth becoming a limiting factor.
As an example, the token generation phase of a single 13B
parameter model alone can consume as much as 120 GB/s
of DRAM bandwidth considering 100ms per generated token,
even with optimistic assumptions about software optimizations

971

Input prompt

e.g., What are

Model Weights

| PromptH Generation]-'[

Output tokens
e.g., Important Al
trends are

mport, Al trends?

(a)

Important

Prompt phase (GEMMs) Generation phase (GEMVs)

— Columns
Bank } Rows
LPDDR) / [Row buffer
channe/l/ Column decoder
(b) Register
file

Fig. 2: (a) GenAl inference phases. (b) LPDDR-PIM overview.

to reduce auxiliary data structures associated with the model.
In other words, a single GenAl model could consume the
entire DRAM bandwidth of all but the highest end laptops,
to say nothing of supporting other user applications (gaming,
video playback, etc.), display, and other activity in the system
concurrently. As GenAl continues to proliferate, accelerating
memory bandwidth-bound GEMVs that dominate inference is
critical to truly democratize GenAl productivity gains.

B. Commercial PIM Prototypes

Recently, multiple memory vendors like Samsung and
SK Hynix have proposed commercially viable processing-
in-memory (PIM) designs that can be integrated with HBM
[4] as well as LPDDR [5] and GDDR [6] memory. These
designs place a computation unit/ALU near memory banks as
we depict in Figure 2b for LPDDR memory.

Baseline LPDDR memories are comprised of independent
channels and multiple banks therein. A read (or write) access,
causes a specific DRAM row in a specific bank to be activated,
wherein a data in the row is read out to row-buffer associated
with the bank. Subsequently, a column access command reads
a specific DRAM word (typically 256bits) from the row-buffer
over the shared data-bus in the channel. In contrast, with
PIM, higher effective bandwidth can be attained by activating
same row across all banks (all-bank row activation) followed
by broadcasting same column command in parallel to all
banks. This leads to memory bandwidth boost commensu-
rate to number of banks (typically 16 banks per channel)
and PIM command rate (typically 2x lower than baseline
reads/writes [4]), about 4-8x in practice as demonstrated by
PIM prototypes.

The computation unit near memory banks comprise a SIMD
ALU and register file. Further, as only parts of applica-
tions which demand high memory bandwidth are offloaded
to PIM, interoperability with SoC (CPUs, GPUs, etc.) is
paramount. Consequently, PIM designs lack sophisticated in-
struction orchestration capabilities and instead are controlled
via read/write like fine-grain PIM commands from the proces-
sor. Finally, data consistency between processor and PIM is
typically enforced in software (e.g., cache flushes).

GEMV

Matrix
x

Vector

LPDDR :

[— * qplace matrix in @ Broadcast vector
H / memory bank‘s/ . toallbanks

Channel0 Channell
|:| Move vector from MACs

SoC to memory o
o

Move matrix from
memory to SoC

MACs

&

Baseline

Bank0 Bankl Bank0 Bankl

B BEyacE 5]

© All banks compute locally
O Spill output to memory

(b)

PIM

(a)
Fig. 3: (a) Baseline vs. PIM GEMV. (b) Steps in PIM GEMV.

1II. GEMV-PIM PERFORMANCE DETERMINANTS

A. Mapping GEMV to PIM

As discussed in Section II, large GEMVs that manifest in
GenAl demand high memory bandwidth and can benefit via
offload to PIM. We depict in Figure 3a an illustration of
GEMV in baseline versus PIM. GenAl inference workflow
for token generation (Section II-A) comprises sequence of
GEMVs (weight matrix X input vector) with interspersed
vector operations (e.g., layer normalization, softmax, etc.). In
steady state for baseline system, the key performance determi-
nant is reading of large weight matrices from memory into the
SoC as depicted. In contrast, with PIM, the weight matrices
are left stationary in memory, while the SoC broadcasts vector
elements in parallel to memory banks which then compute on
them in parallel.

We also depict the four key steps in GEMV orchestration
with PIM (GEMV-PIM) which are common for available com-
mercial PIM prototypes in Figure 3b. First, weight matrices are
appropriately placed in memory banks @, which we term as
data-placement. Second, the SoC (CPU/GPU etc.) broadcasts
vector elements to banks in parallel @ which are stored
in near-bank structures (e.g., registers). This is followed by
broadcasting MAC (multiply-accumulate) commands to banks
in parallel @ causing each bank to multiply weight element in
memory to vector element in register. Finally, after multiple
MAC operations, an output element is ready, which is then
spilled to memory @.

B. GEMV-PIM Performance Determinants

GEMV-PIM acceleration is determined by harnessing PIM
memory bandwidth boost to the fullest while overcoming any
potential overheads. Specifically, data-placements which (a)
allow command broadcasts across all banks, and (b) avoid
any data-movement between banks or between memory/SoC
are best suited to harness PIM memory bandwidth boost.
Additionally, every DRAM row activation in memory incurs
row-open overheads. Consequently, data-placements which
allow processing an open DRAM row in its entirety in every
bank before opening another row will incur less row-open

972

o | /@ Bank @ Load-balanced | € Bank-local | @) Lane-local | @ Register
g broadcast banks compute compute constraints
8
% MAC reg0, regl
a D)
= =g —-
T || Banko Banki | Bank0 Banki {Bank0 Banki | <M

W & i#registers

@ Data interleaving © Row-locality | © Varying #banks

(b)

Bank0 Bank-n
Physical page
]

Memory

configuration

“» row-buffer

Fig. 4: Factors impacting data-placement.

overheads which eat into PIM acceleration. As such, optimized
data-placements are critical to attaining PIM acceleration.
Unlike traditional architectures, where computation or-
chestration or scheduling of compute commands is not as
dependent on data-placement in memory (e.g., sort using
quick-sort or heap sort), in PIM, computation orchestration
often follows from how data is placed in memory. This is so as
orchestration is constrained to command broadcasts over banks
to harness memory bandwidth boost. Nevertheless, within
this limited space, tuning computation orchestration to better
exploit reuse can lead to better performance. As an example,
an orchestration mechanism which reuses broadcasted vector
elements (Figure 3b) can lead to better PIM performance.

C. Factors affecting Data-placement

Next, we carefully tease out factors that need to be bal-
anced for optimized data-placement for GEMV-PIM acceler-
ation. We group them into four categories and identify inter-
dependencies amongst them.

1) PIM Architecture: We depict ways in which PIM ar-
chitecture dictates optimized data-placement in Figure 4a. As
discussed, memory bandwidth boost is the key PIM benefit
and as such data-placements which allow same command to
be broadcasted to memory banks @ lead to better performance.
Further, as memory banks are compute workhorses in PIM,
data-placements which load-balance GEMV computation @
are also preferred for better performance. Current commercial
PIM prototypes do not provision high-speed bank-to-bank
communication and as such data-placements which avoid
cross-bank communication are preferred @. Notice that load-
balanced banks and avoiding cross-bank communication can
conflict with each other. Of the two commercial PIM proto-
types, Samsung design does not provision for cross-SIMD-
lane communication requiring costly shift operations (e.g.,
to reduce data in multiple lanes). As such, data-placements
which avoid cross-SIMD-lane communication also lead to
better performance in this design @. Finally, PIM designs
provision for limited scratchpad space (e.g., registers) near
PIM ALUs. As such, data-placements which work within these
constraints are the only ones that can be exercised @.

2) Memory Configuration: We depict ways in which mem-
ory configuration dictates optimized data-placement in Fig-
ure 4b. First, physical pages are often interleaved across
banks in the system @ to maximize channel/bank parallelism

GEMV

B

Matrix
10333\

£ | (M Row-parallel Balance rows Bank- B2 Row block; N
g compute in banks local row column-major
£ v
< Bank0 Bank1 Bank0 Bank1 Bank X
@ (8 SIS EEE PNED
== =)
z ‘:' ‘:' E
o matrix-row e row-buffer 4/
©
g W PIM tiles 22 Adjust tile shape and ordering | [fE}] Large page +ti|ing\
£
®
s Bank0 Bankl | @ Bank0 Bank-n
2n [an
g [I=&Es .%/%, e
S| | row-block pim tiles Y e M e
tile ordenng row- bUffEF’ & row-buffer«-")

Fig. 5: Tackling of data-placement factors with PIMnast.

and data-placements have to be cognizant of this. Second,
every time a DRAM row is activated, row-open overheads
are incurred. As such, data-placements which fully process
an open row before opening another @, thus incurring low
row-opens overall, lead to better performance. Finally, systems
provision for different number of channels, and hence banks,
which an optimized data-placement has to be cognizant of (@).

3) GenAl Needs: Model scaling is one of the key factors
contributing to disruptive capabilities of GenAl models. As
memory capacity fails to keep up with this scaling [7],
innovations in data-formats (e.g., BF16, INTS, INT4) have
been relied on. Low precision data-formats lower memory
capacity needs allowing larger models to be deployed even
on client devices. Additionally, they can also harness higher
compute throughput that low-precision format avails. Data-
placement has to be cognizant of data-format under consider-
ation. Further, low-precision inference often relies on block-
level scale-factors [8] and metadata which also has to be
appropriately placed in memory. In the context of GEMYV, with
block-level scale-factors, computation of single output element
is interspersed with multiplication of partial outputs with both
weight and input-vector scale-factors.

4) GEMV Needs: Finally, GEMVs manifested in realistic
applications come in all shapes/sizes and this has to be factored
in data-placement. While factoring GEMV shapes/sizes is
also challenging in baseline designs, above highlighted factors
further complicate this in context of PIM.

D. Factors affecting Orchestration

As discussed in Section III-B, in PIM, computation orches-
tration follows from data-placement chosen and is constrained
by the command broadcast requirement in PIM. That said,
exploiting reuse (e.g., input vector reuse) for better PIM
acceleration can lead to alternate orchestrations. Similarly,
local scratchpad (e.g., registers) allocation to temporary data
can also affect resultant PIM performance and lead to alternate
orchestrations.

IV. PIMNAST: GEMV-PIM DATA-PLACEMENT

We discuss in this section our methodology PIMnast, which
balances the myriad factors we discussed in Section III-C

973

O Tile-shapes OTile-orderings @ Data-placements

Eol vector Col-grder

A 1 A - i 1] @&]
den aF »EHE- B BB B
ellf i ? ZD tlle Eol ro(\jN -order CHO CH1
L:JJrlm ol p —’Ow o » Bank0 Banki BankO Bank1
[allrilst ; 1B [|
ullv]wllx v [elf] || [glf]| | [mll
ylz][0][1
2]3][4][5

vector

Bow-order

.‘mtm”am”m@”@uﬂl

Fig. 6: Decoupling tile-shape and tile-order leads to nine
possible data-placements (three are depicted).

to help guide an optimized data-placement for GEMV-PIM.
We focus in this section on deducing the optimized data-
placement and defer software considerations to realize said
data-placement to Section V-A. Further, we first begin via
intuitively discussing data-placement choices we make which
directly address the factors we identified in Section III-C. We
follow this with matrix tiling and tile-ordering which provides
a framework to realize our data-placement choices.

A. Tackling GEMV-PIM Data-placement Factors

1) PIM Architecture: We depict our data-placement choices
to tackle PIM architecture factors in Figure 5a. We number
each choice to match the factor it addresses in Figure 4. Since
each matrix row in GEMV matrix independently interacts
with input vector, to maximize bank broadcasts, we distribute
matrix rows over banks @). As such, post broadcasting input
vector to banks, each bank can independently work on separate
matrix rows but harness command broadcasts. To load-balance
GEMV-PIM, we attempt to equalize matrix rows amongst
banks @. To avoid cross-bank communication we attempt to
ensure a single matrix row is mapped to single bank in entirety
@2. Finally, to overcome the overheads associated with cross-
SIMD-lane computation, we block rows in a matrix and
distribute resultant row-blocks amongst banks when possible.
This allows us to have a column-major layout within row-
block @ such that SIMD lanes are each working on different
output elements avoiding cross-SIMD lane communication. Fi-
nally, we incorporate register constraints in our data-placement
algorithms to honor them (Section IV-B).

2) Memory Configuration: We tackle interleaving of data
across banks via tiling the matrix (Figure 5b (@) and picking
the tile-size to match data interleaving granularity (e.g., 256
bytes) of the underlying memory system.

Harnessing DRAM row-locality requires that tiles belonging
to same matrix row-block be placed consecutively in a row-
buffer within a bank. To do so, we first observe that in
presence of tiling, traditional matrix data-placement formats
such as row-major and column-major, couple tile-shape and
tile-order. That is, column-major placement can be considered
to be column-vector tiles (tile-shape) coupled with column-
order (tile-order) placement (Figure 6 top). Similarly, row-
major placement can be considered to be row-vector tiles

2Note, certain GEMV shapes/sizes make this challenging. We discuss these
scenarios in Section VI-F.

(tile-shape) coupled with row-order (tile-order) placement of
tiles (Figure 6 bottom). By decoupling tile-shape from tile-
order, with multiple tile-shapes (column-vector, row-vector,
2D-tile) and multiple tile-orders (column-order, row-order,
column-row-order), we can better control tile placement to
attain DRAM row-locality @@. Overall, by decoupling tile-
shape and tile-order, we can unlock a rich space of data-
placement possibilities (nine in all, three depicted in Figure 6)
and we discuss algorithms in Section IV-B which help walk
this space judiciously and help us attain DRAM row-locality.

To tackle varying banks in the system, we incorporate
number of banks in our tile-order algorithm (Section IV-B2).
Additionally, to better control DRAM row-locality in presence
of varying banks we propose to employ large pages in the
context of PIM @@. We discuss page-size necessary to cover
range of memory configurations in Section V-A.

Algorithm 1 Find tile-shape

1: Define:

2: W - MxK weight matrix, IV - Kx1 input vector, OV - Mx 1
output vector

3: in_dform - W/IV data-format, out_dform - OV data-format (bit)

4: inter_gran - memory interleaving granularity (bit), tot_bank -
total number of banks

5: tot_reg - total number of PIM registers, reg_size - size of each
register (bit)

6: Tile - m_tilexk_tile

7: function GETPARAM

8: Input: M, K, in_dform, out_dform, inter_gran, reg_size,
m_tile, k_tile

9: Output: in_reg, out_reg

10: in_reg_tot = (k_tile x in_dform)/reg_size

11: // Allow reuse of input reg space

12: in_reg = [(in_reg_tot X reg_size)/inter_gran
13: out_reg = [(m_tile X out_dform)/reg_size|

14: return (in_reg, out_reg)

15: function GETTILESHAPE

Input: M, K, in_dform, out_dform, inter_gran, reg_size,
tot_bank, tot_reg

17: Output: m_tile, k_tile

18: elem_per_tile = inter_gran/in_df orm
19: m_tile = elem_per_tile

20: k_tile = elem_per_tile/m_tile

21: while m_tile >= 1 do

22: // Test even-distribution

23: if M%(tot_bank x m_tile) == 0 then
24: in_reg, out_reg = getParam()

25: // Test reg availability

26: if (in_reg + out_reg) <= tot_reg then
27: // Tile-shape passing both tests
28: return (m_tile, k_tile)

29: else if m_tile > 1 then

30: m_tile = m_tile/2

31: k_tile = elem_per_tile/m_tile
32 else

33: return (m_tile, k_tile)

34: else if m_tile == 1 then

35: return (m_tile, k_tile)

36: else

37: m_tile = m_tile/2

38: k_tile = elem_per_tile/m_tile

974

3) GenAl Needs: To tackle data-format needs of GenAl, we
parameterize our matrix tiling and ordering algorithms to fac-
tor data-format under consideration. Finally, to tackle metadata
associated with weight matrices (e.g., scale-factors for low-
precision formats), we interleave weights and associated scale-
factors at memory interleaving granularity chunks to preserve
DRAM row-locality. That is, via fine-grain interleaving we
maximize the probability that weights and their associated
metadata map to the same DRAM row thus attaining row-
locality for PIM computation.

4) GEMV Needs: To tackle GEMV shapes/sizes we sim-
ilarly parameterize our matrix tiling and ordering algorithms
to factor matrix dimensions.

B. Matrix Tiling and Ordering

We discuss algorithms to pick tile-shape and tile-order that
balances data-placement factors we identified above. Note
that, to work with and not affect the interleaving granularity
of underlying memory system, we set the tile-size to match
interleaving granularity size.

1) Tile-shape Algorithm: Algorithm 1 depicts our tile-shape
picking methodology. Recall that, we aim to distribute and
balance matrix rows amongst banks to attain both command
broadcasts and load-balance compute in banks (Section IV-A1l
@. @®). To do so, for a given tile-size and input data-format
(line-18), we sweep the tile-height (m_tile) from maximum
possible (column-vector) to minimum (row-vector, line-21).
Note that, we sweep tile-shape from column-vector towards
row-vector, as this allows us to start with no cross-SIMD-lane
operations and helps avoid their concomitant overheads. That
said, our proposed sweep order does start with highest register
pressure and we harness the sweep to meet register constraints
(line-26). Our algorithm terminates when we identify a tile-
shape that attains even distribution of matrix rows or we pick
row-vector tile-shape.

2) Tile-order Algorithm: Algorithm 2 depicts our tile-order
picking methodology. Recall that, tile-ordering aids in ensur-
ing both that a matrix row is mapped to single bank in entirety
(Section IV-A1 @) and that DRAM row-locality is harnessed
(Section IV-A1 @). To realize both, we pick tiles first in
column-major order (line-12), picking enough tiles to spread
over available banks, before picking a tile in row-major order
(line-11). This ensures that tiles within a matrix row (block)
are mapped to same bank and same DRAM row (as possible
by underlying row-buffer size and tile-size). As depicted in
Figure 6, we term this order column-row-order or CR-order.
As such, Algorithm 2 assumes that the tiled weight matrix is
ordered in row-order fashion and outputs the tiles ordered in
appropriate CR-order given the number of banks in the system.

V. SOFTWARE CONSIDERATIONS AND ORCHESTRATION

A. Software and System Considerations

We discussed in Section IV how we balance myriad fac-
tors with our proposal PIMnast and derive optimized data-
placement for GEMV-PIM. We discuss here how we realize

Algorithm 2 Find column-row-order (CR-order) of tiles

1: function GETTILECRORDER
2: Input: one-dimension array of PIM tiles tiled_matrix[], con-
taining matrix [M, K] tiled with PIM tile [m_tile, k_tile] in row
order, M, K, m_tile, k_tile, tot_bank
3: Output: one-dimension array of PIM tiles tiled_cro_matrix[],
containing matrix [M, K] tiled with PIM tile [m_tile, k_tile] in
column-row-order
m_TM = M/m_tile
k_TM = K/k_tile
tot_tile =m_TM x k_TM
// num_abs - number of p contiguous all-bank spreads of
tiles following M dimension. p is 1 here.
8: num_abs = m_TM/(tot_bank X p)
9: tile_per_abs = tot_bank x p X k_TM

A A

10: for q=0 to num_abs-1 do

11: for cj=0 to k_TM-1 do

12: for ri=0 to (tot_bank x p)-1 do

13: tiled_cro_matriz|(q X tile_per_abs) + (cj x

tot_bank x p) + ri] = tiled_matriz|(q x tile_per_abs) +
(ri x k_TM) + cj]

14: ri++
15: cj++
16: q++
17: return tiled_cro_matrix|[]
[Baseline] [PIMnast] @ tile-size, tile-shape
tile-order, intra-tile
G)I-major]ay()ut _ quﬁ-_tjrder I Physical address view é
3 x| |= th c ﬂ 3| &bl [Large-page spanning £
= ? i i T 2 %m% all banks and row-buffer |
g E Iminio|p § ~ y n
oo |amstE |t Em R ||| | |z
- [ul[v]wilx ; =
_ [ullv] @m/ All banks in system LA E]
[1 [{ 8|5
g (" Baseline Glelim [LubF 5 m
5> | EEDEGQ--- o |
£ £ |@piMnast EEpl TOmin]
~ 3| [EEERERDEE-] 52

Fig. 7: PIMnast software and system considerations.

the resultant PIMnast data-placement in presence of system
and software considerations.

1) Realizing PIMnast Data-placement: We depict the
overview of changes necessary in Figure 7. First @, user
employs PIMnast (Section IV-B) to deduce tile-size, tile-shape,
tile-order and intra-tile-order (e.g., column major layout within
a tile to avoid cross-SIMD-lane ops, Section IV-A). Recall
that, PIMnast simply sets tile-size to interleaving granularity
of underlying memory system without affecting it. Realizing
other PIMnast recommendations requires that we first translate
the resultant logical view of matrix (specific tile-shape and tile-
order) to matrix’s virtual view via rearranging matrix elements
in virtual address space @.

Next, we need to ensure that this virtual view is indeed
realized in physical address space. Application address space
is divided into virtual pages each of which maps to a sys-
tem physical page (typically, 4KB, 64KB, 2MB, etc.). It
is the system physical page which gets interleaved across
banks/channel. A naive solution to translate PIMnast data-

975

placement would require physical page size as large as matrix
size. However, we observe that, minimally, the page-size
necessary is simply a product of interleaving-granularity and
total number of banks across all channels as this allows the
same command to be broadcasted to all banks (e.g., same
vector element interacting with specific weight elements in
banks). That said, to ensure DRAM row-locality is harnessed
(Section IV-A), we ensure that the page-size also covers
the row-buffers in banks (preferred page-size, depicted in
Table I) as depicted in Figure 7 @. To cover potential memory
configurations and future proof our proposal, we propose to
employ a 2MB page size.

TABLE I: Page sizes necessary for PIMnast with interleaving
granularity of 256bytes.

#channels | #banks | row-buffer size (KB) | preferred page-size (KB)
8 16 2 256
16 16 2 512

Note that, large pages can have associated challenges such
as memory fragmentation. However, they also can have con-
comitant benefits such as lower TLB pressure and can be
particularly beneficial for memory capacity heavy workloads
like GenAl models. Note that, while optimized PIM data-
placement requires large pages, there is no memory pinning
requirement necessary for PIM acceleration. Finally, low-end
systems with lower channel/bank counts can also potentially
lower large page-size needed.

2) Application Considerations for PlIMnast Data-
placement: For GenAl inference scenario that we focus
on, model weights are read-only and as such, proposed
PIMnast data-placement can be a one-time cost to rearrange
weight elements in virtual memory at model deployment.
Note that, we only offload token-generation phase GEMVs to
PIM which are memory-bandwidth bound (Section II-A). As
such, weight matrices are read by the SoC (e.g., CPU, GPU)
during prompt-phase. As PIMnast preserves the channel/bank
parallelism by preserving interleaving granularity as observed
in baseline and further as prompt-phase is largely compute-
bound, proposed PIMnast data-placement does not affect
prompt-phase performance. Finally, token-generation is
the dominant phase for GenAl inference especially at low
batch-sizes (Section VI-E) and our proposed data-placement
considerably accelerates this phase.

B. Orchestration Knobs

As discussed in Section III-B, in PIM, computation orches-
tration follows from data-placement chosen and is constrained
by the command broadcast requirement in PIM. That said, we
identify two specific knobs: register allocation and exploiting
input vector reuse, that open up opportunities to tune compu-
tation orchestration in PIM for performance.

1) Register Allocation: Registers associated with PIM
ALUs are the only low-overhead access scratchpad space
available to PIM computations. Unlike CPUs/GPUs, only a
handful of PIM registers are typically provisioned for area/cost

reasons. For GEMV-PIM, these registers primarily hold input-
vector (IV) elements sent by the SoC and partial output vector
(OV) elements before they are spilled to memory.

Appropriate allocation of registers can have an impact on
performance. Specifically we observe that, as read-to-write
(and write-to-read) DRAM turnaround overheads are incurred
every time we switch between sending IV elements (writes)
and MAC operations (reads), depicted in Figure 3b as @ and
©. lowering these overheads by sending IV elements in bulk
by allocating registers for IV can be beneficial. Empirically,
we observe that about eight registers help us amortize DRAM
turnaround overheads and we follow this allocation (we dis-
cuss effect of alternate allocations in Section VI-C1).

2) Optimizing Input-vector Reuse: We further also observe
that sending IV from SoC to PIM ALUs can comprise a non-
significant fraction of execution time. If, post data-placement,
each bank houses multiple row-blocks of W, IV sent from SoC
can be reused across row-blocks by interleaving computation
of two or more row-blocks and thus help lower the overhead of
transmitting input vector. Note that, to allow such row-block
interleaved computation, PIMnast data-placement simply has
to change the tile-order picked to ensure multiple W row-
blocks are placed in same DRAM row in a bank. In effect,
this amounts to increasing the CR-degree we employ: while
Algorithm 2 depicts CR-degree of 1, Algorithm 3 depicts how
we pick an appropriate/larger CR-degree. Finally, note that, as
CR-degree increases, OV register pressure increases as mul-
tiple partial outputs (per row-block) need to be remembered.
As such, Algorithm 3 maximizes CR-degree subject to register
constraints.

Algorithm 3 Find maximum CR-order degree

: function GETCROMAXDEGREE

1
2: Input: M, m_tile, tot_bank, in_reg, out_reg, tot_reg
3 Output: max_deg
4: rowblk_per_bank = M /(m_tile x tot_bank)
5: max_deg = cur_deg = 1
6: while cur_deg <= rowblk_per_bank do
7 if (cur_deg x out_reg) + in_reg <= tot_reg then
8 // Found possible max degree
9: max_deg = cur_deg
10: cur_deg = cur_deg + 1

11: return mazx_deg

VI. EVALUATION

A. Methodology

1) System Overview: In this work, we focus on GenAl
inference deployments on client platforms (e.g., laptops). A
modern laptop SoC comprises CPU cores, integrated graphics
(GPU), and an AI Engine (AIE) specialized for Al com-
putations, all of which are coupled with LPDDR memory.
We assume, as an example, AMD Ryzen™ PRO 7040 Series
processors comprising eight CPU cores, 12 compute units (of
GPU cores), 16 AIE tiles, and eight channels of LPDDR5x-
7500 memory for a peak memory bandwidth of 120 GB/s [9].

976

For our PIMnast evaluation, we assume the LPDDR mem-
ory is PIM enabled, with each LPDDR channel comprised of
sixteen banks. With sixteeen banks and with half the command
rate as is possible for PIM commands, this translates to a
best case PIM acceleration of 8x. However, with the penalty
incurred for DRAM row-opens, the roofline PIM acceleration
drops to about 7x. Further, in-line with PIM prototype [4],
we assume sixteen registers per PIM ALU.

While we assume the above system setup, note first that,
PIM bandwidth boost is dependent on memory banks and
PIM command rate and is independent of SoC compute/other
capabilities (Section II-B). Second, in the memory bandwidth-
bound scenarios we focus on, PIM acceleration is upper-
bounded largely by this memory bandwidth boost. As such,
our subsequent analysis is more a function of baseline memory
bandwidth and PIM bandwidth boost and is not tied to any
particular client SoC system.

2) GenAl Workloads: We study a spectrum of model sizes
up to 30B parameters similar to models from open pretrained
transformers (OPT) suite [10]. We exclude the extremely
large models (66B, 175B) as these are impractical on client
platforms even with extreme low-precision for model weights.
That said, as our data below depicts, PIM acceleration is stable
for large models.

3) Performance Models: We analyze performance using
analytical models as PIM is currently only available as part
of functional prototypes [4], [6]. Further, SoC simulators are
too cumbersome/impractical as we analyze end-to-end GenAl
effects of PIM as well.

GEMV-SoC Performance Model. As discussed above, client
SoCs are rich with diverse compute components (CPU, GPU,
and AIE), each with its own compute throughput and available
memory bandwidth. For GEMVs mapped to SoC, we opti-
mistically assume the maximum compute throughput across
all IP blocks (33.2 TOPS for 8b inputs) and full memory
bandwidth available (120 GB/sec). Execution time for GEMV
is the maximum of compute-time (GEMV ops/peaks TOPs)
and memory-time (matrix bytes/memory bandwidth).
GEMV-PIM Performance Model. For GEMV mapped to
PIM, we use an in-house DRAM-timing based performance
model which assumes a PIM architecture representative of
recent commercial PIM designs [4]-[6]. The PIM commands
are issued by the SoC as special load/store accesses which
bypass the caches and issued in-order by the memory con-
troller to multiple banks in parallel [4]. Based on GEMV under
consideration, data mapping (Section 1V) and orchestration
(Section V), we deduce the exact DRAM commands needed
to orchestrate the computation and incorporate necessary
overheads (e.g., DRAM row open overheads, read-to-write
turnaround, etc.).

GenAl End-to-end Performance Model. To analyze GenAl
inference end-to-end performance, we use an in-house
roofline-based performance model which takes in as inputs
a model hyperparameters (e.g., number of layers, layer size,
etc.), SoC peak compute and memory bandwidth and deter-
mines the critical path (compute or memory) per operator in

Dcol-major @PIMnast + #in-reg=2 OPIMnast + #in-reg=8 @PIMnast + #in-reg=14

o fBimroofine T STTTTTTTT IRt T TTITT
26

w

§ 5

o4

EX

32 H

S1 H H

=0 L= /| [H

& 125M 350M 1.3B 2.7B 6.7B 13B 30B

Fig. 8: PIMnast speedups with different register allocations.

the model to determine end-to-end metrics of interest such as
per-token latency.

B. Baseline PIMnast Speedups

In Figure 8, we first evaluate GEMV speedup for baseline
PIMnast (PIMnast + #in-reg=8, where #in-reg is the number
of registers holding input-vector elements sent by the SoC) and
compare it to both roofline PIM acceleration possible (7x)
and col-major data-placement’. The figure depicts average
speedups across all GEMVs in token-generation (except atten-
tion GEMVs*), in all, four GEMVs per model. We assume 8bit
data-format for weights/input-vector with 16bit accumulation.

As depicted in the figure, baseline PIMnast is able to
boost GEMV performance by up to 6.6x across evaluated
GenAl models compared to PIM roofline speedup (7). As the
figure depicts, col-major layout can even lead to slowdowns
demonstrating the criticality of optimized data-placement for
PIM. Overall, in comparison to col-major placement, PIMnast
achieves up to 25.7x speedup (average 5.4 x).

While baseline PIMnast attains good speedups for most
models, we also observe lower speedups for 125M and 2.7B
models. This is so, as optimizing for load-balancing across
banks causes short and wide tile-shapes which incur high
overheads (e.g., sending of input-vector from SoC, etc.). We
discuss techniques to address this in Section VI-F.

C. Orchestration Knobs Speedups

We next discuss the effects of orchestration knobs (Sec-
tion V-B) on PIM acceleration.

1) Register Allocation Impact: First, we vary registers
allocated to input vector (IV) and depict two extreme con-
figurations in Figure 8 in addition to PIMnast baseline. While
baseline PIMnast allocates eight registers (half of available
registers) to IV, we study scenarios where we allocate only
two registers (PIMnast + #in-reg=2) and fourteen registers
(PIMnast + #in-reg=14) respectively to IV. Allocating multiple
registers to IV allows sending IV in chunks and lowers
DRAM turnaround overheads leading to better performance
as depicted. That said, going from fourteen to eight registers

3Note that, in presence of data interleaving as is present on most systems to
harness memory parallelism, row-major data-placement leads to considerable
overheads (e.g., inter-bank communication) and hence is not practical for PIM.

“Attention computation is a small fraction of execution time at batch-size
1 and involves dynamic data-placement in context of PIM and hence we map
it to SoC.

971

Count
O=_2NWAROONPWO©O

OCRO-deg=1
0CRO-deg=2
OCRO-deg=3
0CRO-deg=4

BB

32x8 16x16 8x32 4x64 2x128 1x256
Tile shape

(b)

over

PIM speedup

0 o o oo
%g“?'\.'ﬁ"’o
Ng‘—wm“"’

Fig. 9: PIMnast-opt (a) speedup and (b) selection breakdown.

O#banks=64 DO#banks=256

0 _EH_GA_hﬁ —__D

125M 350M 1.3B

N

_OF OF OF 78,

27B 6.7B 13B 30B

PIM speedup over SoC

Fig. 10: PIMnast-opt speedup with varying #banks.

only leads to a 3% drop in speedup and as such we allocate
eight registers to input vector.

2) Impact of CR-order degree: Leaving eight registers free
(of available sixteen) opens up opportunity to harness higher
CR-order degree allowing reuse of IV across row-blocks of the
input matrix. Recall that, higher CR-order degree interleaves
computation of row-blocks and increases output vector (OV)
register pressure as OV registers are per row-block. We depict
the effect of maximizing CR-order in Figure 9(a) and term
resultant design as PIMnast-opt. As depicted, maximizing
CR-order degree allows PIMnast-opt to achieve speedup of
up to 6.86x (5.8x on average), attaining up to 35% higher
speedups (10% on average) as compared to baseline PIMnast.
This particularly helps models such as 125M (speedup of
3.88x versus 3.07x). We assume PIMnast-opt for all sub-
sequent results.

Finally, we also depict in Figure 9(b) the breakdown of the
tile-shapes and CR-order degree picked across all GEMVs we
model. As depicted, our proposed PIMnast methodology picks
a variety of tile-shapes and CR-order degrees to maximize PIM
acceleration.

D. PIMnast Resiliency

Next, we evaluate the resiliency of proposed PIMnast
methodology across spectrum of memory configurations,
GenAl needs, and PIM architecture sweeps.

1) Memory Configuration Sweep: We study two parameters
for memory configuration.

Number of Banks: We first evaluate the robustness of
PIMnast methodology by hypothetically varying the number
of banks per channel. Figure 10 depicts results for 2x lower
(64 banks in the system) and higher #banks (256 banks in
the system) than baseline setup we have. As banks are the
compute workhorses in PIM, varying the #banks in the system
also changes the PIM roofline speedup to about 3.5x and 14 x

O16bx16b D©4bx4b

PIM roofline

H

125M

350M 1.3B 27B 6.7B 13B 30B

Fig. 11: PIMnast-opt speedup with varying data-formats.

respectively. With 2x lower banks, PIMnast-opt attains up
to 3.43x (average 3.2x) of available 3.5x roofline speedup,
while with 2x higher banks, PIMnast-opt attains up to 13.5x
(average 10.1x) of available 14x roofline speedup demon-
strating the resiliency of PIMnast methodology to varying
#banks.

Interleaving Granularity: Recall that PIMnast sets tile-size
to interleaving granularity of underlying memory system.
Changing interleaving granularity does not affect PIMnast-opt
speedup as a key tenet of our data-placement is we aim to
balance matrix rows between banks (Section IV-B, m_tile of
resultant tiles) and as such, different interleaving granularities
can be subsumed by adjusting k_tile while preserving m_tile.

2) GenAl Needs Sweep: We study two GenAl needs
namely, data-formats and scale-factors.

Data-formats: Our results here forth assume 8bit data-format
for weights/input-vector. Next, we vary data-formats and de-
pict resultant PIM acceleration in Figure 11. As shown in the
figure, our proposed flexible data-placement and orchestration
methodology unlocks an average PIM speedup of 5.1x and
6.1x for 4b and 16b data-formats, respectively. While the
acceleration is similar across data-formats, for some models,
PIM acceleration drops for 4b. This is because the effects
of wider tile-shapes in models such as 125M are further
exacerbated as precision drops.

Scale-factors: In Figure 12, we show the performance of
PIMnast-opt in presence of block-level scale-factors (block-
size of 32 [11]). Recall that, low-precision inference (8b, 4b
and lower) often relies on block-level scale-factors [8]. In the
context of GEMYV, with block-level scale-factors, computation
of single output element is interspersed with multiplication
of partial outputs with both weight and input-vector scale-
factors. With added overhead of these multiplications, PIM
acceleration drops in presence of scale-factors. Regardless,
PIMnast-opt attains up to 6.1 x (average 4.1x) for 8b formats
and up to 6.4x (average 3.1x) for 4b, respectively.

We also studied the effect of larger block-sizes (not shown)
on PIMnast-opt acceleration and observed increased PIM
speedup for both 8b and 4b because the overhead of processing
scale-factors reduces as block-size increases. For example,
under 8b inputs, a block-size of 64 and 128 elements results
in a speedup boost of up to 34% and 61% (14% and 23%, on
average) compared to block-size of 32.

3) PIM Architecture Sweep: With regards to PIM architec-
ture, we vary available registers within PIM ALU and study

978

O8bx8b + SF m4bx4b + SF

25—
Q 6 | PIM roofline

»n

‘g, 5

o4

EX

82

o L[]

s, LM

& 125M 350M 1.3B 2.7B 6.7B 13B 30B

Fig. 12: PIMnast-opt speedup with block-level scale-factors.

O#reg=8 D#reg=32

PIM roofline

Il

125M

PIM speedup over SoC
O =N WwWHOO

350M 1.3B 2.7B 6.7B 13B 30B

ey

ig. 13: PIMnast-opt speedup with varying #PIM registers.

half as many and twice as many PIM registers as baseline
configuration. We follow the same register allocation strategy
in the sweep (equal registers to IV and OV). We depict the
resultant PIM acceleration in Figure 13. As depicted in the fig-
ure, PIMnast-opt adapts its data-placement and orchestration
to the available register count. Specifically, with half as many
registers, PIMnast-opt maintains a maximum PIM speedup of
up to 6.6x (5.3x on average). Similarly, with twice as many
registers, we observe up to 6.9x speedup (6x on average).
Note that, with more registers, there are ample opportunities
for different register allocation mechanisms unlocking further
acceleration and we leave exploring these to future work.

E. PIMnast GenAl End-to-end Speedups

We depict in Figure 14 both per-token latency speedups
and end-to-end speedups (prompt + token-generation) with
PIMnast-opt assuming a prompt-size of 1920 and 128 gen-
erated tokens. As tokens are generated one at a time, token-
generation dominates GenAl inference time, especially in the
case of low batch-sizes [12]. Similarly, using our GenAl end-
to-end performance model, we observe that about 88% or more
of time is spent in token-generation (not shown). Therefore,
across a spectrum of GenAl models, PIMnast-opt delivers up
to 5x (3.5x on average) speedups for per-token latencies
translating to end-to-end speedups of up to 3.5x (2.7x on
average). The speedups PIM realizes can open-up exciting
possibilities with regards to client platforms. To name a few,
it can enable larger/more accurate models to be deployed at
low latencies, make possible chains of models one feeding the
other, and more.

F. Addressing PIMnast Deficiencies

In this section, we evaluate potential optimizations (both
hardware and software) to address the low PIMnast-opt

Otoken-gen Dend-to-end

o6
35

g4

a3

S

82

[

LW LR

=)

& 125M 350M 1.38 2.78 6.78 138 308

Fig. 14: GenAl end-to-end speedups with PIMnast-opt.

Oreduction tree Osplit-k-deg=2 Osplit-k-deg=4 DOsplit-k-deg=8

PIM roofline

L

Fig. 15: PIMnast-opt speedups with h/w and s/w optimizations
for 125M model.

PIM speedup over SoC
O =N WwWwHOO

FC1 FC2

speedup for certain GenAl models (e.g., 125M). We identify
two optimizations that make a difference.

Hardware - Support for cross-SIMD operations: As dis-
cussed above, a key factor for the low performance with
PIMnast-opt is when tile-shapes are very short and wide
incurring cross-SIMD lane computations. As such, PIM ALU
with efficient cross-SIMD lane support such as a reduction
tree [13] can address this cost. As we depict in Figure 15,
such support can attain an upper-bound speedup boost of up
to 41% (25% on average) compared to PIMnast-opt for 125M
model.

Software - Split-K: In scenarios where weight matrix has
small M dimension, to avoid the scenario where we end up
with fewer row-blocks to distribute across banks, PIMnast
picks short, wide tile-shape which leads to lower IV reuse and
triggers cross-SIMD lane compute. An alternate mechanism
can vertically decompose the matrix MxK into 2¢ parts,
each of size Mx(K/2%) where i > 1, each processed by a
subset of the channels. This effectively avails more row-blocks
and therefore allows picking a taller tile-shape. A downside
however is each bank only has partial result requiring SoC
to perform final reduction incurring software complexity. We
refer to this software optimization as split-K. Figure 15 depicts
the resultant PIMnast-opt acceleration in presence of varying
split-K degrees (split-k-deg) up to eight splits for the four
GEMVs manifested in 125M model. We observe that as split-
K degree increases, PIMnast-opt boosts speedup by up to
85% (47% on average) compared to not using the split-K
optimization.

VII. DISCUSSION

This work focuses on optimizing data-placement to accel-
erate GEMVs with PIM. That said, this paper does identify
a comprehensive list of PIM architecture and memory related

979

factors that affect data-placement, and proposes broad strate-
gies to tackle these inherent factors. The key strategies are:

o Identify and distribute compute-independent data
amongst banks (Section IV-Al e.g., matrix rows in
GEMYV computation).

o Within a compute-independent data block, data-
placement is adjusted (Section IV-A1l e.g., column major
data-placement within a DRAM row).

« Tile the compute-independent data blocks and swizzle the
tiles in the virtual memory (Section IV-A2).

« Adjust the tile’s shape to manage the register constraints
(Section IV-B1).

o Harness large pages to realize the required data-
placement (Section V-Al).

Above methodology extends beyond GEMVs and can be
applied to accelerate other primitives and workloads of im-
port such as fast Fourier transforms (FFTs) and sorting. For
example, above methodology extends to accelerating FFT with
PIM as follows (also shown in Pimacolaba [14] as well):

« A batch of independent 1D FFTs (or within 2D FFT)
is identified as the compute-independent data block to
distribute amongst the banks.

o Within the batches of 1D FFTs, the FFT elements are
strided to avoid cross-SIMD-lane communication.

o The batches of 1D FFTs are tiled and swizzled in the
virtual memory and large pages are harnessed.

VIII. RELATED WORK

GEMM/V are critical primitives in many key workloads
such as GenAl. Therefore, there exist many vendor provided
GEMMY/V libraries for CPUs [15], [16] and GPUs [17]-
[20] as well as hardware innovations such as GPU matrix
cores [21], [22] that are employed to accelerate such prim-
itives. In addition to general-purpose CPUs and GPUs, many
recent accelerators arise to boost GenAl performance [23],
[24]. However, such hardware solutions are targeted towards
cloud-based GenAl. In this work, we focus on accelerating
the GEMVs that manifest in GenAl on client platforms with
PIM-enabled LPDDR.

There exist many prior work that boost GEMM/V perfor-
mance using possible commercial PIM designs. Oliveira et
al. provide a high-level analysis of GEMYV acceleration using
UPMEM, a server-based PIM system [25]. However, the
authors do not discuss their data-placement or any optimiza-
tions employed. Sura et al. propose computing system called
Active Memory Cube (AMC) with in-memory processors to
accelerate GEMMs and other workloads [26]. AMC employs
large register files of 16KB per in-memory ALU to improve
data reuse. Newton [13] presents GEMV data placement for
a possible commercial PIM architecture, which is similar
to what we assume. Newton assumes very large memory
interleaving granularity matching DRAM row size, which
becomes unrealistic when host and PIM use same memory
space. Moreover, it chooses to use fixed tile shape for any
matrices and do not consider possible benefit of bank locality

of matrix data mapping, and hence heavily involves host
to perform the reduction of partial sums to get the final
output, unlike PIMnast. StepStone PIM [27] targets optimizing
similar ML domain as us; however, the underlying PIM
architecture considered is much different. It targets to solve
impact of address hashing in localizing GEMM operands per
PIM unit by employing an address generation logic which
facilitates temporal locality of input matrix elements in PIM
execution, though it still needs input vector(s) replication
per PIM unit and output reduction. Also, variable matrix
sizes and shapes impact performance of StepStone when PIM
units are closely placed to memory banks. In PIMnast we
provide mapping solution for such variability. Compared to
PIM designs incurring considerable area overheads due to
significant changes to DRAM, or having PIM and non-PIM
memory spaces (which requires memory copies) [26], [28], or
using speculative technology (e.g., memristor [29]), PIMnast
focuses on commercially viable PIM designs getting wide
traction as evident by multiple memory vendors converging
to this design [4]-[6].

Finally, many works exploit PIM’s data movement reduc-
tion and performance boost to accelerate key ML and HPC
workloads [4], [14], [30]-[35]. To the best of our knowledge,
this is the first work to investigate the myriad factors affecting
data-placement on PIM to come up with methodologies to
effectively map GEMV computations to commercially-viable
PIM designs, hence harnessing PIM bandwidth boost.

IX. CONCLUSION

This work focuses on maximizing acceleration for matrix-
vector multiplications (GEMVs) using commercial processing-
in-memory (PIM) prototypes made available by memory
vendors. We observe here that deducing optimized data-
placements is critical to harness PIM acceleration. To this end,
we identify factors affecting data-placements, propose matrix
tiling/ordering algorithms to tackle these factors and identify
orchestration knobs that impact PIM acceleration. Overall, our
proposed ideas deliver up to 6.86x speedup of the available
7x roofline speedup leading to up to 5x speedup for per-token
latencies for a spectrum of GenAl models.

ACKNOWLEDGMENT

The authors thank Nuwan Jayasena and the anonymous
MEMO reviewers for helping improve the paper. AMD, the
AMD Arrow logo, AMD Instinct, and combinations thereof
are trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

REFERENCES

[1] Reuters, “Focus: For tech giants, Al like Bing and Bard poses billion-
dollar search problem,” https://www.reuters.com/technology/tech-giants-
ai-like-bing-bard-poses-billion-dollar-search-problem-2023-02-22/,
2023.

[2] Time, “6 Things You’d Never Guess About Google’s Energy
Use,” https://techland.time.com/2011/09/09/6-things-youd-never-guess-
about-googles-energy-use/, 2011.

980

[5

(6]

[7

[8]

[9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]
[18]
[19]

[20]
21

[22]

23
[24]

[25]

[26]

A. S. Luccioni, Y. Jernite, and E. Strubell, “Power Hungry Processing:
Watts Driving the Cost of Al Deployment?” arXiv, 2023.

S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang, K. Sohn, and
N. S. Kim, “Hardware Architecture and Software Stack for PIM Based
on Commercial DRAM Technology: Industrial Product,” in Proceedings
of the ACM/IEEE International Symposium on Computer Architecture
(ISCA), 2021.

Samsung, “PIM — Technology — Samsung Semiconductor USA,”
https://semiconductor.samsung.com/us/solutions/technology/pim/, 2024.
S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park,
K. Kang, J. Kim, J. Jeon, N. Kim, Y. Kwon, K. Vladimir, W. Shin,
J. Won, M. Lee, H. Joo, H. Choi, J. Lee, D. Ko, Y. Jun, K. Cho,
I. Kim, C. Song, C. Jeong, D. Kwon, J. Jang, 1. Park, J. Chun, and
J. Cho, “A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-
Memory Supporting ITFLOPS MAC Operation and Various Activation
Functions for Deep-Learning Applications,” in Proceedings of the IEEE
International Solid-State Circuits Conference (ISSCC), 2022.

Amir Gholami, “Al and Memory Wall,” https://medium.com/riselab/ai-
and-memory-wall-2cb4265cb0b8, 2021.

B. D. Rouhani, R. Zhao, A. More, M. Hall, A. Khodamoradi, S. Deng,
D. Choudhary, M. Cornea, E. Dellinger, K. Denolf, S. Dusan, V. Elango,
M. Golub, A. Heinecke, P. James-Roxby, D. Jani, G. Kolhe, M. Lang-
hammer, A. Li, L. Melnick, M. Mesmakhosroshahi, A. Rodriguez,
M. Schulte, R. Shafipour, L. Shao, M. Siu, P. Dubey, P. Micikevicius,
M. Naumov, C. Verilli, R. Wittig, and E. Chung, “Microscaling Data
Formats for Deep Learning,” arXiv, 2023.

AMD, “AMD Ryzen™ 7 7840HS
https://www.amd.com/en/product/13041, 2024.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,

M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster,

D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer, “Opt:

Open pre-trained transformer language models,” 2022.

Open Compute Project, “OCP MicroXcaling (MX) Specification,”
https://www.opencompute.org/documents/ocp-microscaling-formats-
mx-v1-0-spec-final-pdf, 2024.

Databricks, “LLM Inference Performance Engineering: Best
Practices,” https://www.databricks.com/blog/llm-inference-performance-
engineering-best-practices, 2023.

M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thot-
tethodi, and T. Vijaykumar, “Newton: A DRAM-maker’s accelerator-
in-memory (AiM) architecture for machine learning,” in Proceedings of

the IEEE/ACM International Symposium on Microarchitecture (MICRO),

2020.

M. A. Tbrahim and S. Aga, “Collaborative Acceleration for FFT on
Commercial Processing-In-Memory Architectures,” arXiv, 2023.

AMD, “AMD Optimizing CPU Libraries (AOCL),”
https://www.amd.com/en/developer/aocl.html, 2024.

Intel, “Intel oneAPI =~ Math Kernel Library (oneMKL),”
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html,
2024.

AMD,”

AMD, “rocBLAS Documentation,” https://rocm.docs.amd.com/
projects/rocBLAS/en/latest/, 2024.
NVIDIA, “Basic Linear Algebra on NVIDIA GPUs”

https://developer.nvidia.com/cublas, 2024.

AMD, “Composable Kernel,” , 2024.

NVIDIA, “CUTLASS 3.5,” https://nvidia.github.io/cutlass/, 2024.
AMD, “AMD matrix cores,” https://gpuopen.com/learn/amd-lab-
notes/amd-lab-notes-matrix-cores-readme/, 2024.

NVIDIA, “NVIDIA Tensor Cores,” https://www.nvidia.com/en-us/data-
center/tensor-cores/, 2024.

Intel, “Intel Gaudi,” https://habana.ai/, 2024.

I. Ahmed, S. Parmar, M. Boyd, M. Beidler, K. Kang, B. Liu, K. Roach,
J. Kim, and D. Abts, “Answer Fast: Accelerating BERT on the Tensor
Streaming Processor,” in Proceedings of the IEEE International Con-

ference on Application-specific Systems, Architectures and Processors

(ASAP), 2022.

G. F. Oliveira, J. Gémez-Luna, S. Ghose, A. Boroumand, and O. Mutlu,
“Accelerating Neural Network Inference With Processing-in-DRAM:
From the Edge to the Cloud,” IEEE Micro, 2022.

“Data access optimization in a processing-in-memory system, au-
thor=Sura, Zehra and Jacob, Arpith and Chen, Tong and Rosenburg,
Bryan and Sallenave, Olivier and Bertolli, Carlo and Antao, Samuel and
Brunheroto, Jose and Park, Yoonho and O’Brien, Kevin and others,”

[27]

[28]

[29]

[30]

[31]

in Proceedings of the ACM International Conference on Computing
Frontiers, 2015.

B. Y. Cho, J. Jung, and M. Erez, “Accelerating bandwidth-bound deep
learning inference with main-memory accelerators,” in Proceedings of
the International Conference for High Performance Computing, Net-
working, Storage and Analysis, 2021.

J. Gémez-Luna, 1. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking a New Paradigm: Experimental Analysis
and Characterization of a Real Processing-in-Memory System,” IEEE
Access, 2022.

M. S. Q. Truong, E. Chen, D. Su, L. Shen, A. Glass, L. R. Carley, J. A.
Bain, and S. Ghose, “RACER: Bit-Pipelined Processing Using Resistive
Memory,” in Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2021.

S. Aga, N. Jayasena, and M. Ignatowski, “Co-ML: A Case for Collabo-
rative ML Acceleration Using near-Data Processing,” in Proceedings of
the International Symposium on Memory Systems (MEMSYS), 2019.

S. Pati, S. Aga, N. Jayasena, and M. D. Sinclair, “Demystifying BERT:
System Design Implications,” in Proceedings of the IEEE International

981

(32]

[33]

[34]

[35]

Symposium on Workload Characterization (IISWC), 2022.

L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han, Y. Cho,
J. H. Kim, Y. Kwon, K. Kim, J. Jung, I. Yun, S. J. Park, H. Park,
J. Song, J. Cho, K. Sohn, N. S. Kim, and H.-H. S. Lee, “Near-memory
processing in action: Accelerating personalized recommendation with
axdimm,” IEEE Micro, 2022.

J. Gomez-Luna, Y. Guo, S. Brocard, J. Legriel, R. Cimadomo, G. F.
Oliveira, G. Singh, and O. Mutlu, “Evaluating Machine Learning-
Workloads on Memory-Centric Computing Systems,” in Proceedings of
the International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2023.

M. A. Ibrahim, S. Aga, A. Li, S. Pati, and M. Islam, “Just-in-time
Quantization with Processing-In-Memory for Efficient ML Training,”
2023.

O. Leitersdorf, Y. Boneh, G. Gazit, R. Ronen, and S. Kvatinsky,
“FourierPIM: High-Throughput In-Memory Fast Fourier Transform and

Polynomial Multiplication,” Memories - Materials, Devices, Circuits and
Systems, 2023.

