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Abstract—This paper describes the development of perfor-
mance portable spline building kernels on top of Kokkos-kernels.
We wish to solve a single matrix equation with multiple right-
hand sides. This problem is quite unique and thus neither
Kokkos-kernels (direct method) nor Ginkgo (iterative methods)
is optimized for this. We develop the required solvers in Kokkos-
kernels with a batched serial implementation and optimize them
using kernel fusion and sparse matrix storage. We demonstrate
that our spline solver works efficiently on NVIDIA A100 and
AMD MI250X GPUs, while keeping a reasonable performance
on CPUs. This effort significantly reduces the development and
maintenance cost of spline solvers on exa-scale supercomputing
systems.

Index Terms—Performance portability; Kokkos; Kokkos-
kernels; Ginkgo; Splines;

I. INTRODUCTION

Confronting the ever-increasing diversity in top-level su-
percomputers, performance portability is now considered as
one of the most important requirements and challenges for
High Performance Computing (HPC) applications. In order
to minimize programming efforts when working on diver-
gent supercomputers, application developers seek program-
ming models that allow a single codebase to run efficiently
on many architectures, and provide performance, portability,
and productivity (P3). There are multiple approaches to pro-
vide performance portability over CPUs and GPUs including
library-based, directive-based, and language-based approaches
[1]–[9]. For application developers, it is also an important task
to find a framework that fits best for the code development and
maintenance strategy of a group.

Our primary task is to make an existing large scale plasma
turbulence simulation code GYSELA [10] exa-scale ready.
This code simulates the entire tokamak geometry by solving

5D Vlasov and 3D Poisson equations. Until recently, we have
carefully explored a suitable performance portable program-
ming model for this code using its mini-application [9], [11],
[12]. Concerning the high performance portability, readability,
and productivity, we decided to develop the newer version of
GYSELA using Kokkos [5]. Among the performance portable
frameworks such as RAJA [13], SYCL [14], and ALPAKA
[15], we choose Kokkos [5] for the following reasons. Firstly,
we have already an expertise on it [9], [11], [12] and now
have a collaboration with core developers. Second, it has
a better eco-systems including performance portable mathe-
matical libraries. Finally, it is now under a technical project
of the newly created High Performance Software Foundation
(HPSF), representing a better sustainability as an open source
project.

In addition to programming language, we also need per-
formance portability in numerical libraries. As is often the
case for production level simulation codes, GYSELA relies
on a lot of libraries. For example, the Vlasov solver relies on
BLAS [16] and LAPACK [17] for spline interpolation, and
the Poisson solver relies on fftw [18], BLAS and LAPACK.
BLAS and LAPACK are also used for the collision operator.
For fast fourier transforms (FFTs), we have developed a FFT
interface for Kokkos named Kokkos-FFT [19]. The collision
operator [20] is implemented using Kokkos-kernels [21]. The
remaining question is what libraries are suitable for a Vlasov
solver using spline interpolation. From the numerical point
of view, spline coefficients can be constructed by solving
a linear system with multiple right-hand sides. This system
involves different kinds of matrices including a general matrix,
banded matrix, positive banded symmetric matrix and positive
symmetric tridiagonal matrix, which can be solved efficiently
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on CPUs with dedicated LAPACK functions getrs, gbtrs,
pbtrs and pttrs, respectively. Thus, we need a performance
portable linear algebra solver suitable for this problem to
replace BLAS and LAPACK.

Spline interpolation is a powerful tool in numerical fluid
simulations for several reasons including smoothness (conti-
nuity), accuracy, and stability. In addition, it is known that
spline coefficients can be constructed efficiently on CPUs.
Thus, spline interpolations have been widely used in scien-
tific simulations. Unfortunately, GPU performance of spline
interpolation has not been fully investigated except for image
processing purposes [22], [23], and the performance portability
aspect has not yet been discussed to the best of our knowledge.
From the numerical point of view, we have two reasonable
options to solve the linear system for spline constructions:
direct and iterative methods. For direct methods, we try
Kokkos-kernels [21] using the batched capabilities to handle
multiple right-hand sides. For iterative methods, we employ
Ginkgo performance portable iterative solvers [24]. After
some consideration, we found that the Kokkos-kernels based
approach is the most suitable for us since it is more flexible
and memory efficient. Unfortunately, the LAPACK functions
needed for splines are not implemented in Kokkos-kernels, and
thus we integrated these functions into our fork of Kokkos-
kernels [25] which we plan to upstream. We also demonstrate
the optimizations that speed up the spline building kernel using
Kokkos-kernels. We finally evaluate the performance portabil-
ity of the developed spline solver. The main contributions of
this work are as follows:

• Development of batched serial versions of matrix solvers
(getrs, gbtrs, pbtrs and pttrs)for Kokkos kernels which
are not frequently covered even by vendor libraries

• Development of a performance portable spline building
kernel based on Kokkos kernels

• Optimization of the spline builder based on kernel fusion
and sparsity of sub-matrices

• Summarizing the pros/cons of using Kokkos-kernels and
Ginkgo for spline building

II. SPLINES AND LIBRARIES

In this section, we describe the physical and numerical
properties of splines. We also discuss the relevant libraries
for spline building kernels.

A. Semi-Lagrangian scheme

GYSELA [10] employs backward semi-Lagrangian method
to solve the advection term of the gyrokinetic Vlasov equation.
Usually, the advection solver is a bottleneckand has been
subject to optimizations [26]–[28]. Let us explain the Semi-
Lagrangian scheme [29] with a simple 1D Vlasov equation,
which is the advection equation in phase space.

∂f

∂t
+ v (x, t)

∂f

∂x
+ a (x, v, t)

∂f

∂v
= 0, (1)

where f is a distribution function, x is the spatial position, v is
the velocity and a is the acceleration. In the Semi-Lagrangian

scheme, Eq. (1) is considered to propagate the value of f
along characteristic curves Γ = s (t), where Γ = (x, v) is
an Eulerian position vector in phase space. The Lagrangian
characteristic s (t) is defined by

ṡ = V (s, t) , s (0) = Γ0,

with the advection field V (v, a) and the initial position Γ0.
In the Semi-Lagrangian scheme, the value of f at (Γ, t) is
derived by following the characteristic curve back to the initial
point (Γ0, t0). Using the known value of f at time tn, we can
evaluate f (Γ, tn+1) by the backward characteristics scheme
through the evaluation of the value of f at (s (tn) , tn). With
the first order time integral, the backward characteristics is
approximated by

s (tn) ∼ Γ−∆tV (Γ, tn) ,

with the previous speed V (Γ, tn). In order to evaluate
f (s (tn) , tn), we need some sort of interpolation scheme,
where we employ spline interpolation because of its preferable
physical properties. It should be remarked that the grid may
not necessarily be uniform. In a new version of GYSELA,
the non-uniform mesh is planned to be introduced in order
to simulate the whole plasma including a region of steep
gradients in equilibrium profile. These regions need finer
resolutions than other regions, and thus non-uniform grids are
necessary for the new GYSELA accompanied by non-uniform
spline interpolation [30].

B. Spline construction
Let us consider 1D periodic B-splines. Spline coefficients

can be calculated by solving the following linear system

Ax = b, (2)

where A is a spline matrix [31], x is a vector of spline
coefficients and b is a vector containing the values to be
interpolated. For example, the matrix A for degree 3 uniform
splines has the sparsity pattern shown in Fig. 1. A is a fixed
matrix in time and only b is time evolving. Higher dimensional
B-splines can be obtained by a tensor product of 1D splines.
For N-D splines, N equations in the form of equation (2)
must be solved. Each of these equations handles one of the
dimensions and behaves in the same way as the 1D case,
batched over the other dimensions. It is therefore sufficient
to consider the 1D case.

In GYSELA, we perform a batched 1D spline interpolation
of the high dimensional distribution function along the dimen-
sion of interest. Remaining dimensions are regarded as batched
dimensions which are embarrassingly parallel. This problem
can be defined as solving equation (2) with a fixed single
matrix A and multiple right-hand sides. This can be regarded
as a batched problem. Assuming we have 103 grid points in
each dimension and do not apply MPI decomposition, the
number of batches can be 1012 = (103)4 corresponding to the
total number of grid points in the remaining 4 dimensions and
the matrix size is 103 equal to the number of grid points in the
dimension of interest. The combinations of small matrix size
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Fig. 1. Matrix A for degree 3 uniform splines.

and huge batch size stem from the high dimensional feature of
GYSELA. After some investigation, it turns out that this use
case is quite unique and most performance portable libraries
are not optimized for this problem. In general, most of the
batched solvers are optimized to deal with multiple matrices
as well as multiple right-hand sides.

1) Direct method: To solve Eq. (2) with a direct method,
we often rearrange the matrix A into the following sub-
matrices, which are solved using Schur’s complement [32].

A =

(
Q γ
λ δ

)
(3)

A blockwise LU decomposition of this matrix gives

A = LU =

(
Q 0
λ δ′

)(
I β
0 I

)
, (4)

where δ′ is the Schur’s complement of Q defined as δ′ =
δ−λβ and β = Q−1γ. We can solve Eq. (2) in the following
steps.

(
Q 0
λ δ′

)(
x′
0

x′
1

)
=

(
b0

b1

)
, (5)(

I β
0 I

)(
x0

x1

)
=

(
x′
0

x′
1

)
, (6)

where x = (x0,x1)
T and b = (b0,b1)

T . In summary, we get
the following algorithm 1.

Algorithm 1 Solving spline matrix with Schur’s complement
1: Input: A, b, Output: x
2: Solve Qx′

0 = b0

3: Solve δ′x1 = b1 − λx′
0

4: Compute x0 = x′
0 − βx1

In order to use direct methods on GPU, we need to get
the factorization of the matrix A on the device. As this matrix

TABLE I
TYPE OF SUB-MATRIX Q WITH DIFFERENT SPLINE DEGREES AND

UNIFORMITY. DEDICATED LAPACK FUNCTIONS ARE PRESENTED IN
PARENTHESES.

Degree Uniform Non-uniform
3 PDS tridiagonal (pttrs) General banded (gbtrs)
4 PDS banded (pbtrs) General banded (gbtrs)
5 PDS banded (pbtrs) General banded (gbtrs)

happens to be fixed in time and is small compared to the right-
hand side, the factorization is only done once at initialization.
Thus, we take advantage of existing CPU libraries to factorize
the matrix and copy the result to the device. We notice that
this simple strategy is efficient enough to consider this step
as negligible compared to the solving step. In contrast, all the
operations in algorithm 1 must be performed for each time
step, and thus these must be implemented in a performance
portable manner. In addition, the biggest sub-matrix Q can
be a banded matrix which can be solved efficiently with
specialized solvers. Table I shows the type of sub-matrix Q
with different spline degree and uniformity. The sub-matrix δ′

is a general matrix. To solve these matrices efficiently, we need
getrs (General matrix), gbtrs (General banded matrix), pbtrs
(Positive definite symmetric (PDS) banded matrix), and pttrs
(PDS tridiagonal matrix) which are implemented in LAPACK.

2) Iterative method: Alternatively, we can also solve Eq.
(2) with iterative methods such as BiCG, BiCGStab, CG, and
GMRES. Contrary to the direct methods which need multiple
specialized solvers for the choice of spline, we only need to
prepare a single matrix solver. In addition, the interpolation
matrix A is well conditioned [33] which is attractive in terms
of accuracy and performance.

C. Relevant libraries

In this work, we employ two different linear algebra li-
braries Kokkos-kernels [21] and Ginkgo [24]. Both of these
support multiple backends, and thus satisfy our needs for
performance portability.

1) Kokkos-kernels: The Kokkos-kernels library [21] offers
a performance portable linear algebra library on top of Kokkos
[5]. It consists of 4 functionalities.

• Sparse Linear Algebra
• Dense Linear Algebra
• Graph Algorithms
• Batched Data Structures and Utilities
Among these, batched data structures and utilities attract

our attention. The batched functionality offers BLAS and/or
LAPACK that can be used inside a Kokkos parallel region. The
advantage of this approach is that a user can compose various
batched dense linear algebra kernels in a single parallel region,
exploiting temporal locality. This feature is exactly what we
want for the spline solver where we need to solve a small
matrix for multiple right-hand sides.
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• Pros
If we have appropriate solvers, all the operations can
be performed in-place which is highly memory efficient.
In addition, this approach is quite flexible which makes
room for optimization. In principle, we can integrate
arbitrary Kokkos functions into matrix solvers, and thus
adding some missing solvers is a relatively easy task.

• Cons
The algorithms to solve the linear systems are intrin-
sically sequential. Thus, we can parallelize only along
the batch direction. In addition, we need to prepare
multiple solvers for each type of matrix, which makes
the implementation complicated and costly.

2) Ginkgo: Ginkgo [24] is one of the most famous per-
formance portable linear algebra libraries focusing on sparse
computations. It features iterative solvers (BiCG, BiCGStab,
CG, GMRES) and sophisticated preconditioners. Contrary to
Kokkos-kernels, Ginkgo takes a hybrid approach for per-
formance portability relying on a generic layer for simple
core kernels and a specialized layer for performance-critical
kernels. The generic layer has a similar concept to Kokkos,
which can work on any platform. For key algorithms, they
rely on the vendor specific languages to achieve the best
performance. For our use case, pros and cons are as follows:

• Pros One of the most important advantages of Ginkgo is
that it works for any arbitrary matrix A as long as it is
solvable. We do not need to implement a solver for each
matrix type. In addition, the solver is fully parallelized in-
ternally and Ginkgo can achieve competitive performance
across different GPU architectures.

• Cons The memory consumption cannot be controlled
by users. We encountered a memory shortage for some
batch sizes, and thus we needed to pipeline along the
batch direction (see subsection III-B). In addition, the
maximum number of batches are limited to 65535 due to
the hardware constraints for CUDA and HIP backends.
It should be emphasized that this maximum number is
insufficient for our needs (See subsection II-B).

D. Implementation strategies

After our investigation of Kokkos-kernels and Ginkgo, it
turns out that both libraries do not fully satisfy our needs as
is. Neither Kokkos-kernels nor Ginkgo expects a linear system
of a small single matrix with a large number of batches. The
Kokkos-kernels library uses parallelization to solve the matrix
equation, indicating that it assumes a bigger matrix with a
small number of batches. In addition, The Kokkos-kernels
library does not include the functions we require, that is, getrs,
gbtrs, pbtrs, and pttrs.

As Ginkgo can handle arbitrary matrices, we started with
a Ginkgo implementation and used it as a reference. As a
long term solution, we choose Kokkos-kernels for two reasons:
First, we are developing the new version of GYSELA on top of
Kokkos [5], which natively supports Kokkos-kernels. Second,
the operations can be in-place and thus the implementation in
the Kokkos-kernels library is more memory efficient, which

is critical to our application. Accordingly, we decided to
implement getrs, gbtrs, pbtrs, and pttrs as part of Kokkos-
kernels batched functionalities and then optimize the code.
Our implementations of these solvers are currently placed
in our fork [25] but we plan to upstream them to Kokkos-
kernels in the future. It should be noted that we optimize only
the Kokkos-kernels implementation and do not optimize the
Ginkgo implementation at all. Accordingly, there is a lot of
room to improve the performance of the Ginkgo implementa-
tion.

III. BASELINE IMPLEMENTATION AND BENCHMARK
APPLICATION

In this section, we describe the implementation of spline
solvers using Kokkos-kernels and Ginkgo.

A. Kokkos-kernels implementation

For Kokkos-kernels, we have started by implementing mul-
tiple solvers in KokkosBatched Serial format. Listing 1 shows
the API (lines 1-8) and implementation details (lines 10-26) of
pttrs which solves the positive symmetric tridiagonal matrix
equation. The template parameters ArgUplo and ArgAlgo
of the API are used to specify the matrix format (upper or
lower tridiagnoal) and the usage of a cache blocking (line
1). The views “d” and “e” are diagonal and upper diagonal
components of a matrix. Most importantly, this operation is
in-place, that is, “b” stores the right-hand side vectors on entry
and stores the solution vectors on exit. As with other solvers
like getrs, this algorithm is strictly sequential against a matrix
(lines 18-24). Accordingly, the parallelization can only be
made against a batch dimension and thus a serial implementa-
tion is sufficient. Listing 2 shows the baseline implementation
of algorithm 1 with Kokkos-kernels. Matrix-matrix operations
like b1 − λx′

0 are performed with KokkosBlas::gemm (line
9). Although both pttrs (lines 1-8) and getrs (lines 10-19) are
sequentially solved in a Kokkos parallel region, the batch size
is about 106 which is sufficient to saturate GPUs. Although
KokkosBlas::gemm can execute vendor libraries like cublas
[34] and rocblas [35], we use the native Kokkos-kernels
version in order to avoid the initialization costs of vendor
libraries.

B. Ginkgo implementation

In the Ginkgo implementation, we rely on BiCGStab solver
for GPU and GMRES for CPU because of a Ginkgo issue
(#1563 [36]) with BiCGStab for OpenMP backend. The
matrix is stored in CSR (Compressed Sparse Row) format. A
block-Jacobi preconditioner is used with the max block size
being tunable between 1 and 32. The tolerance is set to a
reduction factor ∥Ax−b∥

∥b∥ < 10−15. We first tried to apply it to
all the right-hand sides, but it failed due to the large amount of
memory usage. Thus, we pipelined along the batch direction
to perform operations on smaller chunks as shown in listing 3
(lines 1-9). m cols per chunk defines the chunk size which
is set as 8192 for CPUs and 65535 for GPUs (line 1-2). The
chunk of right-hand sides is copied to buffers (lines 24-25)
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Listing 1. Internal Pttrs implementation
1 template <typename ArgUplo, typename ArgAlgo>
2 struct SerialPttrs {
3 template <typename DViewType, typename EViewType,
4 typename BViewType>
5 KOKKOS INLINE FUNCTION static int invoke(const DViewType &d,
6 const EViewType &e,
7 const BViewType &b);
8 };
9

10 template <>
11 template <typename ValueType>
12 KOKKOS INLINE FUNCTION int
13 SerialPttrsInternal<Uplo::Lower, Algo::Pttrs::Unblocked>::invoke(
14 const int n, const ValueType *KOKKOS RESTRICT d, const int ds0,
15 const ValueType *KOKKOS RESTRICT e, const int es0,
16 ValueType *KOKKOS RESTRICT b, const int bs0, const int ldb) {
17 // Solve A * X = B using the factorization L * D * L**T
18 for (int i = 1; i < n; i++) {
19 b[i * bs0] −= e[(i − 1) * es0] * b[(i − 1) * bs0];
20 }
21 b[(n − 1) * bs0] /= d[(n − 1) * ds0];
22 for (int i = n − 2; i >= 0; i−−) {
23 b[i * bs0] = b[i * bs0] / d[i * ds0] − b[(i + 1) * bs0] * e[i * es0];
24 }
25 return 0;
26 }

Listing 2. Kokkos-kernels implementation
1 Kokkos::parallel for(
2 ”KokkosBatched::SerialPttrs”,
3 batch,
4 KOKKOS LAMBDA(const int i) {
5 auto sub b0 = Kokkos::subview(b0, Kokkos::ALL, i);
6 KokkosBatched::SerialPttrs<
7 KokkosBatched::Algo::Pttrs::Unblocked>::invoke(d, e, sub b0);
8 });
9 KokkosBlas::gemm(ExecSpace(), ”N”, ”N”, −1., bottom left, b0, 1., b1);

10 Kokkos::parallel for(
11 ”KokkosBatched::SerialGetrs”,
12 batch,
13 KOKKOS LAMBDA(const int i) {
14 auto sub b1 = Kokkos::subview(b1, Kokkos::ALL, i);
15 KokkosBatched::SerialGetrs<
16 KokkosBatched::Trans::NoTranspose,
17 KokkosBatched::Algo::Getrs::Unblocked>::
18 invoke(delta, ipiv device, sub b1);
19 });

which are packed into a contiguous 2D array before being
passed to the Ginkgo solver (lines 28-29). After solving, the
chunk of solutions are copied back (line 32) to the original
right-hand sides.

C. 1D advection solver for benchmarks

For the benchmark, we employ a 1D advection solver using
the Semi-Lagrangian scheme. This corresponds to solving the
advection term along the x direction while using batching
along the vx direction in Eq. (1). This includes the entire
procedures of spline interpolation: building splines and in-
terpolation. Algorithm 2 describes the 1D batched advection
solver with spline interpolation.

Here, fn and fn+1 are respectively the distribution func-
tions at time step tn and tn+1, η(xi=∗, vj) is the spline
coefficient. In this algorithm, we need two transpose operations
before and after the spline solver (line 3-5). Because the
Ginkgo solver is only compatible with a contiguous row-major

Listing 3. Ginkgo implementation
1 std::size t const main chunk size
2 = std::min(m cols per chunk, b.extent(1));
3 std::size t const iend
4 = (b.extent(1) + main chunk size − 1) / main chunk size;
5 for (std::size t i = 0; i < iend; ++i) {
6 std::size t const subview begin = i * main chunk size;
7 std::size t const subview end
8 = (i + 1 == iend) ? b.extent(1) :
9 (subview begin + main chunk size);

10

11 auto const b chunk
12 = Kokkos::subview(b,
13 Kokkos::ALL,
14 Kokkos::pair(subview begin, subview end));
15 auto const b buffer chunk = Kokkos::
16 subview(b buffer,
17 Kokkos::ALL,
18 Kokkos::pair(std::size t(0),
19 subview end − subview begin));
20 auto const x chunk = Kokkos::subview(x,
21 Kokkos::ALL,
22 Kokkos::pair(std::size t(0), subview end − subview begin));
23

24 Kokkos::deep copy(b buffer chunk, b chunk);
25 Kokkos::deep copy(x chunk, b chunk);
26

27 m solver−>add logger(convergence logger);
28 m solver−>apply(to gko dense(gko exec, b buffer chunk),
29 to gko dense(gko exec, x chunk));
30 m solver−>remove logger(convergence logger);
31

32 Kokkos::deep copy(b chunk, x chunk);
33 }

Algorithm 2 1D batched advection with spline interpolation
1: Input: fn(xi, vj), Output: fn+1(xi, vj)
2: for all All grid points (vj) do
3: Transpose fn(xi=∗, vj) to be contiguous fT (xi=∗, vj)
4: Solve AηT (xi=∗, vj) = fT (xi=∗, vj) for ηT (xi=∗, vj)
5: Transpose ηT (xi=∗, vj) to be original layout

η(xi=∗, vj)
6: for all All grid points (xi) do
7: (xi)

∗ ← Foot of characteristic for one time step ∆t
that ends at (xi, vj)

8: Interpolatefn(xi, vj) at location (xi)
∗ using spline

coefficients η(xi=∗, vj)
9: fn+1(xi, vj)← the interpolated value

10: end for
11: end for

layout, we need to pack the distribution function f into this
layout before solving. Accordingly, we keep the data in a
contiguous row-major layout for both CPUs and GPUs. Except
for the matrix solver part implemented in Kokkos-kernels or
Ginkgo, other operations are parallelized with Kokkos.

IV. OPTIMIZATION FOR KOKKOS-KERNELS
IMPLEMENTATION

In this section, we have optimized the Kokkos-kernels im-
plementation of spline building kernels. We have tried multiple
optimization approaches while keeping performance portabil-
ity. We have first a applied kernel fusion approach to improve
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the data locality. We have then replaced the gemv function
by spmv (Sparse matrix vector multiplication) based on the
sparsity of sub-matrices. Finally, we evaluate performance
improvements with optimizations. We have optimized the code
on NVIDIA A100 GPU which is profiled with “NVIDIA
Nsight systems” and “NVIDIA Nsight compute”.

A. Settings for performance measurements

The source codes used in this study are publicly available
on GitHub [37]. The benchmark of the entire application has
been performed with benchmark [38] library, while the code
is profiled by Kokkos-tools for optimizations. Performance
has been measured on Intel Icelake [39], NVIDIA A100
[40] and AMD MI250X [41]. For AMD MI250X, we regard
each Graphic Compute Die (GCD) as a single GPU. Table
II summarizes the devices and compilers used in the present
work. To measure performance on different architectures, we
use Kokkos-tools [42], whose measurements are cross-checked
with “NVIDIA Nsight compute” on A100. We use a single
GPU for all the performance measurements in this work.

B. Baseline performance

Firstly, we have profiled the baseline implementation of
spline building kernel in listing 2. The problem size is fixed
as (Nx, Nv) = (1000, 100000) with 10 iterations. This corre-
sponds to the matrix size of 1000 and the batch size of 100000,
which is our typical use case. It consists of 4 different kernels:
pttrs, gemm, getrs, and gemm.

Analyzing the Gantt chart obtained from “NVIDIA Nsight
systems”, it turns out that the pttrs (taking 2.941 ms),
and two gemm kernels (taking 3.795 ms and 4.423 ms)
take roughly the same time. As expected, getrs (taking
6.496 µs) has negligible impact to the entire performance.
We also investigate the detailed performance of pttrs using
“NVIDIA Nsight compute”. Considering that our problem
size is (n, batch) = (1000, 100000), we can neglect the
memory footprint of the symmetric tridiagonal matrix kept
in ((n− 1)× 2) format (where 2 comes from the diagonal
and upper diagonal components). If load/store operations of
multiple right-hand sides are fully cached, we expect the total
memory access to be 0.8GB = (8× n× batch) for double
precision. Unfortunately, “Nsight compute” reports 1.58 GB
load and 1.56 GB store operations from this kernel, indicating
redundant memory accesses. At the same time, it reports the
L1/TEX Hit Rate of 59.14 % and L2 Hit Rate of 57.37%,
indicating that some data are actually cached. It is thus
expected that the shared tridiagonal matrix is kept in cache,
whereas the right-hand side vectors are not cached perfectly.

C. Improve data locality with kernel fusions

One of the most powerful features of Kokkos-kernels is
the batched functionality [21]. It allows us to parallelize
over the batch direction and perform multiple operations in
a single parallel region. Thanks to this feature, we can define
a single kernel to solve the entire matrix using pttrs, gemv
and getrs. Listing 4 shows the spline building kernel with

kernel fusion. Inside the parallel region, all the operations are
performed on a single right-hand side (lines 5-6). With this
change, gemm operations are now replaced with (batched)
gemv as shown in lines 11-14 and 21-24. We expect improved
hardware cache effects of the right-hand sides b0 and b1 in
this implementation.

Listing 4. Kokkos-kernels (kernel fusion)
1 Kokkos::parallel for(
2 ”KokkosBatched::SerialPttrs−Gemv”,
3 batch,
4 KOKKOS LAMBDA(const int i) {
5 auto sub b0 = Kokkos::subview(b0, Kokkos::ALL, i);
6 auto sub b1 = Kokkos::subview(b1, Kokkos::ALL, i);
7

8 KokkosBatched::SerialPttrs<
9 KokkosBatched::Algo::Pttrs::Unblocked>::invoke(d, e, sub b0);

10

11 KokkosBatched::SerialGemv<
12 KokkosBatched::Trans::NoTranspose,
13 KokkosBatched::Algo::Gemv::Unblocked>::
14 invoke(−1.0, bottom left block, sub b1, 1.0, sub b1);
15

16 KokkosBatched::SerialGetrs<
17 KokkosBatched::Trans::NoTranspose,
18 KokkosBatched::Algo::Getrs::Unblocked>::
19 invoke(bottom right block, bottom right piv, sub b1);
20

21 KokkosBatched::SerialGemv<
22 KokkosBatched::Trans::NoTranspose,
23 KokkosBatched::Algo::Gemv::Unblocked>::
24 invoke(−1.0, top right block, sub b1, 1.0, sub b0);
25 });

“Nsight compute” reports 3.16 GB load and 2.37 GB store
operations from this merged kernel. This indicates that the
newly introduced gemv and getrs induce additional data load
and store. At the same time, it reports almost the same L1/TEX
Hit Rate and L2 Hit Rate of 56.32 % and 52.28%, indicating
that tridiagonal matrix is still kept in cache.

D. Benefit from sparse sub-matrices
Although gemm operations are applied to the bottom-

left and top-right sub-matrices, these matrices are largely
sparse. For example, the top-right corner matrix with the
shape of (999, 1) contains 48 non-zeros and the bottom-left
corner matrix with the shape of (1, 999) contains 2 non-
zeros. The matrix sparsity can differ for different spline orders
and uniformity, but they are still highly sparse. In order to
avoid implementing kernels for both CSR (Compressed Sparse
Row) and CSC (Compressed Sparse Column) formats, we
store sparse matrices in a COO (COOrdinate list) format.
Listing 5 shows the data structure to handle COO storage
inside a Kokkos parallel region. This class stores the non-
zero elements in m values (line 6) whose coordinates are
stored in m rows idx and m cols idx (line 5). All the meth-
ods in this class are available inside Kokkos parallel region
with KOKKOS FUNCTION macro (lines 13-18). Using COO
storage, the sequential loop to compute the multiplication can
be reduced to the size of non-zeros (nnz), which drastically
reduces the number of operations.

Listing 6 shows the Kokkos implementation of spmv using
COO storage (lines 11-15 and 22-26). Although we need to
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TABLE II
HARDWARE DESCRIPTION FOR ONE PROCESSOR. THERMAL DESIGN POWER (TDP) IS EXTRACTED FROM VENDORS DATA-SHEETS [39]–[41].

Processor Intel Xeon Gold 6346 NVIDIA A100 AMD MI250X
(Icelake) (A100) (MI250X)

Number of cores (FP64) 32 3456 -
Shared Cache [MB] 36 40 16/2
Peak performance [GFlops] 3174.4 9700 26500
Peak B/W [GB/s] 204.8 1555 1600
B/F ratio 0.064 0.160 0.060
SIMD width 512 bit - -
Warp/wavefront size - 32 64
TDP [W] 205 400 500 / 2
Manufacturing process [nm] 10 7 6
Year 2021 2020 2021
Compilers gcc 11.0 CUDA/12.2.128 rocm 5.7.0

Listing 5. COO storage class
1 struct Coo {
2 std::size t m nrows = 0, m ncols = 0;
3 using IdxType = Kokkos::View<int*, Kokkos::LayoutRight>;
4 using ValueType = Kokkos::View<double*, Kokkos::LayoutRight>;
5 IdxType m rows idx, m cols idx;
6 ValueType m values;
7

8 Coo(std::size t const nrows, std::size t const ncols,
9 IdxType rows idx, IdxType cols idx, ValueType values)

10 : m nrows(nrows), m ncols(ncols), m rows idx(std::move(rows idx)),
11 m cols idx(std::move(cols idx)), m values(std::move(values)) {}
12

13 KOKKOS FUNCTION std::size t nnz() { return m values.size(); }
14 KOKKOS FUNCTION std::size t nrows() { return m nrows; }
15 KOKKOS FUNCTION std::size t ncols() { return m ncols; }
16 KOKKOS FUNCTION IdxType rows idx() { return m rows idx; }
17 KOKKOS FUNCTION IdxType cols idx() { return m cols idx; }
18 KOKKOS FUNCTION ValueType values() { return m values; }
19 };

iterate over all the elements of right-hand sides, we only
need to perform matrix-matrix multiplication over the non-zero
elements, leading to the order of reduction in operations. With
this optimization, “Nsight compute” reports 1.60 GB load and
1.59 GB store operations. The additional memory accesses
from gemv are almost suppressed. In addition, the L1/TEX
Hit Rate and L2 Hit Rate have been increased to 59.79 % and
57.71%.

E. Impact of optimizations

The impacts of optimizations on Icelake, A100 and MI250X
are summarized in Table III. With the kernel fusion, we got the
speed-ups of 1.30×, 2.25× and 1.42× are obtained on Icelake,
A100 and MI250X, respectively. The larger speed up on A100
than MI250X with kernel fusion can be explained by a larger
cache of A100. Focusing on the sparsity of sub-matrices, we
replace the dense gemv kernel with the spmv kernel, and
the speed-ups of 1.37×, 1.70× and 3.52× are obtained on
Icelake, A100 and MI250X, respectively. The larger speed up
on MI250X indicates that the gemv kernel is a bottleneck on
MI250X. We have also tried to store the tridiagonal matrix
in read-only memory using Kokkos::RandomAccess trait.

Listing 6. Kokkos-kernels (spmv)
1 Kokkos::parallel for(
2 ”KokkosBatched::SerialPttrs−Spmv”,
3 batch,
4 KOKKOS LAMBDA(const int i) {
5 auto sub b0 = Kokkos::subview(b0, Kokkos::ALL, i);
6 auto sub b1 = Kokkos::subview(b1, Kokkos::ALL, i);
7

8 KokkosBatched::SerialPttrs<
9 KokkosBatched::Algo::Pttrs::Unblocked>::invoke(d, e, sub b0);

10

11 for (int nz idx = 0; nz idx < bottom left block.nnz(); ++nz idx) {
12 const int r = bottom left block.rows idx()(nz idx);
13 const int c = bottom left block.cols idx()(nz idx);
14 sub b1(r) −= bottom left block.values()(nz idx) * sub b0(c);
15 }
16

17 KokkosBatched::SerialGetrs<
18 KokkosBatched::Trans::NoTranspose,
19 KokkosBatched::Algo::Getrs::Unblocked>::
20 invoke(bottom right block, bottom right piv, sub b1);
21

22 for (int nz idx = 0; nz idx < top right block.nnz(); ++nz idx) {
23 const int r = top right block.rows idx()(nz idx);
24 const int c = top right block.cols idx()(nz idx);
25 sub b0(r) −= top right block.values()(nz idx) * sub b1(c);
26 }
27 });

TABLE III
IMPACT OF OPTIMIZATION ON ICELAKE, NVIDIA A100 GPUS AND

AMD MI250X.

Icelake A100 MI250X
Original 145.8 ms 11.39 ms 16.14 ms
Kernel fusion 112.1 ms 5.06 ms 11.34 ms
gemv → spmv 82.0 ms 2.98 ms 3.22 ms

Unfortunately, it has a negligible impact, so we do not report
it in this paper.

V. BENCHMARK FOR SPLINE BUILDING KERNELS WITH
ITERATIVE AND DIRECT METHODS

In this section, we evaluate the performance of the 1D
batched advection code for different batch sizes. The perfor-
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mance comparison between the Kokkos-kernels and Ginkgo
approaches are made. Then, we investigate the performance
portability of the developed spline building kernels. We also
discuss the benefit of Kokkos-kernels and Ginkgo approaches.

A. Benchmark of the entire 1D advection solver
We have measured the performance with a benchmark code

which performs one time step of 1D batched advection using
the Semi-Lagrangian method. As described in Algorithm 2,
this benchmark includes the entire procedure of spline inter-
polation: building splines and interpolation. For a performance
metric, we use Giga Lattice Update per Seconds (GLUPS)
defined by

GLUPS = Nx ×Nv × 10−9/t, (7)

where Nx × Nv is the problem size, and t is the total
elapsed time in seconds. We have measured the performance
of uniform and non-uniform splines with degrees of 3, 4 and
5. For the problem size, we fixed Nx = 1024 and scanned
with respect to Nv for (100− 100000).

Figure 2 shows the achieved GLUPS with Kokkos-kernels
and Ginkgo on CPUs and GPUs. We have significantly better
performance with Kokkosl-kernels than Ginkgo for almost
all regimes. In the Kokkos-kernels implementation, we have
slightly better performance with uniform splines than non-
uniform splines. The best performance has been obtained
with degree 3 splines for a uniform mesh. The relatively low
performance on CPUs stems from the non-ideal data layout.
In the current implementation, the parallelization is made over
the contiguous dimension. For a better cache usage, it is
ideal to parallelize over the non-contiguous dimension, i.e.,
the batch dimension should be the non-contiguous dimension.
This requires a layout abstraction which remains as a future
work.

In the Ginkgo implementation, we use GMRES for CPUs
and BiCGstab for GPUs. As discussed in subsection III-B, we
set the chunk size to be 8192 for CPUs and 65535 for GPUs.
Since we solve the time evolution of a simple 1D advection,
the solution of the previous time step should be a good initial
guess for the subsequent solve. The achieved performance is
roughly the same for uniform and non-uniform splines (red and
blue curves overlap). The performance degrades with higher
spline degrees on GPUs which stem from the increments in the
number of iterations. Table IV shows the number of iterations
for the problem size (Nx, Nv) = (1000, 100000). The number
of iterations for each chunk remains constant in this case.
The performance degradation with respect to the number of
iterations implies that the performance bottleneck is the spline
building kernels in the Ginkgo implementation.

B. Performance portability of spline building kernels in
Kokkos-kernels

To understand the efficiency of the developed spline build-
ing kernels in Kokkos-kernels, we evaluate the achieved mem-
ory bandwidth with the following equation

Bandwidth = Nx ×Nv × 8/t,

TABLE IV
THE NUMBER OF ITERATIONS IN GINKGO SOLVER FOR THE PROBLEM SIZE

(Nx, Nv) = (1000, 100000).

GMRES BiCGStab
uniform (Degree 3) 17 10
uniform (Degree 4) 22 14
uniform (Degree 5) 30 21
non-uniform (Degree 3) 24 14
non-uniform (Degree 4) 32 21
non-uniform (Degree 5) 41 28

where Nx×Nv is the problem size fixed as 1000×100000, and
t is the total elapsed time in seconds profiled with Kokkos-
tools. The number 8 represents one load/store operation of
double precision data of right-hand sides in bytes, assuming a
perfect and unlimited cache. Ignoring the read operations of
a single matrix is probably oversimplification for CPUs, since
the current data layout disturbs caching on CPUs. This is,
however, a reasonable assumption for GPUs, since the caching
of the matrix is implied by profilers (See IV).

In the present work, we employ the performance portability
metric [43], [44] defined as

P (a, p,H) =


|H|∑

i∈H

1

ei (a, p)

if i is supported ∀i ∈ H

0 otherwise,

(8)

ei (a, p) =
Pa,p,i

Ra,i
× 100%. (9)

Here, ei (a, p) denotes the architectural efficiency of an appli-
cation a on the device i with simulation settings p based on
the roofline model [45]. Pa,p,i is the achieved GFlops of the
kernel a on the device i based on the hand count metrics of
kernels. The attainable performance Ra,i is computed by the
roofline model [45] as

Ra,i = min(Fi, Bi × fa/ba), (10)

where Fi and Bi are the Peak Floating point Performance in
GFlops and the Peak Memory Bandwidth in GBytes/s of the
device i, which are found in Table II. fa and ba denote the
total number of floating point operations and memory accesses
per grid point of a kernel a, counted by hand. H represents a
set of platforms including Icelake, A100, and MI250X. A low
value of P (a, p,H) indicates the achieved performance on
each architecture is insufficient. All the evaluated kernels here
are memory bound and thus the achieved memory bandwidth
represents the roofline.

Table V shows the obtained performance for different
types of splines. On Icelake, the performance degrades with
the higher spline degrees. Unexpectedly, we obtain a better
performance with the non-uniform splines compared to the
uniform splines of degrees 4 and 5. As we have discussed, the
data layout is not ideal for CPUs and thus the performance
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Fig. 2. Achieved performance of 1D batched advection with Kokkos-kernels (Top row) and Ginkgo (Bottom row) on Icelake (a, d), A100 (b, e) and MI250X
(c, f). The red and blue colors correspond to the uniform and non-uniform mesh, respectively. The solid (with circle), dashed (with cross), and dotted (with
star) lines represent spline degrees of 3, 4 and 5.

TABLE V
OBTAINED PERFORMANCE AND PERFORMANCE PORTABILITY OF EACH SPLINE BUILDING KERNEL. THE ACHIEVED BANDWIDTH ON EACH

ARCHITECTURE AND RATIO TO THE PEAK BANDWIDTH IS SHOWN.

Icelake A100 MI250X P (a, p,H)
uniform (Degree 3) 9.75 GB/s (4.38 %) 268.6 GB/s (17.3 %) 247.8 GB/s (15.5 %) 0.086
uniform (Degree 4) 3.83 GB/s (1.87 %) 252.6 GB/s (16.2 %) 154.6 GB/s (9.7 %) 0.043
uniform (Degree 5) 3.83 GB/s (1.87 %) 251.3 GB/s (16.1 %) 153.5 GB/s (9.6 %) 0.043
non-uniform (Degree 3) 5.37 GB/s (2.62 %) 208.4 GB/s (13.4 %) 123.5 GB/s (7.7 %) 0.051
non-uniform (Degree 4) 5.15 GB/s (2.52 %) 169.9 GB/s (10.9 %) 81.8 GB/s (5.1 %) 0.044
non-uniform (Degree 5) 4.96 GB/s (2.42 %) 142.2 GB/s (9.15 %) 59.2 GB/s (3.7 %) 0.038

is not optimal. Further investigations are needed for CPU
performance which remains as future work. On A100, the
uniform splines can achieve high memory bandwidth. In
contrast, the performance degrades in non-uniform splines. We
may introduce a cache blocking version of gbtrs to improve
performance. A similar trend has been found for MI250X, but
the performance degradation compared to the uniform degree
3 spline is more critical than on A100.

C. Discussions for each approach

• Kokkos-kernels If performance is the top priority, we
recommend the Kokkos-kernels approach. This approach
is memory efficient since the spline building kernels can
be in-place. From the code maintainability, we need to
implement multiple solvers for each type of matrix. C++
polymorphism allows us to use a common interface in
the host code, but polymorphism is not fully available for

device kernels. Further optimizations may be possible by
fusing transpose kernels with spline building kernels.

• Ginkgo The most important benefit of Ginkgo is code
maintainability and readability. A dedicated solver for a
single matrix and multiple right-hand sides should exhibit
better performance with lower memory consumption.

VI. SUMMARY

In this paper, we demonstrate performance portable spline
solvers based on Kokkos-kernels. For this purpose, we have
developed batched serial versions of matrix solvers (corre-
sponding to getrs, gbtrs, pbtrs and pttrs in LAPACK) as
Kokkos-kernels batched solvers. Using these solvers, we have
developed performance portable spline building kernels for
uniform and non-uniform splines. We have optimized the
spline building kernels based on kernel fusion and matrix spar-
sity to achieve reasonable performance on both NVIDIA A100
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and AMD MI250X GPUs. This effort significantly reduces the
development and maintenance cost of spline solvers dedicated
to exa-scale supercomputing systems.
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APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: [DEVELOPMENT OF

PERFORMANCE PORTABLE SPLINE SOLVER FOR EXA-SCALE
PLASMA TURBULENCE SIMULATION]

A. Abstract

This appendix is the artifact description of the paper entitled
“Development of performance portable spline solver for exa-
scale plasma turbulence simulation”. It includes the basic
instruction for compilation and experiment workflows. The

expected results and the data evaluation method in the paper
are also demonstrated.

B. Description
1) Check-list (artifact meta information):
• Algorithm: Semi-Lagrangian method, Spline interpolation
• Program: ddc [https://github.com/yasahi-hpc/ddc] (SHA:

ac4e774)
• Compilation: See “Compilation” section.
• Run-time environment: “Experiment workflow”
• Hardware: Intel Xeon Gold 6346 (Icelake), AMD MI250X,

and A100 (PCIE 40GB).
• Execution: See “Experiment workflow” section.
• Output: See “Evaluation and expected result” section.
• Experiment workflow: See “Experiment workflow” section.
• Publicly available?: Yes
2) How software can be obtained (if available): The

source codes are publicly available on the GitHub page
https://github.com/yasahi-hpc/ddc. (branch: kokkos-kernels-
profile, SHA: e3ef33b). The source codes for profiling are
“examples/characteristics advection.cpp” and “benchmarks/s-
plines.cpp”.

3) Hardware dependencies: We have tested on Intel Xeon
Gold 6346 (Icelake), NVIDIA A100, and AMD MI250X
GPUs.

4) Software dependencies: This software
relies on external libraries including Kokkos
[https://github.com/kokkos/kokkos], mdspan
[https://github.com/kokkos/mdspan], Kokkos-kernels
[https://github.com/kokkos/kokkos-kernels], googletest
[https://github.com/google/googletest], benchmark
[https://github.com/google/benchmark], LAPACK
[https://github.com/Reference-LAPACK/lapack], Kokkos-
tools [https://github.com/kokkos/kokkos-tools] and Ginkgo
[https://github.com/ginkgo-project/ginkgo]. Kokkos, mdspan,
Kokkos-kernels, googletest, and benchmark are included
as submodules. LAPACK, Ginkgo, and Kokkos-tools are
assumed to be installed to the system.

C. Installation

First of all, we have to git clone DDC in the following
manner.
git clone --recursive \
https://github.com/yasahi-hpc/ddc.git
cd ddc
git switch kokkos-kernels-profile

Then, we configure and build DDC with the following com-
mands.
cmake -B build \
-DCMAKE_CXX_COMPILER=<compiler_name> \
-DCMAKE_BUILD_TYPE=Release \
-DDDC_BUILD_KERNELS_FFT=OFF \
-DDDC_BUILD_KERNELS_SPLINES=ON \
-DDDC_BUILD_PDI_WRAPPER=OFF \
-DDDC_BUILD_BENCHMARKS=ON \
-DDDC_SPLINES_SOLVER=GINKGO \ # or LAPACK
-DDDC_SPLINES_VERSION=0 # 0, 1, 2 or None
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<COMMANDS_FOR_KOKKOS>
cmake --build build -j 16

The compilation commands for each architecture
<COMMANDS_FOR_KOKKOS> for Icelake, A100 and
MI250X are as follows.
# Icelake (compiler_name: g++)
-DKokkos_ENABLE_OPENMP=ON \
-DKokkos_ARCH_SKX=ON

# A100 (compiler_name: g++)
-DKokkos_ENABLE_CUDA=ON \
-DKokkos_ARCH_AMPERE80=ON

# MI250X (compiler_name: hipcc)
-DKokkos_ENABLE_HIP=ON \
-DKokkos_ARCH_AMD_GFX90A=ON

D. Experimental workflow for “Optimization for Kokkos-
kernels implementation” (section IV)

1) Compilation: For the compilation of baseline, we set
-DDDC_SPLINES_SOLVER=LAPACK and compile without
-DDDC_SPLINES_VERSION for baseline. For kernel-fusion
and spmv, we compile with -DDDC_SPLINES_VERSION=1
and 2, respectively.

2) Evaluation and expected re-
sults: We execute the benchmark app
(build/examples/characteristics_advection)
in the following way. The first and second arguments to the
executable are the non-uniformity of mesh and degree of
splines.
export tools_dir=<path-to-kokkos-tools>
#profile with nsys
nsys profile .app 0 3 \
--kokkos-tools-libs=\
${tools_dir}/libkp_nvtx_connector.so
ncu -f --set full -o profile .app 0 3 \
--kokkos-tools-libs=\
${tools_dir}/libkp_nvtx_connector.so

# Just run with Kokkos-tools
export PATH=${PATH}:${tools_dir}
export LD_LIBRARY_PATH=\
${LD_LIBRARY_PATH}:${tools_dir}

./app 0 3
${tools_dir}/../bin/kp_reader *.dat

Finally, we get the following performance results in standard
output file in the ascii format. We use the average time for a
measurement.
(Type) Total Time, Call Count, \

Avg. Time per Call, ...
---------------------------------

Regions:

- ddc_splines_solve
(REGION) 0.029775 10 0.002978 \

22.599015 16.500760

----------------------------------

E. Experimental workflow for “Benchmark for spline con-
struction with iterative and direct methods” (section V)

1) Compilation: For the compilation of benchmark,
we set -DDDC_SPLINES_SOLVER=GINKGO for
Ginkgo and -DDDC_SPLINES_SOLVER=LAPACK with
-DDDC_SPLINES_VERSION=2 for Kokkos-kernels.

2) Evaluation and expected re-
sults: We execute the benchmark app
(build/benchmarks/ddc_benchmark_splines)
in the following way.
./app --benchmark_format=json \
--benchmark_out=<file>.json

<file> is splines_bench_<lib>_<backend>.json,
where <lib> is ginkgo or lapack and <backend> is
omp, cuda or hip.

After we gather all the profiles, we visualize the data with
python in the following way, where all the json files must be
present under <dir>. Figs. 2 (a)-(f) are found under <dir>
in png format.
python comparison.py -dirname <dir>
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