
Autonomous Execution for Multi-GPU Systems:
Compiler Support

Javid Baydamirli
Koç University

Istanbul, Turkey
jbaydamirli21@ku.edu.tr

Tal Ben Nun
Lawrence Livermore National Laboratory

Livermore, California, USA
bennun2@llnl.gov

Didem Unat
Koç University

Istanbul, Turkey
dunat@ku.edu.tr

Abstract—Recent trends in HPC systems increasingly empha-
size accelerators, particularly GPUs, as autonomous execution
units, shifting control of entire program execution to GPUs. Com-
munication libraries enable devices to move data independently
among one another, bringing forth latency improvements, and
first-party GPU runtimes expose APIs for kernels to organize
their execution. Despite the trends and advancements, current
high-level frameworks and compilers lack support for constructs
enabling this autonomous execution. In this work, we aim to
bridge this gap with a compiler and provide a productive method
for writing efficient GPU-first code. We design and develop a
code generator that efficiently fuses and schedules persistent
kernels, provides high-level abstractions over device resources,
and enables GPU-initiated communication within Python code
using NVSHMEM to realize autonomous multi-GPU execution.
We compare our implementation to other accelerated Python
compilers including CuPy, DaCe, and cuNumeric on 22 NPBench
kernels. We additionally perform a scaling study of distributed
2D/3D Jacobi and observe a speedup of 6.1x and 30.8x over
DaCe and cuNumeric, respectively, on 8 GPUs for the 3D case
with a scaling efficiency of 98%.

Index Terms—Multi-GPU, GPU-initiated communication,
NVSHMEM, Python

I. INTRODUCTION

The proliferation of GPU accelerators in top systems
has brought forward changes in multi-GPU programming
paradigms as many applications are now scaled up to several
nodes and consequently bound by communication and syn-
chronization overheads. One such notable shift has been in
the form of new execution models wherein the control path is
moved to devices, granting them more autonomy over their
computation and communication among peer GPUs. Prior
work has explored various degrees of such autonomy for
several use cases, including irregular computations [1], [2],
graphics workloads [3], execution models [4] GPU-initiated
communication [5]–[10], and GPU-triggered networking [11],
seeing improved overheads compared to traditional execution,
as many of the host-induced latencies are eliminated or re-
duced.

There is now first-party support by the two big vendors,
NVIDIA and AMD, for GPU-initiated communication through
optimized libraries, NVSHMEM [6] and ROC SHMEM [12],
respectively, that facilitate data transfers in both single and
multi-node systems with fine-grained device-side APIs. Both
libraries have seen use in earlier research [4]–[9], and been

adopted into several parallel frameworks [10], [13]–[15]. Fi-
nally, recent work by [4] demonstrates the efficacy of fully
autonomous execution in Stencil and Conjugate Gradient mini-
applications in NVIDIA GPUs and presents a blueprint for
CPU-free programs. The work combines several preexisting
techniques such as persistent kernels and device-side com-
munication to achieve significant latency improvements on a
single node.

However, writing multi-GPU code in an emerging program-
ming model can be a daunting and error-prone process that
requires familiarity with low-level constructs and architecture
specifics. This lack of productivity is coupled with the vendor-
dependence of first-party GPU programming toolkits, CUDA
and ROCm, and their respective communication libraries,
leading to poor, if any, performance portability. Several works
have addressed these issues – frameworks such as Kokkos
[16], RAJA [17], and SYCL are lower-level libraries that
focus on performance portability, while other bodies of work
have put efforts into expressive DSLs and high-level tools.
Python in particular is a popular choice of language for
such targets thanks to its high-level productive nature and
extensive repertoire of fast numerical libraries. Though full-
scale distributed applications can be written in Python with the
help of the abstractions provided by these frameworks such as
DaCe [18] and Dask [19], support for autonomous execution
has been absent. This is the case in both the API and the
backend.

Firstly, code written by the users cannot utilize GPU-centric
constructs and libraries. While GPU vendors have increased
their support for more device autonomy and work has been
put into employing devices as independent processors, GPU
constructs such as thread blocks are not exposed to the user
and they are instead treated as large bulk-computation devices.
This causes a disconnect of user code from the actual structure
of devices as GPU-centric optimizations cannot easily be ex-
pressed. Moreover, the choice for the communication method
is limited to the traditional, host-initiated libraries, such as
mpi4py.

Secondly, in the backend, code generated by the frame-
works, internally, do not make use of GPU-centric concepts
and libraries. Support for device-initiated communication is
again mostly absent - among the most similar related work,
DaCe relies exclusively on MPI routines for its communication

1129979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00155

layer, while Dask utilizes MPI and NCCL, both of which have
host-side APIs and require host-device synchronization.

In this paper, we address these gaps and develop a code
generator for a CPU-free autonomous execution model. In
short, our paper contributes the following:

• We provide a Python-based API to write CPU-free code
with GPU-centric constructs and GPU-initiated commu-
nication calls.

• We implement a code-generation backend that creates
persistent kernels and schedules threads and thread blocks
to maximize efficiency.

• We develop an autonomous communication layer using
NVSHMEM and ROC_SHMEM as Pythonic abstractions to
be used on the frontend. To our knowledge, this is the
first body of work enabling GPU-initiated communication
directly in Python code.

• We conduct a study to measure the performance of our
implementation on 22 kernels from the NPBench [20]
suite on a single GPU and compare the performance
against DaCe and CuPy. Additionally, we compare the
performance of 2D and 3D multi-GPU stencil computa-
tion against multi-GPU DaCe and cuNumeric.

To avoid rebuilding the entire code generation framework,
we opt to leverage an existing Python framework, DaCe, and
extend it to support the autonomous execution model.

II. BACKGROUND

In a traditional GPU execution model, the host CPU acts as
the orchestrator of the execution, launching discrete kernels to
offload computation to the device. Synchronization is host-
driven as well with synchronization points inserted in the
host code to ensure GPU operations are completed before
proceeding. Streams managed on the host side provide the
means to overlap computation and communication. Multi-GPU
execution follows a similar pattern, with the host controlling
data transfers between GPUs and synchronizing their execu-
tion.

Autonomous execution, unlike traditional host-driven exe-
cution, involves the host CPU only at the initial kernel launch,
after which control and data paths are managed on the GPU
side. The GPU handles computation and communication over-
lap, as well as intra-device and inter-device synchronization,
independently of the host. This section introduces the neces-
sary concepts that are prerequisites to our implementation.

A. Persistent Kernels

GPU kernels have traditionally been implemented in a bulk-
synchronous manner - also referred to as discrete kernels [21].
For instance, an iterative solver kernel is scheduled on a per-
iteration basis, getting torn down and relaunched for every
time step. Each instance of a GPU kernel is only concerned
with a specific portion of the computation, and unaware of
the underlying iterative structure of the application, as well
as possible communication routines enqueued in concurrent
streams.

Ismayilov et al. [4] explore such iterative workloads and
provide GPUs in a single node more autonomy by making
use of persistent kernels [22] where the time loop is moved
inside the kernel, resulting in a single kernel launch for
the entirety of the application. Though not inherently more
performant in all cases [22]–[24], there are wider implications
of persistent execution, especially in multi-GPU scenarios
where communication has traditionally been initiated outside
of devices, as discussed below.

B. Device-Side Synchronization

In-kernel synchronization had been limited to a single thread
block at most prior to CUDA 9.0, which introduced the Coop-
erative Groups API, allowing more granular synchronization
of threads as well as introducing a global barrier. By itself,
the latency difference between implicit synchronization using
repeated kernel launches and explicit synchronization is neg-
ligible [24], however, maintaining a single kernel throughout
the computation is desirable, as more caching optimizations
and better shared memory utilization [23], whose lifetime ends
with the kernel, is possible thanks to the kernel not being
destroyed after each time step.

Moreover, similar to implicit kernel synchronization within
a single GPU, barriers among peer devices in discrete multi-
GPU kernels are also managed by the CPU, through host-side
barriers provided by interfaces such as OpenMP and MPI.

C. Thread Block (TB) Specialization

It is often necessary for multi-GPU applications to over-
lap their computation with communication to hide the la-
tency of the latter to achieve optimal performance, as data
transfers have a high cost. In discrete kernels, this is com-
monly achieved through multiple kernel launches across asyn-
chronous GPU streams. Though neither CUDA nor ROCm
guarantee concurrent scheduling of streams, they are a conve-
nient method of hiding latency while simultaneously allowing
individual kernels to be oversubscribed. Moving to the per-
sistent execution model, however, reduces opportunities for
utilizing established stream facilities. As discussed previously,
the model necessitates launching a single large kernel encap-
sulating all concurrent steps, meaning there is no longer any
inter-kernel concurrency that can be delegated to the GPU
runtime.

Instead, thread blocks in a persistent kernel can be used
to establish concurrency as standalone execution units. Prior
works [2], [25] explore the concept at warp and block levels
and assign concurrent sub-tasks to them to avoid global
barriers and address irregular computations. We adapt this
concept in our design using the aforementioned Cooperative
Groups facilities that allow more control over the scheduling
of thread blocks.

D. GPU-Initiated Communication

Current methods of communication across GPUs make use
of peer-to-peer data paths to move data [26], [27], utilizing the
high bandwidth of GPU interconnects and avoiding extraneous

1130

buffers. MPI is a particularly popular communication standard
with support for device pointers for both CUDA [28], [29]
and ROCm [30] platforms. Despite its wide applicability, the
MPI model is fundamentally dissimilar to GPU programming
models, notably lacking any knowledge of GPU streams and
requiring explicit host synchronization of streams, which in
turn makes pipelining less effective [14], [31]. Alternative
communication libraries have been created by GPU vendors
- NCCL and RCCL by NVIDIA and AMD, respectively.
Though they expose a similar send-receive API, the two
libraries, in contrast to MPI, are aware of GPU streams and
include on-stream versions. Both libraries have seen a great
amount of adoption in deep learning frameworks thanks to
their fast collective operations.

1) GPU-Shmem: More recently, PGAS-based libraries,
NVSHMEM [32] and ROC SHMEM [12] have taken GPU
communication a step further by allowing communication
to be issued directly from within kernels. Semantically, this
model of communication is the most compatible with the
massively parallel, relaxed-memory nature of GPUs, as they
move data with one-sided remote read and writes, analogous to
the GPU memory model without the complexities of message
handling.

The basis of communication in NVSHMEM is the one-
sided put/get methods, along with collective operations
that may include the entirety or a user-defined subset of the
processing elements (PEs). The methods are each further split
into blocking and non-blocking variants. It should be noted
that since the NVSHMEM memory model is highly relaxed,
blocking put variants do not guarantee the delivery to remote
PEs, or the ordering at the local PE; they simply return after
data has been copied out of the caller [32]. As such, extra care
must be taken when ordering is required using the fence and
quiet operations to enforce ordering.

NVSHMEM additionally provides fine-grained synchro-
nization with signaling operations. For variants that operate on
contiguous memory, the library provides composite API calls
that perform memory operations and set a given signal as an
atomic operation. It should be noted that using synchronization
is only possible in persistent kernels to avoid deadlocks [32].

In addition, both GPU-Shmem libraries have support for
native GPU groups - thread blocks and warps - where remote
memory and synchronization calls can be invoked collectively
by a block of a warp. We make use of this feature in tandem
with thread block specialization.

III. COMPILER FOR AUTONOMOUS EXECUTION

We aim to bridge the gap between autonomous GPU exe-
cution and high-level Python code in the form of a compiler.
We give an overview of our approach in Figure 1 consisting
of two parts: the user-facing API, and the implementation at
the compiler side.

First, on the Python side, we introduce abstractions over
the processing elements of devices, namely thread blocks,
allowing the user to optionally manage them. We then enable
support for GPU-initiated communication from the Python

API with high-level range-based indexing operations and dis-
cuss our approach in greater detail in Section III-B.

Secondly, on the compiler side, we introduce storage
for communication buffers and present our communication
scheduling strategy. For computation, we detail our scheduling
strategy for threads and thread blocks, discuss our approach
to persistent fusion, and outline the structure of the generated
code in Sections III-A and III-C. Our compiler is built on
top of the DaCe framework with the Stateful DataFlow multi-
Graph (SDFG) IR [18], to which we apply transformations
and code generation techniques to generate CPU-free code.

A. Thread Scheduling

While traditional discrete kernels provide a natural mapping
of computational resources - threads and thread blocks - to
data through kernel launch parameters, persistent execution,
as mentioned previously, imposes certain limitations that must
be considered in the generated code. The benefit and purpose
of discrete kernel parameters in this context is twofold: Firstly,
kernels of this kind can be launched with a practically infinite
number of thread blocks regardless of the real hardware capa-
bilities of the device. A smaller subset of blocks that can run
concurrently in the device are then scheduled automatically to
the processing units in the GPU by the hardware. This allows
the programmer to write efficient kernels that are oblivious
to the physical configuration of the GPU using virtual blocks.
Correspondingly, a code-generating compiler can set the kernel
parameters in accordance to the data at hand, simplifying the
resulting device code.

Switching to persistent execution, however, puts constraints
on kernel launch parameters, limiting them to the maximum
occupancy of the device. While this constraint resigns control
over the execution elements of the device from the runtime it
necessitates extra care by the compiler to efficiently schedule
them, which we will discuss next.

To aid our discussion, we will use the Softmax kernel.
Softmax is a common function used in many deep learning
methods. The numerically stable version of the function intro-
duced in Listing 1 consists of a max reduction of the input
along its last axis, which is then subtracted from the input and
exponentiated. The result is then normalized by dividing it by
its max reduction.

The Softmax kernel illustrates two challenges in CPU-
free code generation: (i) High-dimensionality of the data
requires upscaling the grid, (ii) persistent fusion of steps with
different sizes requires partitioning blocks. How the compiler
overcomes these challenges will be discussed in Section III-A1
and III-A2, respectively.

1) Upscaling the grid and multi-dimensional maps: The
first challenge we face in persistent scheduling is efficiently
mapping threads to large domains and high-dimensional data.
In order to have the entire device active, kernels generated
by the compiler are launched with the maximum number
of blocks in a 1D configuration. Since this kind of kernel
configuration creates linear block indices, the compiler needs

1131

a b c
e f g

for t in range(STEPS):
 @mapgridscope
 def grid():
 def block_1():
 B[1] = sum(A[:3]) / 3
 def block_2():
 B[2:-2] = (A[:-3] + A[2:2] + A[3:]) / 3
 ​ ​ ​ def block_1():
 B[-2] = sum(A[-3:]) / 3

for t in range(STEPS):
 ​ ​B[1:-1] = (A[:-2] + A[1:1] + A[2:]) / 3

def block_1():
 B[1] = sum(A[:3]) / 3
 nvshmem.Putmem(B[1],
 signal=s[0])
 nvshmem.Wait(s[0])

User API
 Define Python program

 (Optional) Define GPU Blocks

 Insert comm. calls

1

2

3

Compiler
 NVSHMEM Storage5

 NVSHMEM Schedule6 Persistent Fusion7

 Concurrent Scheduling8

 Thread Block mapping9

Dace

4
a b c
d e f

a b c d e f a b c d e f

* work item with 256 data points

SM 0 SM 1 SM 2

...

nvshmem_malloc(S[0], ...);
nvshmem_malloc(B[1], ...);

...

...

Allocate memory that is communicated

Fuse all operations into a
single persistent kernel

scheduled to threads 0...1023 (TB 0)
scheduled to thread 1024 (TB 1) concurrently

Map 3D data and corresponding computations into 1D
space of Cooperative Groups' tiles

Remove possible race conditions
by adding data dependencies

*

*

Note:when the amount of work is higher than number
of workers, more work is allocated per SM

Fig. 1: Overview of compilation for multi-GPU autonomous execution: Python API, and Backend

to reshape them as needed.

def softmax(x: np.float64[N, C, H, W]):
tmp_max = np.maximum.reduce(x, axis=-1, keepdims=True)
tmp_out = np.exp(x - tmp_max)
tmp_sum = np.add.reduce(tmp_put, axis=-1,

keepdims=True)

return tmp_out / tmp_sum

Listing 1: Softmax kernel

For example, consider the Softmax kernel in Listing 1. The
kernel accesses the 4-dimensional array, x[N, C, H, W] at
multiple axes simultaneously. In particular, the np.exp(x -
tmp_max) step requires indexing into the 4th dimension of
the array while using values from the 3-dimensional tmp_max
array corresponding to the indices of x. Since we need indices
from several dimensions, it is not possible to linearize all axes
to fit into 1D blocks. Moreover, naively generating nested
loops for each dimension is infeasible, as it would significantly
hurt the performance due to a large number of thread blocks
sitting idle in smaller-sized nested loops.

We propose a heuristic solution to linearize the domain
more intelligently. The compiler first identifies the largest
contiguous dimension accessed in the computation; in the
Softmax example, this corresponds to the 4th dimension of
the input tensor. This dimension is prioritized as the con-
tiguous dimension, and the block is specialized for its size,
discussed in the following subsection. Next, the remaining
three dimensions, in reverse order, are fused into a block-
loop. For Softmax, this would be dimensions [N, C, H,
W], with H corresponding to the block index. Finally, if more
axes remain, they are put into sequential nested loops.
for (auto _i = blockidx.x; _i < ((N * C) * H); _i +=

gridDim.x) {

auto _i0 = (_i % N);
auto _i1 = ((_i / N) % C);
auto _i2 = ((_i / (N * C)) % H);

for (auto _i3 = threadIdx.x; _i3 < W; _i3 +=
blockDim.x) {

tmp_out[... + _i3] = exp(x[... + _i3] + tmp_max[...
+ _i3];

}
}

Listing 2: Fusing nested dimensions of Softmax

Our objective with this scheme is to have a large, fused loop
with enough elements to occupy all streaming multiprocessors
(SMs) of the GPU while prioritizing parallel regions of the
code, and exploiting the remaining parallelism from thread
blocks. We note that we found it ineffective to fuse beyond 3
dimensions, as the overhead of computing indices grows to a
noticeable degree. Listing 2 shows a sample generated code
with fused dimensions and a parallel thread loop within.

2) Downscaling blocks and block-size specialization: Ad-
ditionally, grid and block configurations of discrete kernels can
be specialized to the dimensions of the computed data. Though
thread blocks in both CUDA and ROCm have an upper limit of
1024 threads, they can be scaled down to fit to the data more
precisely. This has significant performance implications for
high-dimensional kernels where the computation is repeated
over a contiguous dimension, for which the launch parame-
ters can be tuned. While persistent kernels can similarly be
launched with a smaller number of threads in exchange for
more thread blocks, it is infeasible to do so when persistently
fusing kernels that have computations in different dimensions,
on axes, or through unequally shaped data.

Consider the Softmax kernel again in Listing 1. The kernel
contains by two reduction steps over the last axis followed by
exponentiation, subtraction, and division operations over the

1132

Thread Block [1024, 1, 1]

reduce reduce reduce reduce

tmp_max[i] tmp_max[i + 1]

sync

tmp_sum[i] =
exp(x - tmp_max)

tmp_sum[i + 1] =
exp(x - tmp_max)

warp
size

min
(SM,
block
size)

Thread Block [1024, 1, 1]

tmp_sum[i] =
exp(x - tmp_max)

tmp_sum[i + 1] =
exp(x - tmp_max)

Fig. 2: Partitioning thread blocks in accordance to computation
shape of Softmax [N, H, SM, SM]

entire domain. Softmax is characterized by a large contiguous
dimension that can be mapped to 1D threads for subtraction
and exponentiation steps - performing best with large, one-
dimensional blocks, whereas reductions require warp-level
primitives for optimal performance [33] - needing a larger
number of warp-sized blocks. As we fuse all steps into
one persistent kernel, we are unable to specialize the launch
parameters for any one step.

To alleviate this, the compiler generates kernels launched
with the largest possible block size of [1024, 1, 1]
and partitions them to smaller chunks as needed, as shown
in Figure 2. This can be achieved efficiently without state
management thanks to the Cooperative Groups support
in CUDA and ROCm that provide facilities to statically
subdivide thread blocks. Namely, the tiled_partition
API allows statically defining equally sized tiles at compile
time for each thread block. As described in the previous
section, we prioritize the most contiguous dimension to
partition the tiles for. Listing 3 shows a sample generated
code using this strategy.

auto tile = cg::tiled_partition<min(power_2(W),
gridDim.x)>(block);

for (auto _i = blockidx.x * num_tiles + tile_idx; ...) {
// Fused dimensions

for (auto _i3 = tile.thread_rank(); _i3 < W; _i3 +=
tile.size()) {

tmp_out[... + _i3] = exp(x[... + _i3] + tmp_max[...
+ _i3];

}
}

Listing 3: Softmax with thread block specialization using
partitioned tiles

B. GPU-Initiated Communication Layer

To implement non-trivial multi-GPU programs in a CPU-
free manner, we need an autonomous communication layer.

While CUDA kernels can issue low-latency communication
simply by writing to remote memory pointers, we opt to
implement our communication layer exclusively with GPU-
shmem libraries. [12], [32]. As discussed previously, they
provide a relaxed, one-sided memory model that lends itself to
autonomous execution naturally with a convenient device-side
API. This section discusses the specifics of how we bridge
GPU-side communication calls to Python.

1) Python API and the Communication Model: As per
the OpenSHMEM API, GPU-shmem libraries provide two
methods for one-sided remote data access: put, get, and
signaling operations for synchronization. For simplicity
and easier memory management, we focus only on the put
methods that write to remote devices’ memories. As such, the
interface we expose for one-sided communication consists of
two abstracted calls:

• Putmem(dest, src, pe, flag=None,
signal=None)

• SignalWait(flag, signal)

Using Putmem, memory is issued to the dest array at
a remote GPU pe from a given local src array. As the
programming model requires both arrays to be allocated on
the symmetric heap, we automatically mark data containers
touched by this communication node and resolve to the
appropriate memory allocator in the code generation phase.
By default, the Putmem call used in this way expands to
the shmem_putmem variant of the upstream library API,
specialized for transferring a contiguous chunk of memory.

The SignalWait function provides granular synchro-
nization among peer devices through signaling operations on
flags in symmetrical memory. The signals are issued by the
Putmem function through the optional flag and signal
arguments, which atomically communicate and set a given
flag to a signal, to be later waited on by SignalWait.
Using these flags change the default expansion of Putmem to
shmem_putmem_signal_wait that provides said atomic-
ity.

2) Relaxed ordering of operations: In order to achieve a
greater level of asynchrony, we employ a relaxed memory
model that prioritizes non-blocking memory operations and
does not issue synchronization unless explicitly requested. The
compiler issues subsequent remote memory writes concur-
rently, and does not consider possible read/write conflicts of
the data involved in Putmem calls. Instead, it internally keeps
a mapping of signals to array indices updated with Putmem,
and only considers a write conflict when a SignalWait is
called on the flag in question. This kind of relaxed ordering
of operations allows scheduling remote memory writes in a
fire-and-forget fashion.

However, we employ a slightly stricter memory contention
policy on local data - Putmem calls by default use the
blocking shmem_putmem API that returns after the source
array is copied out and put in transit, in case it is written
to by subsequent operations. We relax this requirement when
there is no such read/write contention, or an explicit synchro-

1133

nization is present, and switch to the non-blocking variant
shmem_*_nbi that returns immediately.

3) Scheduling NVSHMEM calls to blocks: Both NVSHMEM
and ROC_SHMEM provide extensions to the OpenSHMEM
standard that utilize multiple threads cooperatively for remote
memory operations, either at the warp or the block levels,
working in tandem with the building block of persistent
execution. These operations see increased performance as they
make better use of parallel execution in their respective scope
[32]. Putmem calls expand to block-specialized versions in
all cases and are scheduled concurrently. We discuss our
scheduling strategy in greater detail in the next section.

4) Strided data transfers: We keep a consistent interface
to Putmem regardless of the shape of the input, allowing it
to accept both contiguous and strided data. Array accesses
can be expressed in high-level Numpy syntax, from which the
compiler determines the stride and shape of memory. OpenSH-
MEM, and consequently NVSHMEM and ROC_SHMEM, provide
facilities for strided data movement through the shmem_iput
API - the compiler changes the expansion of Putmem to this
API when strided access is detected.

However, the atomic signaling semantics mentioned previ-
ously are absent from the strided API: the compiler cannot
stage a memory update and a flag set atomically when a
signal argument is present. To ameliorate this while con-
forming to the same Putmem interface, we issue addi-
tional synchronization in the generated code through the
nvshmemx_signal_op call. It should be noted that sig-
naling in this way requires stricter memory ordering, as the
sending side needs to ensure the completion of the outstanding
iput data movement before setting the signal. We issue
an additional nvshmem_quiet to resolve this. As a result,
strided data movement has a bigger cost.

C. Concurrent Thread Block Allocation

Many applications contain steps that that be run concur-
rently - communication calls and memory movement opera-
tions are often scheduled in this way to hide their latency. The
NVSHMEM methods described above in particular benefit from
concurrent execution.

As our compiler performs persistent fusion of all steps,
we make use of thread block(TB) specialization introduced
previously to achieve concurrence. Our implementation dis-
cussed below has two parts: we first implement a scheduling
strategy for concurrent elements in a given program done
automatically by the compiler. We then introduce a Python
API to enable users to structure their code with subroutines
that are scheduled concurrently.

1) Automatic Thread Block Scheduling: DaCe’s SDFG IR
provides us with facilities to determine concurrent operations
within a given state. Using this, our proposed code generation
strategy iteratively schedules each concurrent operation to a
subsequent thread or a thread block, omitting synchronization.
for t in range(1, TSTEPS):

nvshmem.Putmem(A[-1, 1:-1], A[1, 1:-1], nn, flag[0], t)
nvshmem.Putmem(A[0, 1:-1], A[-2, 1:-1], ns, flag[1], t)

A_pack_w = A[1:-1, 1]
nvshmem.Putmem(A[1:-1, -1], A_pack_w, nw, flag[2], t)

A_pack_e = A[1:-1, -2]
nvshmem.Putmem(A[1:-1, -1], A_pack_e, ne, flag[3], t)

...

Listing 4: Concurrent NVSHMEM operations

Consider a sample program performing remote memory
update among 4 neighbors in Listing 4. Following the
discussion in the previous section, each call to Putmem can
be concurrently scheduled, as they each update a separate
flag.

for (auto t = 1; t < TSTEPS; t = t + 1) {
if (grid.block_rank() == 0) {

nvshmemx_putmem_signal_nbi_block(&A[1], ...);
}

// ...

if (grid.block_rank() == 3) {
memcpy_block(A_pack_W, &A[...];
block.sync();
nvshmemx_putmem_signal_nbi_block(A_pack_w, ...)

}
}

Listing 5: Concurrent allocation in CUDA

Listing 5 demonstrates sample generated code with con-
current blocks. We note that the memory operations and
other dependencies preceding Putmem calls can be scheduled
within the same thread block. We implement and make use of
block-specialized copy routines to better utilize the resources
for those cases.

2) Python API: We implement abstractions on the Python
side to allow the programmer to schedule code to thread
blocks manually. We introduce the following building blocks
to denote concurrent code:

1) Grid function decorated with @mapgridscope. This
function denotes the beginning of a scope that spans the
entire kernel grid.

2) Block functions contained within the scope. These
functions are the concurrent elements that are scheduled
to one or more thread blocks. The functions do not
overlap.

Together, the two constructs allow the programmer to man-
age block distribution to varying degrees. The main difference
between the automatic concurrency described above and this
approach is that concurrent subroutines can be scheduled
to more than one thread block, allowing a more granular
distribution of resources. We define a simple heuristic for
determining this based on the number of elements accessed
and then outline two examples where the heuristic is used.

num TB subroutine = ceil(
num elems sub

total num elems
×TB count)

1. Ranges defined statically. Consider a basic program
performing memory copy utilizing TB specialization with two
concurrent regions:

1134

def prog(A: np.float64[N], A: np.float64[N]):
@mapgridscope
def grid():

def block1(i: _[0:N / 3]):
B[i] = A[i]

def block2(i: _[N / 3:]):
B[i] = A[i]

Listing 6: TB specialization with explicit 1/3 + 2/3 split

Both subroutines contain explicit ranges ([0:N/3],
[N/3:]), coinciding to 1

3 and 2
3 of available thread blocks,

respectively.

2. Ranges inferred from code. Consider an explicitly
overlapped 1D Stencil code with communication:
def prog(B: np.float64[N]):

for t in range(STEPS):
@mapgridscope
def grid():

def block_first():
B[1] = compute(...)
communicate(B[1])

def block_middle():
B[2:-2] = compute(...)

def block_last():
B[-2] = compute(...)
communicate(B[2])

Listing 7: TB specialization with implicit split where first
and last thread blocks are spared for communication, and the
remaining thread blocks are reserved for computation

Splits cannot be taken from the subroutines directly in this
example, as the proportions of elements accessed in each block
in regards to one another are unknown at compile time. We
can instead perform a best-effort split and clip block_first
and block_last to one thread block each as they both write
to and communicate one element, and allocate the remainder
of the grid to block_middle.

D. Communication Overlap: An example with Stencil

The stencil computation involves updating the value of each
element on a grid based on the values of its neighboring
elements in a fixed pattern (the stencil). These computations
are commonly found in scientific applications and image
processing. We implement multi-GPU versions of 2D and
3D stencils from the Polybench suite. Being iterative kernels,
they benefit greatly from autonomous execution, as shown in
previous work [4], thanks to the execution model eliminating
many of the host-side calls and synchronization. For each
kernel, we decompose the domain in a tiled fashion that
maximizes communication, meaning each device has 4 and 6
neighbors, for 2D and 3D variants, respectively. Due to their
shapes, the kernels require both contiguous and strided data
movement.
def jacobi_2d(TSTEPS, A, B):

flags = np.full(8, -1, dtype=np.uint64)

for t in range(1, TSTEPS):
nvshmem.Putmem(A[-1, 1:-1], A[1, 1:-1], nn,

flags[0], t)
nvshmem.Putmem(A[0, 1:-1], A[-2, 1:-1], ns,

flags[1], t)
nvshmem.Putmem(A[1:-1, -1], A[1:-1, 1], nw,

flags[2], t)

nvshmem.Putmem(A[1:-1, 0], A[1:-1, -2], ne,
flags[3], t)

nvshmem.SignalWait(flags[0], t)
nvshmem.SignalWait(flags[1], t)
nvshmem.SignalWait(flags[2], t)
nvshmem.SignalWait(flags[3], t)

B[1:-1, 1:-1] = 0.2 * (A[...])

Listing 8: Multi-GPU 2D Jacobi with NVSHMEM

Listing 8 shows an implementation of a 2D Jacobi Sten-
cil. We perform halo exchange with all neighbors using
Putmem for each iteration followed by SignalWait for
correctness. As discussed previously, the consecutive Putmem
operations are concurrently scheduled to thread blocks and
synchronization occurs on SignalWait before starting the
computation. Though the remote writes occur asynchronously,
we enforce synchronization with SignalWait immediately
after scheduling them, limiting the amount of overlap we get.
We can improve this by modifying the communication slightly.
def jacobi_2d(TSTEPS, A, B):

flags = np.full(8, -1, dtype=np.uint64)

Communication buffer
A_prev = np.empty((4, len(A)), dtype=A.dtype)
A_prev[0] = A[-1, 1:-1]
...

for t in range(1, TSTEPS):
nvshmem.Putmem(A_prev[0], A[1, 1:-1], nn, flags[0],

t)
nvshmem.Putmem(A_prev[1], A[-2, 1:-1], ns,

flags[1], t)
nvshmem.Putmem(A_prev[2], A[1:-1, 1], nw, flags[2],

t)
nvshmem.Putmem(A_prev[3], A[1:-1, -2], ne,

flags[3], t)

B[1:-1, 1:-1] = 0.2 * (A[...])

nvshmem.SignalWait(flags[0], t)
nvshmem.SignalWait(flags[1], t)
nvshmem.SignalWait(flags[2], t)
nvshmem.SignalWait(flags[3], t)

A[-1, 1:-1] = A_prev[0]
A[0, 1:-1] = A_prev[1]
A[1:-1, -1] = A_prev[2]
A[1:-1, 0] = A_prev[3]

Listing 9: Multi-GPU 2d Jacobi with NVSHMEM with better
communication and computation overlap

Listing 9 shows an alternative implementation that delays
calls to SignalWait until the end of the iteration. We
introduce an additional communication buffer (A_prev) to
avoid write contentions on the array A and allow the scheduler
to issue non-blocking remote memory calls.

IV. EVALUATION

This section evaluates the performance of our compiler.
We aim to evaluate the general applicability of persistent
scheduling to a varied range of use cases and identify ap-
plications where even single GPU instances benefit. In addi-
tion, we present results for multi-GPU execution of stencil
computation. The experiments are conducted on a node with
8x NVIDIA Ampere 100 GPUs, with an AMD 7763 64-core
processor.

1135

A. Single-GPU Experiments

This portion of our experiments demonstrates our persistent
scheduling on a variety of kernels running on a single GPU.
We adapt our experiments from NPBench [20], [34] evaluating
the performance of Python frameworks on high-level code
from several application domains. The experiments reported
include several HPC applications such as the Polybench suite
that are implemented in high-level Python with Numpy syntax
and expressions.

Figures 3, 4 and 5 show the performance of our persistently

scheduled kernels compared to existing DaCe baselines for
small and large domains. We additionally include CuPy runs
for a more comprehensive comparison. The program versions
we report are as follows:

• DaCe-Pure: DaCe code generation in pure CUDA, which
serves as the main baseline. This version generates pure
CUDA code with no libraries, including for BLAS and
GEMM.

• DaCe-cuBLAS: DaCe with cuBLAS enabled. This ver-
sion utilizes the optimized cuBLAS library for BLAS

ad
i

ata
x

bic
g

cor
rel

ati
on

cov
ari

an
ce

ge
mm

ge
mve

r

ge
sum

mv
k2

mm
k3

mm mlp mvt
sym

m
syr

2k syr
k

10 3

10 2

10 1

100

101

Sp
ee

du
p

Speedup over DaCe-Pure
CuPy
DaCe-cuBLAS
Ours

Fig. 3: Relative performance of our compiler compared to the baseline DaCe for applications containing cuBLAS operations
using small domains in NPBench.

ad
i

ata
x

bic
g

cor
rel

ati
on

cov
ari

an
ce

ge
mm

ge
mve

r

ge
sum

mv
k3

mm mlp mvt
sym

m
syr

2k syr
k

10 3

10 1

101

103

Sp
ee

du
p

Speedup over DaCe-Pure
CuPy
DaCe-cuBLAS
Ours

Fig. 4: Relative performance of our compiler compared to the baseline DaCe for applications containing cuBLAS operations
using large domains in NPBench.

de
ric

he

fdt
d_2

d

flo
yd

_w
ars

ha
ll

he
at_

3d

jac
ob

i_1
d

jac
ob

i_2
d

sof
tm

ax

10 3

10 2

10 1

100

Sp
ee

du
p

Speedup over DaCe-Pure

de
ric

he

fdt
d_2

d

flo
yd

_w
ars

ha
ll

he
at_

3d

jac
ob

i_1
d

jac
ob

i_2
d

sof
tm

ax

10 2

10 1

100

Sp
ee

du
p

Speedup over DaCe-Pure
CuPy
Ours

Fig. 5: Relative performance of our compiler compared to the baseline DaCe for non-cuBLAS based kernels (left: small
domains, right: large domains in NPBench)

1136

and GEMM (general matrix multiply) operations when
possible.

• Ours: Our implementation. Since we cannot utilize
cuBLAS in persistent kernels, this version is derived from
and is most similar to DaCe-Pure.

For all versions we allow the DaCe compiler to perform
automatic optimizations on its internal representation before
generating and pre-compiling the code. The speedups reported
here for all versions are based on the average kernel running
time, excluding parsing, optimization, compilation time, mem-
ory movement operations, and warmup runs.

We categorize the applications into the following groups:

• cuBLAS: Kernels that consist entirely of matrix multi-
plication and linear algebra operations such as atax,
bicg, gemm, gemver, gesummv, k2mm, k3mm, mvt.
Since these kernels can utilize cuBLAS for almost the
entirety of their execution, we expect lower performance
in persistent versions.

• Iterative: Kernels that have a top-level time-loop with
the bulk of the computation repeated within. This cate-
gory includes the stencils: adi, fdtd_2d, heat_3d,
jacobi_1d, and jacobi_2d. We expect that our
compiler will match or exceed the performance of the
baseline for the applications in this category.

• Others: Kernels that do not fit into the categories above,
and include a mix of BLAS, GEMM, and other operations
with no iterative components. Though these kernels can
also utilize cuBLAS, we expect less of an impact than
pure GEMM kernels, as they may benefit from persistent
fusion of their steps.

Figure 3 shows the relative performance of the versions dis-
cussed above as speedup over DaCe-Pure on small domains
for kernels containing cuBLAS operations. Persistent kernels
perform consistently worse compared to the DaCe-cuBLAS
and CuPy baselines. We observe, however, that persistent
scheduling on top of the DaCe-Pure codegen nets significant
improvements in performance, approaching cuBLAS in some
cases. Switching to larger domains in Figure 4, we observe
an overall degradation in performance in both DaCe-Pure
and persistent scheduling over DaCe-cuBLAS. Overall, our
persistent scheduling gains a geometric mean speedup of
1.49x on small domains and 1.36x on large domains, over
DaCe-Pure, though DaCe-cuBLAS outperforms both in all
cases.

In Figure 5, among the iterative kernels at small do-
mains, we observe equal or better performance across the
board with noticeable speedups over the baseline Dae-Pure
codegen in adi, fdtd_2d and jacobi_1d. heat_3d,
and jacobi_2d match the performance of baselines within
10.3% and 2.8%, respectively. jacobi_1d gains the most
improvement overall, performing 17.05% better than the base-
line.

As for the large domain runs, iterative persistent kernels
match the performance of the baselines within 5.85%, 2.5%
and 1.1% for fdtd_2d jacobi_1d and jacobi_2d,

respectively. heat_3d takes a noticeable hit, performing
16.9% worse compared to the baseline. adi displays the worst
results, performing more than 7x worse than the pure baseline.

B. Multi-GPU Experiments

We conduct scaling experiments of the multi-GPU stencil
implementations discussed in Section III-D. We compare our
implementation to baseline DaCe with MPI communication
as well as cuNumeric. Figure 6 shows strong scaling results
on 8 GPUs in a single node. For each version, we begin with
a sufficiently large domain size and divide it in half for each
step while doubling the number of GPUs. The reported metrics
are mean execution time for 5 runs.

1) 2D Jacobi: 2D Jacobi kernel requires a large amount of
data to be communicated among four neighbors. Furthermore,
since we partition the domain as a grid in both DaCe and our
version, two of these neighbors require strided data transfers.

We observe the effects of our scheduling strategy and GPU-
initiated communication in this application, gaining signifi-
cant speedups over both baselines. Baseline DaCe becomes
dominated by communication immediately, likely due to the
larger number of neighbors and host-side packing and un-
packing done for strided MPI routines. cuNumeric also
has significantly worse performance from the start, though
it initially exhibits adequate scaling, experiencing significant
degradation after 4 GPUs. Our version performs consistently
better than both baselines and achieves a speedup of 23.1x
over cuNumeric at 8 GPUs.

2) 3D Jacobi: We change the communication scheme for
this kernel and split the domain across the contiguous di-
mension, without needing strided data movement. This results
in each rank communicating a chunk of memory with two
neighbors. Though both baselines exhibit adequate scaling
initially, cuNumeric, similar to Jacobi 2D, plateaus after 4
GPUs. Baseline DaCe continues to scale, though not reaching
our persistent implementation.

Overall, we observe a speedup of 6.1x and 30.8x over
DaCe and cuNumeric, respectively, on 8 GPUs. Our version
achieves a scaling efficiency of 98% at 8 GPUs compared to
a single GPU run with communication disabled.

V. RELATED WORK

Several other works have explored the components we used
to build a CPU-free compiler. Persistent kernels were first
introduced in the work by Gupta et al. [22] who formalized
a Persistent Threads programming model and identified its
benefits for irregular applications. Later work by Chu et al.
[35] adapt the concept to a GPU key-value store, while other
works employ it for iterative workloads [4], [23]. Thread Block
specialization has seen use in several frameworks such as
WhippleTree [3], Groute [36], Juggler [25], Atos [5], and
more.

GPU-Initiated communication has seen increasing adoption
in recent literature thanks to the introduction of NVSHMEM
[5]–[9], [32]. Several frameworks and libraries have added

1137

1GPU 8GPUs4GPUs2GPUs

Dace Ours cuNumeric

10
2

10
3

10
4

10
5

2D Jacobi with size 8192

ms

2

1GPU 8GPUs4GPUs2GPUs

Dace Ours cuNumeric

10
2

10
3

10
4

10
5

3D Jacobi with size 512

ms

3

Fig. 6: Strong scaling results for multi-GPU Jacobi stencil in 2D and 3D (Time in ms, lower is better)

support for it including LBANN [37], which uses its one-
sided put operation to gain significant benefit on spatial-
parallel convolution [15]. Kokkos includes NVSHMEM as a
communication backend in their Remote Spaces API, which
has been shown to net significant performance improvement
over MPI on a Conjugate Gradient solver [15]. QUDA is
another library that ships with NVSHMEM support, where
it has been shown to achieve better scaling performance over
MPI on Wilson Dslash kernels [38].

Much work has gone into high-level frameworks and li-
braries in Python that facilitate writing full-scale distributed
applications. DaCe is a multi-target framework that generates
optimized parallel code from Numpy-style Python code for
CPUs, FPGAs, and AMD and NVIDIA GPUs [18]. The
framework has support for multi-GPU communication through
user-defined MPI routines, available as Python abstractions.
CuPy is another accelerated Numpy-compatible framework
that compiles into CUDA source code. The library can be
used in distributed settings with its NCCL support or together
with mpi4py [39], which provides Python bindings to MPI.

cuNumeric provides a similar interface and builds on top
of the Legate framework [40], which provides task-based
parallelism and automatic data partitioning for multi-GPU
systems. It orchestrates communication automatically and uses
NCCL and UCX as the backend. Dask works on top of CuPy
and other compatible libraries and builds a task scheduler
that automatically distributes computation across devices and
nodes [19]. The library has support for several communi-
cation backends, including MPI, NCCL, and UCX. Finally,
frameworks such as Ray [41], PyTorch [42], and Tensorflow
[43] specialize on machine learning applications and provide
distributed computing using NCCL. Other frameworks such as
Charm4py [44] and PyKokkos [45] offload to existing libraries
and utilize their facilities for accelerated and distributed com-
puting. Charm4py provides bindings to the Charm++ parallel

runtime [46] which utilizes MPI for communication, while
PyKokkos translates Python code to C++ and Kokkos [16].

VI. CONCLUSION

In this paper, we designed and developed a code gen-
erator for a CPU-free autonomous execution model, which
departs from the traditional host-based GPU execution. Our
contributions include providing a Python-based API that en-
ables writing CPU-free code with GPU-centric constructs
and GPU-initiated communication calls. We implemented a
code-generation backend that creates persistent kernels and
efficiently schedules threads and thread blocks. Additionally,
we developed an autonomous communication layer using
NVSHMEM and ROC_SHMEM, which enables GPU-initiated
communication directly in Python code. Our performance
study, conducted on 22 kernels from the NPBench suite on a
single GPU, demonstrated the effectiveness of our implemen-
tation compared to DaCe and CuPy. We also compared the
performance of 2D and 3D multi-GPU stencil computations
against multi-GPU DaCe and cuNumeric, highlighting our
approach’s advantages. Our future work will include more
application studies and scalability studies on multi-node sys-
tems.

ACKNOWLEDGMENT

This work was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 949587).

REFERENCES

[1] S. Tzeng, A. Patney, and J. D. Owens, “Task management for irregular-
parallel workloads on the gpu,” in Proceedings of the Conference on
High Performance Graphics, ser. HPG ’10. Goslar, DEU: Eurographics
Association, 2010, p. 29–37.

[2] M. Bauer, S. Treichler, and A. Aiken, “Singe: leveraging warp
specialization for high performance on gpus,” SIGPLAN Not.,
vol. 49, no. 8, p. 119–130, feb 2014. [Online]. Available: https:
//doi.org/10.1145/2692916.2555258

1138

[3] M. Steinberger, M. Kenzel, P. Boechat, B. Kerbl, M. Dokter, and
D. Schmalstieg, “Whippletree: Task-based scheduling of dynamic
workloads on the gpu,” ACM Trans. Graph., vol. 33, no. 6, nov 2014.
[Online]. Available: https://doi.org/10.1145/2661229.2661250

[4] I. Ismayilov, J. Baydamirli, D. Sağbili, M. Wahib, and D. Unat,
“Multi-gpu communication schemes for iterative solvers: When cpus
are not in charge,” in Proceedings of the 37th International Conference
on Supercomputing, ser. ICS ’23. New York, NY, USA: Association
for Computing Machinery, 2023, pp. 192–202. [Online]. Available:
https://doi.org/10.1145/3577193.3593713

[5] Y. Chen, B. Brock, S. Porumbescu, A. Buluç, K. Yelick, and J. D.
Owens, “Scalable irregular parallelism with gpus: Getting cpus out
of the way,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC ’22.
New York, NY, USA: Institute for Electrical and Electronics Engineers,
2022.

[6] S. Potluri, D. Rossetti, D. Becker, D. Poole, M. Gorentla Venkata,
O. Hernandez, P. Shamis, M. G. Lopez, M. Baker, and W. Poole,
“Exploring openshmem model to program gpu-based extreme-scale
systems,” in Revised Selected Papers of the Second Workshop on
OpenSHMEM and Related Technologies. Experiences, Implementations,
and Technologies - Volume 9397, ser. OpenSHMEM 2015. Berlin,
Heidelberg: Springer-Verlag, 2015, p. 18–35. [Online]. Available:
https://doi.org/10.1007/978-3-319-26428-8 2

[7] S. Potluri, A. Goswami, D. Rossetti, C. Newburn, M. G. Venkata,
and N. Imam, “Gpu-centric communication on nvidia gpu clusters
with infiniband: A case study with openshmem,” in 2017 IEEE 24th
International Conference on High Performance Computing (HiPC).
New York, NY, USA: Institute for Electrical and Electronics Engineers,
2017, pp. 253–262.

[8] S. Potluri, A. Goswami, M. G. Venkata, and N. Imam, “Efficient breadth
first search on multi-gpu systems using gpu-centric openshmem,” in
OpenSHMEM and Related Technologies. Big Compute and Big Data
Convergence, M. Gorentla Venkata, N. Imam, and S. Pophale, Eds.
Cham: Springer International Publishing, 2018, pp. 82–96.

[9] C.-H. Hsu, N. Imam, A. Langer, S. Potluri, and C. J. Newburn, “An
initial assessment of nvshmem for high performance computing,” in 2020
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). New York, NY, USA: Institute for Electrical
and Electronics Engineers, 2020, pp. 1–10.

[10] J. Choi, D. F. Richards, and L. V. Kale, “Charming: A scalable
gpu-resident runtime system,” in Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 261–262. [Online]. Available: https://doi.org/10.
1145/3431379.3464454

[11] M. LeBeane, K. Hamidouche, B. Benton, M. Breternitz, S. K.
Reinhardt, and L. K. John, “Gpu triggered networking for intra-kernel
communications,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’17. New York, NY, USA: Association for Computing Machinery,
2017. [Online]. Available: https://doi.org/10.1145/3126908.3126950

[12] K. Hamidouche and M. LeBeane, “Gpu-initiated openshmem: correct
and efficient intra-kernel networking for dgpus,” in Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 336–347. [Online]. Available:
https://doi.org/10.1145/3332466.3374544

[13] J. Ciesko, “Distributed memory programming and multi-gpu support
with kokkos.” 11 2020. [Online]. Available: https://www.osti.gov/biblio/
1829951

[14] J. Zhang, J. Brown, S. Balay, J. Faibussowitsch, M. Knepley, O. Marin,
R. T. Mills, T. Munson, B. F. Smith, and S. Zampini, “The petscsf
scalable communication layer,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 4, 5 2021. [Online]. Available:
https://www.osti.gov/biblio/1837203

[15] B. V. E. Naoya Maruyama, J. Ciesko, J. Wilke, C. Trott, C.-H. Hsu,
N. Imam, J. Dinan, A. Langer, C. Newburn, and S. Potluri, “Scaling
scientific computing with nvshmem,” 2020. [Online]. Available: https://
developer.nvidia.com/blog/scaling-scientific-computing-with-nvshmem/

[16] H. C. Edwards and C. R. Trott, “Kokkos: Enabling performance portabil-
ity across manycore architectures,” in 2013 Extreme Scaling Workshop
(xsw 2013), 2013, pp. 18–24.

[17] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.
Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland,
“Raja: Portable performance for large-scale scientific applications,” in
2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2019, pp. 71–81.

[18] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler,
“Stateful Dataflow Multigraphs: A Data-Centric Model for Performance
Portability on Heterogeneous Architectures,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’19, 2019.

[19] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th python in science confer-
ence, no. 130-136. Citeseer, 2015.

[20] A. N. Ziogas, T. Ben-Nun, T. Schneider, and T. Hoefler, “Npbench: a
benchmarking suite for high-performance numpy,” in Proceedings of
the ACM International Conference on Supercomputing, ser. ICS ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
63–74. [Online]. Available: https://doi.org/10.1145/3447818.3460360

[21] Y. Chen, B. Brock, S. Porumbescu, A. Buluc, K. Yelick, and J. Owens,
“Atos: A task-parallel gpu scheduler for graph analytics,” in Proceedings
of the 51st International Conference on Parallel Processing, ser. ICPP
’22. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3545008.3545056

[22] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads
style gpu programming for gpgpu workloads,” in 2012 Innovative Par-
allel Computing (InPar). New York, NY, USA: Institute for Electrical
and Electronics Engineers, 2012, pp. 1–14.

[23] L. Zhang, M. Wahib, P. Chen, J. Meng, X. Wang, and S. Matsuoka,
“Persistent kernels for iterative memory-bound gpu applications,” 2022.

[24] L. Zhang, M. Wahib, H. Zhang, and S. Matsuoka, “A study of single
and multi-device synchronization methods in nvidia gpus,” in 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
New York, NY, USA: Institute for Electrical and Electronics Engineers,
2020, pp. 483–493.

[25] M. E. Belviranli, S. Lee, J. S. Vetter, and L. N. Bhuyan, “Juggler:
A dependence-aware task-based execution framework for gpus,”
SIGPLAN Not., vol. 53, no. 1, p. 54–67, feb 2018. [Online]. Available:
https://doi.org/10.1145/3200691.3178492

[26] K. Hamidouche, A. Venkatesh, A. A. Awan, H. Subramoni, C.-H. Chu,
and D. K. Panda, “Exploiting gpudirect rdma in designing high perfor-
mance openshmem for nvidia gpu clusters,” in 2015 IEEE International
Conference on Cluster Computing. New York, NY, USA: Institute for
Electrical and Electronics Engineers, 2015, pp. 78–87.

[27] D. Foley and J. Danskin, “Ultra-performance pascal gpu and nvlink
interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17, 2017.

[28] H. Wang, S. Potluri, M. Luo, A. Singh, S. Sur, and D. Panda, “Mva-
pich2gpu: optimized gpu to gpu communication for infiniband clusters,”
Computer Science - Research and Development, vol. 26, pp. 257–266,
06 2011.

[29] H. Wang, S. Potluri, M. Luo, A. K. Singh, X. Ouyang, S. Sur, and
D. K. Panda, “Optimized non-contiguous mpi datatype communication
for gpu clusters: Design, implementation and evaluation with mvapich2,”
in 2011 IEEE International Conference on Cluster Computing, 2011, pp.
308–316.

[30] OpenMPI, “Open MPI v5.0.x Documentation: ROCm,” https://docs.
open-mpi.org/en/v5.0.x/tuning-apps/networking/rocm.html, 2023.

[31] N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir, and
B. Van Essen, “Aluminum: An asynchronous, gpu-aware communication
library optimized for large-scale training of deep neural networks on hpc
systems,” in 2018 IEEE/ACM Machine Learning in HPC Environments
(MLHPC), 2018, pp. 1–13.

[32] NVIDIA, “Nvidia openshmem library (nvshmem) documentation,”
2022. [Online]. Available: https://docs.nvidia.com/nvshmem/api/

[33] V. G. Yuan Lin, “Using cuda warp-level primi-
tives,” 2018. [Online]. Available: https://developer.nvidia.com/blog/
using-cuda-warp-level-primitives/

[34] A. N. Ziogas, T. Schneider, T. Ben-Nun, A. Calotoiu, T. De Matteis,
J. de Fine Licht, L. Lavarini, and T. Hoefler, “Productivity,
portability, performance: data-centric python,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’21. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3458817.3476176

1139

[35] C.-H. Chu, S. Potluri, A. Goswami, M. Gorentla Venkata, N. Imam, and
C. J. Newburn, “Designing high-performance in-memory key-value op-
erations with persistent gpu kernels and openshmem,” in OpenSHMEM
and Related Technologies. OpenSHMEM in the Era of Extreme Hetero-
geneity, S. Pophale, N. Imam, F. Aderholdt, and M. Gorentla Venkata,
Eds. Cham: Springer International Publishing, 2019, pp. 148–164.

[36] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute:
An asynchronous multi-gpu programming model for irregular
computations,” SIGPLAN Not., vol. 52, no. 8, p. 235–248, jan
2017. [Online]. Available: https://doi.org/10.1145/3155284.3018756

[37] B. Van Essen, H. Kim, R. Pearce, K. Boakye, and B. Chen,
“Lbann: livermore big artificial neural network hpc toolkit,” in
Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, ser. MLHPC ’15. New York,
NY, USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2834892.2834897

[38] M. Wagner, “Scaling lattice qcd on modern gpu systems,” 2019.
[Online]. Available: https://agenda.infn.it/event/17130/contributions/
106939/attachments/69343/86116/Wagner QUDA SMFT2019.pdf

[39] L. Dalcin and Y.-L. L. Fang, “mpi4py: Status Update After 12 Years of
Development,” Computing in Science & Engineering, vol. 23, no. 4, pp.
47–54, 2021.

[40] M. Bauer and M. Garland, “Legate numpy: Accelerated and distributed
array computing,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3295500.3356175

[41] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” 2018.

[42] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[43] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[44] J. J. Galvez, K. Senthil, and L. Kale, “Charmpy: A python parallel
programming model,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER), 2018, pp. 423–433.

[45] N. Al Awar, N. Mehta, S. Zhu, G. Biros, and M. Gligoric, “Pykokkos:
Performance portable kernels in python,” in 2022 IEEE/ACM 44th Inter-
national Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), 2022, pp. 164–167.

[46] L. V. Kale, “The Charm++ Parallel Programming System.” [Online].
Available: https://github.com/charmplusplus/charm

1140

