
Performance portability via C++ PSTL, SYCL,
OpenMP, and HIP: the Gaia AVU-GSR case study

Giulio Malenza∗, Valentina Cesare†, Marco Edoardo Santimaria∗, Robert Birke∗,
Alberto Vecchiato‡, Ugo Becciani†, and Marco Aldinucci∗

∗Department of Computer Science, University of Turin, Italy, Email: name.lastname@unito.it
†Astrophysical Observatory of Catania, National Institute for Astrophysics, Italy, Email: name.lastname@inaf.it
‡Astrophysical Observatory of Turin, National Institute for Astrophysics, Italy, Email: name.lastname@inaf.it

Abstract—Applications that analyze data from modern sci-
entific experiments will soon require a computing capacity of
ExaFLOPs. The current trend to achieve such performance is to
employ GPU-accelerated supercomputers and design applications
to optimally exploit this hardware. Since each supercomputer is
typically a one-off project, the necessity of having computational
languages portable across diverse CPU and GPU architectures
without performance losses is increasingly compelling. Here, we
study the performance portability of the LSQR algorithm as
found in the AVU-GSR code of the ESA Gaia mission. This
code computes the astrometric parameters of the ∼108 stars
in our Galaxy. The LSQR algorithm is widely used across a
broad range of high-performance computing (HPC) applications,
elevating the study’s relevance beyond the astrophysical domain.
We developed different GPU-accelerated ports based on CUDA,
C++ PSTL, SYCL, OpenMP, and HIP. We carefully verified the
correctness of each port and tuned them to five different GPU-
accelerated platforms from NVIDIA and AMD to evaluate the
performance portability (PP) in terms of the harmonic mean
of the application’s performance efficiency across the tested
hardware. HIP was demonstrated to be the most portable solution
with a 0.94 average PP across the tested problem sizes, closely
followed by SYCL coupled with AdaptiveCpp (ACPP) with 0.93.
If we only consider NVIDIA platforms, CUDA would be the
winner with 0.97. The tuning-oblivious C++ PSTL achieves 0.62
when coupled with vendor-specific compilers.

Index Terms—High-Performance Computing, Performance
portability, Portable languages, GPU programming, CPU and
GPU architectures, Astrometry

I. INTRODUCTION

The scientific data produced by experiments in different
domains are quickly increasing in size, approaching the ∼10-
100 PB range. Processing such amounts of data in a rea-
sonable time requires Peta- and ExaFLOP/s of computing
capacity. Today such compute capacities are achieved using
accelerated supercomputers comprising O(103) computational
nodes having one or more accelerators, such as GPUs. The
inclusion of GPU accelerators adds a new dimension of
heterogeneity that further exacerbates the long-standing prob-
lem of code and performance portability across successive
generations of supercomputers typical of the high-performance
computing (HPC) domain. Indeed, the top supercomputers
are often one-off projects with HPC applications relying on
end-to-end hardware/software co-design using low-level code
to achieve extreme compute scalability and efficiency. Co-

design intercepts thriving trends, such as, hardware functional
specialization, the need for power capping, and the expanding
HPC application space. Still, it requires suitable abstractions to
avoid the explosion of time-to-solution, which is utterly needed
by the growing community of industrial supercomputing users.

An alternative method is re-adapting the application struc-
ture to fully exploit GPU-accelerated compute node capa-
bilities. While it might not be as effective as co-design for
achieving record performance, it can improve the scalability
of legacy parallel codes. Code adaptation also aims to express
some of the application’s functional steps as algorithmic
patterns that map well into available hardware features. As
an example, this kind of code porting and tuning is typical
for CUDA [1] and HIP [2], the respective low-level native
programming languages for NVIDIA and AMD GPUs, and
allow programmers to access GPU-specific hardware features,
such as scratchpad memory and tensor cores. As for any
vendor-specific low-level language, the optimized code is
confined to run on specific hardware platforms and might
require re-tuning on different boards, even from the same
vendor.

Both end-to-end co-design and vendor-specific low-level
languages are useful for producing record-breaking applica-
tions. Still, they face sustainability and cost limitations for
many applications of significant industrial interest. Indeed,
for industrial users, the ability to preserve investment in
code development and tuning across different generations of
platforms significantly affects their entire value chain linked
to supercomputers. The advent of GPU-accelerated supercom-
puters makes this need evermore compelling.

To address code portability, several programming frame-
works that aim to decouple the application from specific hard-
ware platforms with no (or limited) performance loss, have
been recently proposed. Examples are C++ Parallel Standard
Template Library (PSTL) [3], HIP [2], KOKKOS [4], OpenMP
with GPU offload [5], OpenACC [6], RAJA [7], OCCA [8],
SYCL [9], Alpaka [10], and Fastflow [11]. The use of such
models raises the concept of performance portability, which
is becoming a crucial research point in HPC [12]. While this
term has undergone various definitions [4], [13], [14], at large,
it aims to capture “an application’s performance efficiency for
a given problem that can be executed correctly on all platforms

1152979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00157

in a given set” [15].
Differently from related work studying the performance

portability of specific tasks (e.g., [16]) or synthetic benchmarks
(e.g., [17]), our study dwells into the performance characteris-
tics of a scientifically and computationally relevant real-world
application: the Astrometric Verification Unit-Global Sphere
Reconstruction (AVU-GSR) pipeline of the European Space
Agency’s (ESA) Gaia mission. This pipeline aims to find
the astrometric parameters of ∼108 primary stars [18] in the
Milky Way with a 10-100 micro-arcseconds accuracy [19]. At
the core, this requires solving a system of linear equations
done via a Solver module which implements a customized
and parallelized version of the iterative LSQR algorithm [20],
[21] to be able to deal with the problem specific structure of
the data. This code has been used in production since 2014
at the CINECA supercomputing center. The LSQR solver is
the crucial computational unit in the pipeline and the object
of our analysis. For sake of simplicity, hereon we use the term
“AVU-GSR” for the LSQR solver of the pipeline alone.

Malenza et al. [22] studied the weak scalability of two
ports of the AVU-GSR code, written in CUDA [23], and
C++ PSTL, on up to 256 nodes of Leonardo1 with NVIDIA
A100 GPUs. Here, we add further programming frameworks,
notably HIP, OpenMP with GPU offload (OpenMP-GPU), and
SYCL, verify their correctness, and study their performance
portability using Pennycook’s PP score across five different
compute architectures from both NVIDIA and AMD.

Our main contributions can be summarized as follows:
• We study the parallelization of ESA’s AVU-GSR solver

and port it to HIP, OpenMP-GPU, and SYCL, besides
C++ PSTL. The choice stems from the promising results
and properties described in literature [2], [3], [5], [9].

• We validated the correctness of each port using reference
datasets from production and tune each port for optimal
performance obtaining a speedup of up to ∼ 2x over the
CUDA version currently used in production.

• We experimentally determine the PP performance porta-
bility score of eight programming frameworks and com-
piler combinations across five hardware platforms, four
based on NVIDIA, and one based on AMD, using three
problem sizes.

Paper roadmap. In §II, we present literature works related
to our analysis. In §III, we illustrate the main scientific mo-
tivation of our study and the structure of the Gaia AVU-GSR
code. In §IV, we describe the parallelization and optimization
strategies of the code version. §V introduces our testbed
setup. In §VI, we present our results in terms of performance
portability and code validation. Finally, §VII concludes the
paper and presents future works.

II. BACKGROUND AND RELATED WORKS

Performance portability metric. Performance portability
aims to capture two critical aspects: the capability of applica-
tions to run across a designated set of heterogeneous hardware

1https://www.hpc.cineca.it/systems/hardware/leonardo/

platforms and the achieved performance. Various metrics have
been used [4], [13], [14]. While a universally accepted metric
is still lacking, PP introduced by Pennycook et al. [15] has
rapidly gained traction. PP is defined as follows:

PP(a, p,H) =

{ |H|∑
i∈H

1
ei(a,p)

if i is supported ∀i ∈ H

0 otherwise,
(1)

where a is a specific application, p is a given problem that the
specific application a computes and ei(a, p) is the efficiency
of the application a for the problem p on a platform i from a
given set of H of size |H|. In other words, PP is the harmonic
mean of the application’s efficiency over the set of platforms
H . As such, if the PP of a specific application across a set
of platforms is lower than the PP across a different set of
platforms, it does not necessarily mean that this application has
worse performance on the first set of platforms compared to
the second one. PP measures the imbalance of platform support
across different code versions, not their absolute efficiency. If
an application is not able to run on all platforms in H , the PP
is 0 by definition.

Performance portability studies. Several studies address
performance portability. Pennycook et al. [15] describe some
real-life examples of the usage of the PP metric. They present
the GPU-STREAM benchmark [24], a reimplementation of
McCalpin’s STREAM benchmark [25], parallelized with eight
programming models (McCalpin, SYCL, RAJA, KOKKOS,
OpenMP-C++, OpenACC, CUDA, and OpenCL) and eval-
uated on 12 different platforms, either CPU or GPU-based.
Since none of the benchmarks is able to run on all platforms,
the PP is calculated for different sets of code versions and
platforms.

Lin et al. [26] test the performance portability of three het-
erogeneous HPC mini-applications (BabelStream, miniBUDE,
and CloverLeaf) on both CPU and GPU platforms using
different implementations of the C++17 PSTL. The three
mini-applications cover both compute-bound and memory
bandwidth-bound cases. The authors prove the ports to
be competitive with previous versions written in OpenMP,
CUDA, SYCL, and KOKKOS across different platforms, but
they avoid evaluating the performance portability of these
mini-applications with an objective metric.

Bhattacharya et al. [27] investigate different portable par-
allel programming models (KOKKOS, SYCL, OpenMP, C++
STL) for high energy physics use cases (FastCaloSim, ACTS,
Wire Cell, Patatrack, P2R, and Random Number Generators)
highlighting their benefits and challenges. Atif et al. [28]
added the Alpaka parallelization language to the previous
study. Other works study performance portability from the
perspective of the (pre-)Exascale era. Some of them are [29]–
[31]. Such studies only address benchmarks or mini-apps
or lack the use of a wider-spread metric. Differently from
them, we use a real-world application using the recognized PP
metric. Hammond and Mattson [32] evaluated data parallelism
in C++ on GPU using the Parallel Research Kernels2, a set

2https://github.com/ParRes/Kernels

1153

System Generation

GSR DB
Attitude Definition

Chain
Weights

Calculation Solver Solution
Ingestion

Solution
Analysis

De-rotation
Fit

AGIS
Comparison

Statistical
Time-series
Residuals

Residuals
Analysis Report

HPC System

GSR
Preproccessor

Fig. 1: Description of the pipeline of the AVU-GSR mission code. The solver (in purple) is the main computation bottleneck
offloaded to an HPC system.

of application skeletons simpler than mini-applications that
exemplify important patterns in parallel processing and do not
need a domain science expertise to be understood.

III. GAIA MISSION AND AVU-GSR CODE

A. Scientific relevance of the Gaia mission

The Gaia mission was launched on December 19th 2013,
and it is expected to end its life at the beginning of 2025,
after about seven-years extension from its initial planned end
(2018)3. This is due to the relevant scientific worth provided by
the mission. Gaia mission is producing an extremely accurate
astrometric map of more than 109 stars in the Milky Way,
measuring their parallaxes, right ascension, declination, and
proper motions, besides their luminosity, temperature, and
composition [33]. The accuracy of the astrometric measure-
ments can go down to the 10-100 micro-arcseconds level or be-
low [33]. High-resolution astrometry is a powerful instrument
for exploring essential questions related to our Galaxy’s origin,
structure, and evolutionary history. High-resolution astrometry,
in synergy with high-resolution spectroscopy and photometry,
allows to build extremely precise kinematic profiles of our
Galaxy (rotation curves and vertical velocity dispersions) [34],
[35] and to study the formation and evolution of the Milky
Way (e.g., [36]–[38]). Moreover, it can shed light on disen-
tangling between General Relativity, the current most explored
theory of gravity which assumes that galaxies are surrounded
by large dark matter halos, and other theories of modified
gravity, which do not resort to dark matter (e.g., [35], [39]–
[43]).

B. The Gaia AVU-GSR code

The Gaia AVU-GSR code determines the astrometric param-
eters of the primary stars in the Milky Way (∼108 stars), as
well as the attitude and instrumental specifications of the Gaia
satellite and the global parameter γ of the Parametrized Post-
Newtonian (PPN) formalism, with a high precision around
10−100 micro-arcseconds. To find these parameters, the Gaia
AVU-GSR code solves an overdetermined system of linear
equations [19], [22], [23], [44]–[47], choosing between two
fully-relativistic astrometric models [48], [49]:

A× x⃗ = b⃗, (2)

3https://www.esa.int/Science_Exploration/Space_Science/Gaia

10!

5 4

10"

5	×10# 3	×10" 7×10$ 1

10%%

Astrometric

Attitude

Instrumental

Global

Fig. 2: Structure of matrix A. Non-zero parameters are high-
lighted as dark blue blocks.

where A is a large coefficient matrix with a high degree of
sparsity, b⃗ is the vector of known terms and x⃗ is the array of
unknowns. The number of rows of A represents the number
of equations which is equal to the number of stars times the
number of observations per star, i.e., O(108+3). The number of
columns of A represents the number of unknowns dominated
by the 5 astrometric parameters per star, i.e., O(108). Fig. 2
depicts the structure of the matrix. The matrix is highly sparse
with a block diagonal structure for the astrometric parameters,
whereas the structure of the attitude parameters depends on
a stride stemming from the measurement campaign, and the
instrumental part has an irregular pattern. The global part
has, at maximum, one parameter per row, different from zero.
Saving only the nonzero elements of A allows to reduce the
problem by seven orders of magnitude. The obtained reduced
matrix, Ar, has the same number of rows as A and contains at
most ∼ (1011)× 24 elements, i.e., 5 astrometric, 12 attitude,
6 instrumental, and 1 global parameters per row. The dark
blue blocks in Fig. 2 (not in scale) illustrate how the non-zero
parameters distribute in each row of the astrometric, attitude
and instrumental parts.

To store the matrix in memory, we leverage the inherent
properties of the matrix. Specifically, we split Ar into four
submatrices (one for the astrometric, attitude, instrumental,
and global parameters) differently treated according to their

1154

structure. The astrometric submatrix is structured with a block
diagonal pattern, with each block row only containing five
contiguous non-zero elements (Figure 2). To efficiently store
this system, we only need to save the starting column index
of the astrometric non-zero elements for each row of A in an
array called matrixIndexAstro. For the attitude param-
eters system, each row of A contains 12 non-zero elements
arranged in three blocks of four elements each, with a defined
stride (Figure 2). Knowing this pattern allows us to only store
the index of the first attitude non-zero element in each row of
A in an array named matrixIndexAtt. Unlike the other
submatrices, the instrumental parameters lack a predictable
pattern (Figure 2). As a result, we store, for each row of A,
the column indexes of all instrumental non-zero elements in
an array called instrCol. Overall, the astrometric submatrix
represents ∼90% of the memory footprint while the other
parts (attitude, instrumental, and global) the remaining ∼10%.
Overall, Ar, b⃗ and x⃗ occupy ∼19 TB, ∼800 GB and ∼4 GB,
respectively.

The system solution is iteratively obtained through a
customized and preconditioned version of the LSQR algo-
rithm [20], [21], which approximately takes the ∼95% of
the AVU-GSR solver. The algorithm stops when it reaches
convergence or the maximum number of iterations. The most
intensive computation of the single LSQR iteration is the
execution of the aprod 1,

b⃗i+ = A× x⃗i−1, (3)

and aprod 2,
x⃗i+ = AT × b⃗i, (4)

functions. In (2), the number of equations is larger than the
number of unknowns, which makes the system overdeter-
mined. Therefore, some constraint equations must be set to
derive a univocal solution.

IV. PARALLELIZATION OF THE GAIA AVU-GSR CODE

The Gaia AVU-GSR code leverages distributed systems
via MPI, where each MPI rank processes a subset of the
observations. To fully exploit the compute accelerators, the
code is further parallelized by offloading the main arithmetic
computations on GPUs using CUDA [23], [47]. In particular,
the two most intensive computations are implemented as
four kernels (one for each submatrix), respectively named
as aprod{1,2}_Kernel_astro(), aprod{1,2}_Kernel_att(),
aprod{1,2}_Kernel_instr(), and aprod{1,2}_Kernel_glob().

Kernel parallelization. The aprod 1 kernels result in rows
of matrix times column vector multiplications, which can be
easily parallelized. Conversely, due to the irregular structure
of transposed A, the indexes used by aprod 2 can collide
(with the exception of the astrometric parameters due to
their block diagonal structure), and hence the updates require
atomic operations. To minimize the collision probability, we
redesigned the code to reduce the number of blocks and GPU
threads per block in the regions where atomic operations
are performed. However, this can imply that, in some cases,

the GPU occupancy is not maximally exploited. To limit
stalling times, we execute the kernels in streams, allowing their
asynchronous overlap. Since the atomic operations in each
submatrix target different subsections of x⃗, the asynchronous
execution of the kernels does not increase the execution cost
of the atomic operations.

Parallel programming frameworks. In addition to an
optimized CUDA implementation leveraging the observa-
tions above, we parallelize the LSQR solver using four
different additional parallel programming frameworks: HIP,
SYCL, OpenMP, and C++ PSTL. CUDA, HIP, and SYCL
are language-specific, meaning they have explicit run-time
functions that users can use to manage memory and write
fine-tuned kernels [50]. OpenMP, similarly to OpenACC, is a
directive-based API [51]; this means the user can add pragma
directives that instruct the compiler to generate assembly code
that runs on multicores systems and, eventually, accelerators.
Pragma-based programming languages might be easier to use
compared to language-specific frameworks as users are not
required to re-write the entire application [52]–[55]), and do
not require explicit tuning and memory management to offload
computation on GPUs or multicore systems. Another way to
execute applications on GPUs is developing code with specific
abstraction libraries that translate user code into CUDA, HIP
or OpenMP code. Examples of such libraries are KOKKOS,
RAJA, Alpaka, Thrust, and C++ PSTL. Here, we used the
C++ PSTL as it is an open standard that only requires the
standard library, completely masking any low-level parallel
runtime library. Starting from C++17, standard algorithms can
be executed in parallel specifying the execution policy [56].
Offloading computations to GPU requires implicit memory
mapping mechanics between host and device and a back-end
that is able to generate GPU assembly code.

a) The CUDA code: The CUDA version allocates the
host variables via cudaHostMalloc to use pinned memory. All
variables needed by the GPU are allocated using cudaMalloc.
The four submatrices are copied asynchronously to GPUs,
using cudaMemcpyAsync. The same is done with all relevant
quantities, constraints, and other unknowns of the astrometric
problem. CUDA streams are used to overlap aprod 2 kernel
computations. It is worth noting that the matrices are copied to
the GPU before the main loop and remain there until the end
of the algorithm, avoiding costly GPU-CPU data exchanges
during loop iterations. We force the same behavior on all
frameworks, allowing explicit memory management.

b) Porting from CUDA to HIP: Since HIP is a pro-
gramming language designed to be syntactically similar to
CUDA, porting was relatively easy. Initially, we used HIPIFY
to translate our code into HIP, and then we optimized the code,
tuning kernel parameters for AMD and NVIDIA architectures.
In particular, cudaMalloc, cudaMemcpyAsync, and cudaS-
treamCreate were replaced with hipMalloc, hipMemcpyAsync
and hipStreamCreate. One thing worth noting is that, same as
with C++ PSTL, we allocate the memory using hipMemAdvise
and forcing coarse grain. This is done for performance reasons
as we observed experimentally that fine-grain coherence led

1155

to performance degradations due to the atomic operations
contained in the aprod 2 kernels.

c) Porting from CUDA to SYCL: The SYCL implementa-
tion uses order queues and Unified Shared Memory allocators.
In particular, malloc_device allocates data directly on
GPU. We used parallel_for to declare parallel code
regions and NDrange to fine-tune kernels.

d) Porting from CUDA to OpenMP: We used the
OpenMP #pragma omp enter data directive to allocate
GPU data and the OpenMP #pragma omp target
update directive to update it. Data are processed on GPU
using #pragma omp target teams distribute
parallel for. Kernels can be fine-tuned by setting
the number of teams num_teams and the thread limit
thread_limit.

e) Porting from CUDA to C++ PSTL: The first porting
of the code to C++ PSTL was done in [22]. It is worth noting
that, in this case, there is no specific directive to tune the
number of threads and blocks to be used by the kernels.

V. TESTBED SETUP

A. Hardware Platforms

We measured the PP metric considering only runs using a
single GPU. We used the following hardware platforms:

• GraceHopper: CPU: 1x NVIDIA Grace CPU (72 Arm
Neoverse V2 Cores @ 3.0 GHz); GPU 1x NVIDIA HOP-
PER H100, 96 GB HBM3e; MEM: 574 GB LPDDR5X;
Driver Version: 545.23.08; CUDA Version: 12.3;

• EpiTo: CPU: 1 Ampere Altra Q80-30 CPU (80-core Arm
Neoverse M1); GPU: 2 x NVIDIA A100 GPU, 40 GB
HBM2 each; Driver Version: 515.65.01; CUDA Version:
11.7;

• CascadeLake: CPU: 1 Intel(R) Xeon(R) Gold 6230
CPU; GPU: 1 x NVIDIA V100S GPU, 32 GB HBM2;
1 x NVIDIA T4 GPU, 15 GB GDDR6; Driver Version:
550.54.15 ; CUDA Version: 12.4;

• Setonix: CPU: 1x AMD EPYC 7742 (64 cores@2.25
GHz); GPU: 4x AMD MI250x, 512 GB HBM2; MEM:
512 GB DDR4;

The software stack and the compiler flags adopted on
NVIDIA and AMD architectures are detailed in Appendix A.
Since we mainly target the performance using accelerators and
each platform has a different GPU, hereon we identify each
platform via the name of the equipped GPU.

B. Evaluation Metrics

Our evaluation focuses on performance portability. We
measure the PP of all code versions across the platforms
listed in §V-A using the application efficiency based on the
average iteration time of the LSQR algorithm. Since LSQR
is an iterative algorithm, we believe that the iteration time
is a good estimator of the application performance. We used
code profilers from NVIDIA and AMD to verify that most of
the time of this code is spent computing the matrix-by-vector
products of aprod 1 and aprod 2. To ensure that our ports
are representative of the application’s best performance, we

did a preliminary comparison of our optimized CUDA version
against the production version of the code, obtaining a speed-
up of 2.0x on Leonardo on a 42 GB problem.

The considered accelerators vary in their available device
RAM capacity. Since the GPU memory occupancy is closely
related to the size of the A matrix (copied only once before
the main iteration cycle), we tested problems of different sizes
close to the limit of the different GPUs, in particular: 10 GB
(on all devices), 30 GB (all except Tesla T4) and 60 GB (only
on H100 and MI250X)4. We report the average iteration time
over 100 iterations, and repeat each experiment 3 times to
enhance its statistical robustness.

VI. RESULTS

A. Performance Portability

Using the p3-analysis-library [57], we plot the application
efficiency and PP for all platforms and frameworks for each
problem size in Fig. 3. In each subfigure, the plot on the
top left shows how efficiency varies across frameworks and
platforms. Lines identify the AVU-GSR solver implemented
using different framework-compiler pairs. In particular, the
first value on the x-axis describes the maximum efficiency
on the best-performing hardware for a given framework. The
hardware platform itself is identified by the letter in the
plot below, on the row with the line of the same color.
The right top plot shows instead the performance portability
computed using Eq. (1) across all platforms. The green and
violet lines illustrate the efficiency of OpenMP code when
compiled with the base clang (OMP+LLVM) and the vendor
compilers (OMP+V), respectively. The brown and gray lines
depict the efficiency of C++ PSTL when using AdaptiveCpp
(PSTL+ACPP) and vendor compilers (PSTL+V). Lastly, the
yellow and cyan lines represent the efficiency of SYCL
when compiled with AdaptiveCpp (SYCL+ACPP) and DPC++
(SYCL+DPCPP)5.

Fig. 3a, Fig. 3b and Fig. 3c show the results for a problem
size of 10 GB, 30 GB, and 60 GB, respectively. For a 10 GB
problem, the highest PP was achieved by HIP (0.98) followed
by SYCL+ACPP (0.92). Apart from CUDA’s PP value, which
is zero by definition since it cannot be executed on AMD
GPUs, the worst value is 0.25 obtained by OMP+LLVM, and
all others lying somewhere in between. Interestingly, the best
efficiency is obtained on the most recent NVIDIA hardware,
i.e., H100, for 4 out of 8 frameworks, including even HIP.
MI250X is, instead, the best platform for OMP+V. Surpris-
ingly, the older T4 is the best platform for SYCL+DPCPP.
Only V100 has never been the best platform for any of
the frameworks. When considering the results on a bigger
problem, i.e., 30 GB (shown in Fig. 3b), the overall application
efficiencies vary more leading to generally lower performance
portability scores. Here the best score is 0.93 by SYCL+ACPP
which surpasses HIP with a score of 0.88. The framework with

4Bigger problems can be addressed using multiple GPUs eventually on
multiple nodes which is out of scope of this paper.

5Hereon, for simplicity we refer to framework as specific framework plus
compiler combinations

1156

(a) 10 GB Problem

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ica
tio

n
Ef

fic
ie

nc
y

0.0

0.2

0.4

0.6

0.8

1.0 Perform
ance Portability

1 2 3 4
Platform

B A D C
B D A C
A B C D
B A C D
C B A D
B A D C
D B C A
A B D CUDA

HIP
OMP+LLVM
OMP+V
PSTL+ACPP
PSTL+V
SYCL+ACPP
SYCL+DPCPP

A A100 B H100 C MI250X D V100

(b) 30 GB Problem

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ica
tio

n
Ef

fic
ie

nc
y

0.0

0.2

0.4

0.6

0.8

1.0 Perform
ance Portability

1 2
Platform

A B
A B
A B
A B
B A
A B
A B
A CUDA

HIP
OMP+LLVM
OMP+V
PSTL+ACPP
PSTL+V
SYCL+ACPP
SYCL+DPCPP

A H100 B MI250X

(c) 60 GB Problem

Fig. 3: Performance portability for problems of size: a) 10 GB, b) 30 GB, and c) 60 GB.

the worst drop in efficiency is OMP+LLVM which goes from
0.85 on H100 to 0.53 on V100. The best platform remains
H100, which is the first choice for half the frameworks and
the second best for the remaining half. Unsurprisingly, the
MI250X is the best platform for HIP. Only two GPUs have
enough memory to support the 60 GB problem: H100 and
MI250X. The trends shown before are confirmed here too, but
overall, more frameworks obtain high scores due to the low
number of hardware platforms. Not considering the MI250X,
CUDA would achieve a PP score of 0.97 and 0.96 for the 10
GB and 30 GB problem sizes, respectively. Note that there is
no meaning to compute PP from the 60 GB problem since we
have only one NVIDIA GPU supporting that size in our test
platforms.

B. Iteration Time and Application Efficiency

Fig. 3 clearly shows that HIP and SYCL+ACPP (and CUDA
when considering only NVIDIA GPUs) obtain the best PP
scores stemming from high application efficiency scores. To
dive deeper into these results, we also report, in Fig. 4
and 5, the average iteration time and application efficiency
of all frameworks on the different platforms. Each figure
comprises three subfigures that show the results for the three
problem sizes. While, as expected, newer and more performant
platforms clearly deliver lower average iteration times across
all model sizes, given a platform, the fastest time is typically
given by CUDA (mostly on T4 and A100) or HIP (mostly on
V100 and H100) frameworks. Surprisingly, the best framework
on MI250X is OMP+V, however it is clearly outperformed on
the NVIDIA-accelerated platforms by the other frameworks
leading to a lower PP score (between 0.95 and 0.45 across
the three problem sizes). Instead, SYCL+ACPP, while not
being the best on any platform, achieves similar application
efficiencies across all the tested hardware.

C. Effect of Parameter Tuning

CUDA, HIP, and SYCL allow hand-tuning of the GPU
kernels. Indeed, different numbers of blocks and threads of
the kernels produce different performance results. In our
experiments, we tuned the parameters of the CUDA, HIP,

and SYCL kernels for each platform, achieving up to 40%
reduction in iteration time. This testifies how relevant tuning
such frameworks can be. Unfortunately, different platforms
often require different tuning. The best SYCL performance is
obtained using the AdaptiveCpp compiler. SYCL code com-
piled with the DPC++ compiler offers lower performance. This
can be due to incorrect compilation or suboptimal parameter
tuning. We kept the same tuning configurations adopted for
AdaptiveCpp.

The other frameworks do not allow easy tuning of the GPU
kernels. The default compiler tuning produced a code that,
on H100, achieved 91% and 84% of the CUDA performance,
when compiled with nvc++ and standard clang++, respec-
tively, approximately on all problem sizes. On other platforms,
OpenMP performed slightly less but still between 83% and
59% of the best-achieved performance with comparable per-
formance on both compilers.

The C++ PSTL efficiency increases from T4 to H100,
reaching a value of 90% application efficiency on H100
coupled with ACPP and problem sizes of 10 GB and 30
GB. nvc++ compiler performs slightly better than ACPP on
H100 for the 60 GB problem size reaching 79%. As for
OpenMP, both compilers achieve comparable performance,
even if ACPP does not explicitly use the system unified shared
memory mechanism [58] while it is required by nvc++. The
increasing performance trend mirrors that of more performant
hardware, so we hypothesize that it is due to the different
technical characteristics of the considered GPUs. As said in
§IV, with C++ PSTL we cannot explicitly set the kernels
parameters yet. Using the nsys profiler, we saw that the
default parameter tuning spans 256 threads per block on each
architecture. While this number of threads efficiently optimizes
the kernel’s execution on H100 and A100, it is less efficient
on the weaker T4 and V100, where, as seen from the kernel’s
tuning of the CUDA code, the number of threads that give best
performance is 32. The C++26 proposal [59] aims to include
executors in the STL. This feature will potentially allow to
set explicit kernel parameters and, hence, reduce the observed
performance gap among the platforms.

1157

T4 V100 A100 H100 MI250X
Architectures

10 1

100

Av
er

ag
e

Ite
ra

tio
n

Ti
m

e
(s

)

Programming Models
CUDA
HIP

PSTL+ACPP
PSTL+V

SYCL+ACPP
SYCL+DPCPP

OMP+V
OMP+LLVM

(a) 10 GB Problem

V100 A100 H100 MI250X
Architectures

10 1

100

Av
er

ag
e

Ite
ra

tio
n

Ti
m

e
(s

)

Programming Models
CUDA
HIP

PSTL+ACPP
PSTL+V

SYCL+ACPP
SYCL+DPCPP

OMP+V
OMP+LLVM

(b) 30 GB Problem

H100 MI250X
Architectures

10 1

100

101

Av
er

ag
e

Ite
ra

tio
n

Ti
m

e
(s

)

Programming Models
CUDA
HIP

PSTL+ACPP
PSTL+V

SYCL+ACPP
SYCL+DPCPP

OMP+V
OMP+LLVM

(c) 60 GB Problem

Fig. 4: Average iteration time across architectures and programming frameworks for problems of size: a) 10 GB, b) 30 GB,
and c) 60 GB.

T4 V100 A100 H100 MI250X
Architectures

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ica
tio

n
Ef

fic
ie

nc
y

Programming Models
CUDA
HIP

PSTL+ACPP
PSTL+V

SYCL+ACPP
SYCL+DPCPP

OMP+V
OMP+LLVM

(a) 10 GB Problem

V100 A100 H100 MI250X
Architectures

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ica
tio

n
Ef

fic
ie

nc
y

Programming Models
CUDA
HIP

PSTL+ACPP
PSTL+V

SYCL+ACPP
SYCL+DPCPP

OMP+V
OMP+LLVM

(b) 30 GB Problem

H100 MI250X
Architectures

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ica
tio

n
Ef

fic
ie

nc
y

Programming Models
CUDA
HIP

PSTL+ACPP
PSTL+V

SYCL+ACPP
SYCL+DPCPP

OMP+V
OMP+LLVM

(c) 60 GB Problem

Fig. 5: Application efficiency across architectures and programming frameworks for problems of size: a) 10 GB, b) 30 GB,
and c) 60 GB.

D. Performance on MI250X

A special note goes to the performance on MI250X. Even
with a powerful GPU the observed performance is slower
than on the NVIDIA architectures, especially A100 and H100.
This is mainly due to how the aprod {1,2} kernels were
originally written. To verify this hypothesis, we take similar
SpMV kernels, implemented using HIP by amd-lab-notes [60],
and test them on matrix sizes similar to our own. We tested
them on A100 and MI250X architectures. Indeed, the per-
formance was similar to the one obtained by our AVU-GSR
solver. We hypothesize that the lower performance is due
to noncoalescent memory accesses by threads. We tried to
maximize performance by kernel tuning and noted that low
numbers of threads and blocks offer the best performance.
OpenMP code compiled with amdclang++ is the one that
achieves the best performance on all considered problem sizes.
We tuned the OpenMP kernels with parameters similar to
the ones used by HIP and SYCL, as the default compiler
tuning brought lower performance. HIP and SYCL perform
similarly to OpenMP when compiled with hipcc and acpp,
respectively. Conversely, SYCL code compiled with DPC++
compiler and OpenMP code compiled with base clang++
compiler gives lower performance. This is due to the fact
that some compilers could not generate code that uses atomic
read-modify-write (RMW). They probably generate code in
which atomic operations are performed with a compare-and-
swap (CAS) loop. In our case, this degrades performance.
Specifying the flag -munsafe-fp-atomics on MI250X,
we are specifying to generate assembly code with atomic
RMW instructions, but it is not supported on all compilers.
Finally, C++ PSTL code achieved an application efficiency

of 0.45-0.6 with both clang++ and acpp. This is because
we could not properly tune the kernel parameters. Again, we
believe that the new executors feature proposed for C++26
could help solve this problem.

E. Code Validation

We verified the correctness of the different code versions
across all considered frameworks and H100, A100, and AMD
MI250x architectures, by comparing the solution of the system
from Eq. (2) with its standard error against the solution found
by the CUDA code currently in production on the Leonardo
supercomputer. For this verification, we consider two real,
well-studied datasets of 42 GB and 306 GB. For both datasets,
the solution includes the astrometric, attitude, and instrumental
sections and no global section, which has not been computed
yet in production runs.

The two left panels of Fig. 6 compare the astrometric
solution (red) and its standard error (blue) obtained for the
42 GB dataset with the HIP code run on Leonardo and the
same quantities obtained with the CUDA-production code
on Leonardo as well. The two right panels show the same
quantities with the HIP code run on Setonix. The black
dashed line testifies the one-to-one relation between the two
solutions. Similar results have been obtained on all other
considered frameworks for both datasets and, therefore, are
not shown. From a visual inspection, we can see that the
different quantities are consistent with each other and this
agreement is also quantitatively verified, being the different
couples of solutions in agreement within 1σ. Moreover, the
Gaia mission aims to determine the astrometric parameters
with a 10− 100 micro-arcseconds = (0.48− 4.8)× 10−10 rad
precision. We verified that the mean and standard deviation

1158

(a) Solution Astrometric (b) Std Error Astrometric (c) Solution Astrometric (d) Std Error Astrometric

Fig. 6: a) Astrometric solution (red) of the system of equations (2), and b) standard error (blue) of the solution obtained on
test problem of 42 GB with the HIP code on H100 as a function of the same quantities obtained with the CUDA-production
code on Leonardo. The black dashed line represents the one-to-one relation as a reference. c) and d): same plots but with the
HIP code executed on MI250X platform.

of the differences between the standard errors obtained with
the CUDA production code and all other versions always stay
below the 10 micro-arcseconds threshold.

.

VII. CONCLUSIONS AND FUTURE WORKS

Performance portability (PP) is an increasingly impelling
necessity in HPC to lower the time to solutions on new
supercomputers. For this purpose, we present a study taking
the real-world application AVU-GSR solver, based on the
LSQR algorithm, of the ESA Gaia mission as a test case.
The main operations are two sparse matrix-by-vector products,
a well-known, highly memory-bound operation. Specifically,
we optimized the original CUDA version and re-implemented
it using HIP, SYCL, OpenMP-GPU, and C++ PSTL, with
the purpose of measuring the PP of each framework across
multiple hardware platforms. We considered all the platforms
available to us: NVIDIA Tesla T4, Volta V100, Ampere A100
and Hopper H100, and AMD MI250X. We compiled and
tested the code using different compilers and verified the
correctness of the solutions.

Language-specific programming frameworks, specifically
HIP and SYCL, provide the best performance portability
values with an average across different problem sizes of
0.94 and 0.93, respectively. CUDA is the best programming
framework on NVIDIA architectures, achieving a PP value
of 0.97. OpenMP is the most performant on AMD MI250X
when compiled with amdclang++. On NVIDIA, the best
performance portability values are 0.91 and 0.84 when the
code is compiled with nvc++ and clang++ on H100, and
it is tested on a problem of 60 GB. C++ PSTL achieves its
maximum (0.9) application efficiency on H100 and problem
sizes of 30 GB and 60 GB. On MI250X, it reaches the values
of 0.45-0.6 with both clang++ and acpp compilers. In the
Gaia AVU-GSR case, tuning kernel parameters is fundamental
to better exploit GPU computational power. Programming
frameworks, such as C++ PSTL, for which this is not possible,
usually have lower performance portability values. For this
reason, using executors, these performance gaps are expected
to be reduced.

ACKNOWLEDGMENTS

This work has been supported by the Spoke 1 “FutureHPC
& BigData” of the ICSC–Centro Nazionale di Ricerca in High
Performance Computing, Big Data and Quantum Computing
and hosting entity, funded by European Union—Next Gener-
ationEU; by the Italian Space Agency (ASI) (grant n 2018-
24-HH.0) as part the Gaia mission; by the EuroHPC JU under
the project EUPEX (grant n. 101033975); and by the INAF
minigrant awarded to Dr. Valentina Cesare.

REFERENCES

[1] D. Kirk, “Nvidia cuda software and gpu parallel computing
architecture,” in Proceedings of the 6th International Symposium
on Memory Management, ser. ISMM ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 103–104. [Online].
Available: https://doi.org/10.1145/1296907.1296909

[2] N. Kerscher, “Investigating the hip programming model with regards to
portability and performance portability,” 2022.

[3] C. DeLozier, “Gpu acceleration for the c++ standard template library,”
2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:
1464773

[4] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202–3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731514001257

[5] J. Huber, M. Cornelius, G. Georgakoudis, S. Tian, J. M. M. Diaz,
K. Dinel, B. Chapman, and J. Doerfert, “Efficient execution of
openmp on gpus,” in 2022 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), 2022, pp. 41–52. [Online].
Available: https://doi.org/10.1109/CGO53902.2022.9741290

[6] J. A. Herdman, W. P. Gaudin, O. Perks, D. A. Beckingsale,
A. C. Mallinson, and S. A. Jarvis, “Achieving portability and
performance through openacc,” in 2014 First Workshop on Accelerator
Programming using Directives, 2014, pp. 19–26. [Online]. Available:
https://doi.org/10.1109/WACCPD.2014.10

[7] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.
Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland, “Raja:
Portable performance for large-scale scientific applications,” in 2019
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC), 2019, pp. 71–81. [Online]. Available:
https://doi.org/10.1109/P3HPC49587.2019.00012

[8] D. S. Medina, A. St-Cyr, and T. Warburton, “OCCA: A unified approach
to multi-threading languages,” arXiv e-prints, p. arXiv:1403.0968, Mar.
2014.

1159

[9] B. Johnston, J. S. Vetter, and J. Milthorpe, “Evaluating the performance
and portability of contemporary sycl implementations,” in 2020
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC), 2020, pp. 45–56. [Online]. Available:
https://doi.org/10.1109/P3HPC51967.2020.00010

[10] E. Zenker, B. Worpitz, R. Widera, A. Huebl, G. Juckeland, A. Knüpfer,
W. E. Nagel, and M. Bussmann, “Alpaka – an abstraction library for
parallel kernel acceleration,” in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2016, pp.
631–640. [Online]. Available: https://doi.org/10.1109/IPDPSW.2016.50

[11] M. Aldinucci, S. Ruggieri, and M. Torquati, “Porting decision tree
algorithms to multicore using fastflow,” in Machine Learning and
Knowledge Discovery in Databases, J. L. Balcázar, F. Bonchi,
A. Gionis, and M. Sebag, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 7–23. [Online]. Available: https:
//doi.org/10.1007/978-3-642-15880-3_7

[12] A. Dubey, L. C. McInnes, R. Thakur, E. W. Draeger, T. Evans, T. C.
Germann, and W. E. Hart, “Performance portability in the exascale
computing project: Exploration through a panel series,” Computing in
Science & Engineering, vol. 23, no. 5, pp. 46–54, 2021. [Online].
Available: https://doi.org/10.1109/MCSE.2021.3098231

[13] W. Zhu, Y. Niu, and G. Gao, “Performance portability on EARTH:
a case study across several parallel architectures,” Cluster Comput,
vol. 10, no. 2, pp. 115–126, Mar. 2007. [Online]. Available:
https://doi.org/10.1007/s10586-007-0011-1

[14] S. McIntosh-Smith, M. Boulton, D. Curran, and J. Price, “On the
performance portability of structured grid codes on many-core computer
architectures,” in Supercomputing, J. M. Kunkel, T. Ludwig, and H. W.
Meuer, Eds. Cham: Springer International Publishing, 2014, pp. 53–75.
[Online]. Available: https://doi.org/10.1007/978-3-319-07518-1_4

[15] S. Pennycook, J. Sewall, and V. Lee, “Implications of a metric for
performance portability,” Future Generation Computer Systems, vol. 92,
pp. 947–958, 2019. [Online]. Available: https://doi.org/10.1016/j.future.
2017.08.007

[16] V. R. Pascuzzi and M. Goli, “Achieving near-native runtime performance
and cross-platform performance portability for random number
generation through sycl interoperability,” in Accelerator Programming
Using Directives, S. Bhalachandra, C. Daley, and V. Melesse Vergara,
Eds. Cham: Springer International Publishing, 2022, pp. 22–45.
[Online]. Available: https://doi.org/10.1007/978-3-030-97759-7_2

[17] S. Boehm, S. Pophale, V. G. Vergara Larrea, and O. Hernandez,
“Evaluating performance portability of accelerator programming models
using spec accel 1.2 benchmarks,” in High Performance Computing,
R. Yokota, M. Weiland, J. Shalf, and S. Alam, Eds. Cham: Springer
International Publishing, 2018, pp. 711–723. [Online]. Available:
https://doi.org/10.1007/978-3-030-02465-9_51

[18] A. Vecchiato, B. Bucciarelli, M. G. Lattanzi, U. Becciani, L. Bianchi,
U. Abbas, E. Sciacca, R. Messineo, and R. De March, “The
global sphere reconstruction (GSR). Demonstrating an independent
implementation of the astrometric core solution for Gaia,” A&A, vol.
620, p. A40, Nov. 2018. [Online]. Available: https://doi.org/10.1051/
0004-6361/201833254

[19] U. Becciani, E. Sciacca, M. Bandieramonte, A. Vecchiato, B. Bucciarelli,
and M. G. Lattanzi, “Solving a very large-scale sparse linear system
with a parallel algorithm in the gaia mission,” in 2014 International
Conference on High Performance Computing Simulation (HPCS), 2014,
pp. 104–111. [Online]. Available: https://doi.org/10.1109/HPCSim.
2014.6903675

[20] C. C. Paige and M. A. Saunders, “Lsqr: An algorithm for sparse
linear equations and sparse least squares,” ACM Trans. Math. Softw.
(TOMS), vol. 8, no. 1, pp. 43–71, 1982a. [Online]. Available:
https://doi.org/10.1145/355984.355989

[21] ——, “Algorithm 583: Lsqr: Sparse linear equations and least squares
problems,” ACM Trans. Math. Softw. (TOMS), vol. 8, no. 2, pp. 195–209,
1982b. [Online]. Available: https://doi.org/10.1145/355993.356000

[22] G. Malenza, V. Cesare, M. Aldinucci, U. Becciani, and A. Vecchiato,
“Toward HPC application portability via C++ PSTL: the Gaia AVU-
GSR code assessment,” J. Supercomput, vol. 80, p. 14369, Mar. 2024.
[Online]. Available: https://doi.org/10.1007/s11227-024-06011-1

[23] V. Cesare, U. Becciani, A. Vecchiato, M. Gilberto Lattanzi, F. Pitari,
M. Aldinucci, and B. Bucciarelli, “The MPI + CUDA Gaia AVU-GSR
parallel solver toward next-generation Exascale infrastructures,” PASP,
vol. 135, no. 1049, p. 074504, Jul. 2023. [Online]. Available:
https://doi.org/10.1088/1538-3873/acdf1e

[24] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “Gpu-stream
v2. 0: Benchmarking the achievable memory bandwidth of many-core
processors across diverse parallel programming models,” in High
Performance Computing: ISC High Performance 2016 International
Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH,
Pˆ 3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19–23, 2016,
Revised Selected Papers 31. Springer, 2016, pp. 489–507. [Online].
Available: https://doi.org/10.1007/978-3-319-46079-6_34

[25] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE computer society technical com-
mittee on computer architecture (TCCA) newsletter, vol. 2, no. 19-25,
1995.

[26] W.-C. Lin, T. Deakin, and S. McIntosh-Smith, “Evaluating iso c++
parallel algorithms on heterogeneous hpc systems,” in 2022 IEEE/ACM
International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS), 2022, pp.
36–47. [Online]. Available: https://doi.org/10.1109/PMBS56514.2022.
00009

[27] M. Bhattacharya, P. Calafiura, T. Childers, M. Dewing, Z. Dong,
O. Gutsche, S. Habib, X. Ju, M. Kirby, K. Knoepfel, M. Kortelainen,
M. Kwok, C. Leggett, M. Lin, V. R. Pascuzzi, A. Strelchenko, B. Viren,
B. Yeo, and H. Yu, “Portability: a necessary approach for future scientific
software,” arXiv e-prints, p. arXiv:2203.09945, Mar. 2022.

[28] M. Atif, M. Battacharya, P. Calafiura, T. Childers, M. Dewing, Z. Dong,
O. Gutsche, S. Habib, K. Knoepfel, M. Kortelainen, K. H. M. Kwok,
C. Leggett, M. Lin, V. Pascuzzi, A. Strelchenko, V. Tsulaia, B. Viren,
T. Wang, B. Yeo, and H. Yu, “Evaluating portable parallelization
strategies for heterogeneous architectures in high energy physics,” arXiv
e-prints, p. arXiv:2306.15869, Jun. 2023.

[29] C. Tanis, K. Sreenivas, J. C. Newman, and R. Webster, “Performance
portability of a multiphysics finite element code,” in 2018 Aviation
Technology, Integration, and Operations Conference, 2018, p. 2890.
[Online]. Available: https://doi.org/10.2514/6.2018-2890

[30] T. Deakin, A. Poenaru, T. Lin, and S. McIntosh-Smith, “Tracking
performance portability on the yellow brick road to exascale,” in 2020
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC), 2020, pp. 1–13. [Online]. Available:
https://doi.org/10.1109/P3HPC51967.2020.00006

[31] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang,
N. Ellingwood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez,
N. Liber, J. Madsen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam,
M. Simberg, D. Sunderland, B. Turcksin, and J. Wilke, “Kokkos 3:
Programming model extensions for the exascale era,” IEEE Transactions
on Parallel and Distributed Systems, vol. 33, no. 4, pp. 805–817, 2022.
[Online]. Available: https://doi.org/10.1109/TPDS.2021.3097283

[32] J. R. Hammond and T. G. Mattson, “Evaluating data parallelism
in c++ using the parallel research kernels,” in Proceedings of the
International Workshop on OpenCL, ser. IWOCL ’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3318170.3318192

[33] Gaia Collaboration, A. Vallenari, A. G. A. Brown, T. Prusti, and
et al., “Gaia Data Release 3. Summary of the content and survey
properties,” A&A, vol. 674, p. A1, Jun. 2023. [Online]. Available:
https://doi.org/10.1051/0004-6361/202243940

[34] Gaia Collaboration, D. Katz, T. Antoja, M. Romero-Gómez, and
et al., “Gaia Data Release 2. Mapping the Milky Way disc
kinematics,” A&A, vol. 616, p. A11, Aug. 2018. [Online]. Available:
https://doi.org/10.1051/0004-6361/201832865

[35] M. Crosta, M. Giammaria, M. G. Lattanzi, and E. Poggio, “On testing
CDM and geometry-driven Milky Way rotation curve models with Gaia
DR2,” MNRAS, vol. 496, no. 2, pp. 2107–2122, Aug. 2020. [Online].
Available: https://doi.org/10.1093/mnras/staa1511

[36] M. Giammaria, A. Spagna, M. G. Lattanzi, G. Murante, P. Re
Fiorentin, and M. Valentini, “The formation history of the Milky
Way disc with high-resolution cosmological simulations,” MNRAS,
vol. 502, no. 2, pp. 2251–2265, Apr. 2021. [Online]. Available:
https://doi.org/10.1093/mnras/stab136

[37] D. M. Krolikowski, A. L. Kraus, and A. C. Rizzuto, “Gaia EDR3
Reveals the Substructure and Complicated Star Formation History
of the Greater Taurus-Auriga Star-forming Complex,” Astronimical
Journal, vol. 162, no. 3, p. 110, Sep. 2021. [Online]. Available:
https://doi.org/10.3847/1538-3881/ac0632

[38] N. Lagarde, C. Reylé, C. Chiappini, R. Mor, F. Anders, F. Figueras,
A. Miglio, M. Romero-Gómez, T. Antoja, N. Cabral, J. B.

1160

Salomon, A. C. Robin, O. Bienaymé, C. Soubiran, D. Cornu,
and J. Montillaud, “Deciphering the evolution of the Milky Way
discs: Gaia APOGEE Kepler giant stars and the Besançon Galaxy
Model,” A&A, vol. 654, p. A13, Oct. 2021. [Online]. Available:
https://doi.org/10.1051/0004-6361/202039982

[39] A. Vecchiato, M. G. Lattanzi, B. Bucciarelli, M. Crosta, F. de
Felice, and M. Gai, “Testing general relativity by micro-arcsecond
global astrometry,” A&A, vol. 399, pp. 337–342, Feb. 2003. [Online].
Available: https://doi.org/10.1051/0004-6361:20021785

[40] A. Büdenbender, G. van de Ven, and L. L. Watkins, “The
tilt of the velocity ellipsoid in the Milky Way disc,” MNRAS,
vol. 452, no. 1, pp. 956–968, Sep. 2015. [Online]. Available:
https://doi.org/10.1093/mnras/stv1314

[41] A. Hees, C. Le Poncin-Lafitte, D. Hestroffer, and P. David,
“Local tests of gravitation with gaia observations of solar system
objects,” Proceedings of the International Astronomical Union,
vol. 12, no. S330, pp. 63–66, 2018. [Online]. Available: https:
//doi.org/10.1017/S1743921317005907

[42] Z. Davari and S. Rahvar, “Testing MOdified Gravity (MOG) theory and
dark matter model in Milky Way using the local observables,” MNRAS,
vol. 496, no. 3, pp. 3502–3511, Aug. 2020. [Online]. Available:
https://doi.org/10.1093/mnras/staa1660

[43] A. G. Butkevich, A. Vecchiato, B. Bucciarelli, M. Gai, M. Crosta, and
M. G. Lattanzi, “Post-Newtonian gravity and Gaia-like astrometry. Effect
of PPN γ uncertainty on parallaxes,” A&A, vol. 663, p. A71, Jul. 2022.
[Online]. Available: https://doi.org/10.1051/0004-6361/202243237

[44] V. Cesare, U. Becciani, A. Vecchiato, M. G. Lattanzi, F. Pitari, M. Raciti,
G. Tudisco, M. Aldinucci, and B. Bucciarelli, “Gaia AVU-GSR parallel
solver towards exascale infrastructure,” in Astromical Data Analysis
Software and Systems XXXI, ser. Astronomical Society of the Pacific
Conference Series, B. V. Hugo, R. Van Rooyen, and O. M. Smirnov,
Eds., vol. 535, May 2024, p. 405.

[45] V. Cesare, U. Becciani, A. Vecchiato, F. Pitari, M. Raciti, and
G. Tudisco, “The Gaia AVU-GSR parallel solver: preliminary porting
with OpenACC parallelization language of a LSQR-based application in
perspective of exascale systems,” INAF Technical Reports, vol. 163, Jul.
2022. [Online]. Available: https://doi.org/10.20371/INAF/TechRep/163

[46] V. Cesare, U. Becciani, A. Vecchiato, M. G. Lattanzi, F. Pitari,
M. Raciti, G. Tudisco, M. Aldinucci, and B. Bucciarelli, “The
Gaia AVU-GSR parallel solver: preliminary studies of a LSQR-
based application in perspective of exascale systems,” Astronomy
and Computing, vol. 41, p. 100660, Oct. 2022. [Online]. Available:
https://doi.org/10.1016/j.ascom.2022.100660

[47] V. Cesare, U. Becciani, and A. Vecchiato, “The MPI+CUDA
Gaia AVU-GSR parallel solver in perspective of next-generation
Exascale infrastructures and new green computing milestones,”
INAF Technical Reports, vol. 164, Jul. 2022. [Online]. Available:
https://doi.org/10.20371/INAF/TechRep/164

[48] S. Bertone, A. Vecchiato, B. Bucciarelli, M. Crosta, M. G. Lattanzi,
L. Bianchi, M.-C. Angonin, and C. Le Poncin-Lafitte, “Application of
time transfer functions to Gaia’s global astrometry. Validation on DPAC
simulated Gaia-like observations,” A&A, vol. 608, p. A83, Dec. 2017.
[Online]. Available: https://doi.org/10.1051/0004-6361/201731654

[49] M. Crosta, A. Geralico, M. G. Lattanzi, and A. Vecchiato, “General
relativistic observable for gravitational astrometry in the context of the
gaia mission and beyond,” Phys. Rev. D, vol. 96, p. 104030, Nov
2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.
96.104030

[50] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” in ACM SIGGRAPH 2008 Classes, ser.
SIGGRAPH ’08. New York, NY, USA: Association for Computing
Machinery, 2008. [Online]. Available: https://doi.org/10.1145/1401132.
1401152

[51] T. Deakin and T. G. Mattson, Programming Your GPU with OpenMP:
Performance Portability for GPUs. The MIT Press, 11 2023. [Online].
Available: https://doi.org/10.7551/mitpress/14866.001.0001

[52] R. Reyes, I. López, J. J. Fumero, and F. de Sande, “Directive-
based programming for gpus: A comparative study,” in 2012 IEEE
14th International Conference on High Performance Computing
and Communication & 2012 IEEE 9th International Conference
on Embedded Software and Systems, 2012, pp. 410–417. [Online].
Available: https://doi.org/10.1109/HPCC.2012.62

[53] V. Cesare, I. Colonnelli, and M. Aldinucci, “Practical parallelization
of scientific applications,” in 2020 28th Euromicro International

Conference on Parallel, Distributed and Network-Based Processing
(PDP), 2020, pp. 376–384. [Online]. Available: https://doi.org/10.1109/
PDP50117.2020.00064

[54] M. Aldinucci, V. Cesare, I. Colonnelli, A. R. Martinelli, G. Mittone,
B. Cantalupo, C. Cavazzoni, and M. Drocco, “Practical parallelization
of scientific applications with openmp, openacc and mpi,” Journal
of Parallel and Distributed Computing, vol. 157, pp. 13–29, 2021.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2021.05.017

[55] J. Ðukić and M. Mišić, “An evaluation of directive-based parallelization
on the gpu using a parboil benchmark,” Electronics, vol. 12, no. 22,
2023. [Online]. Available: https://doi.org/10.3390/electronics12224555

[56] A. Williams, C++ Concurrency in Action. Manning, 2019. [Online].
Available: https://books.google.it/books?id=BzgzEAAAQBAJ

[57] S. J. Pennycook, J. Sewall, D. Jacobsen, T. Deakin, Y. Zamora,
and K. L. K. Lee, “Performance, Portability and Productivity
Analysis Library,” Mar. 2023. [Online]. Available: https://doi.org/10.
5281/zenodo.7733678

[58] A. Alpay and V. Heuveline, “Adaptivecpp stdpar: C++ standard
parallelism integrated into a sycl compiler,” in Proceedings of the
12th International Workshop on OpenCL and SYCL, ser. IWOCL ’24.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi.org/10.1145/3648115.3648117

[59] “A Unified Executors Proposal for C++ | P0443R14 — open-std.org,”
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.
html, [Accessed 13-08-2024].

[60] “Sparse matrix vector multiplication - part 1 - AMD lab
notes — gpuopen.com,” https://gpuopen.com/learn/amd-lab-notes/
amd-lab-notes-spmv-docs-spmv_part1/#gpu-kernel-implementations,
[Accessed 13-08-2024].

1161

APPENDIX A
SOFTWARE STACK

A. Software stack on NVIDIA architecture

We built the compilers from source for each platform
using gcc-12.2.0 as base compiler. Table I and Table II
summarize the compilers and compiler flags used for each
framework. CUDA and HIP versions were compiled with
nvcc and hipcc. We compiled mostly all code with the flag
-std=c++20 -O3. For CUDA and HIP versions on EpiTo
we used -std=c++17 for default system setting reasons. The
same C++ standard version was used for the SYCL code when
compiled with DPC++ compiler.

TABLE I: Software Versions on NVIDIA architectures

T4 & V100 A100 H100

CUDA 12.3 11.8 12.3
NVC++ 24.3 24.3 24.3
AdaptiveCpp 24.06 24.06 24.06
HIP 5.7.3 5.7.3 5.7.3
Clang 17.0.6 17.0.6 17.0.6
DPC++ 19.0.0 19.0.0 19.0.0

B. Software stack on AMD architecture

On AMD, we used the rocm-5.7.3 toolkit installed
on the Setonix system to compile HIP and OpenMP code.
OpenMP code was also compiled with native clang compiler
version 17.0.6. We installed the AdaptiveCpp compiler
version 24.06 to compile SYCL and C++ PSTL versions.
We installed rocm-stdpar compiler version 18.0.0 for
C++ PSTL and DPC++ compiler 18.0.0 for SYCL. Table III
summarizes all compilation flags used. All codes were com-
piled using the additional -std=c++20 -O3 flags.

APPENDIX B
ARTIFACT DESCRIPTION/ARTIFACT EVALUATION

A. Overview of Contributions and Artifacts

1) Artifact repository: https://github.com/alpha-unito/
gaia-avugsr-p3hpc

2) Paper’s Main Contributions: We measured the perfor-
mance portability of five optimized re-implementations of the
Gaia AVU-GSR code written in CUDA, HIP, SYCL, C++
PSTL, and OpenMP with GPU offload (§VI-A). We also
verified the correctness of the different optimized frameworks
against a reference solution (§VI-E).

3) Computational Artifacts: The artifact presented in
this article is the Gaia AVU-GSR code, which executes
the iterative LSQR routine to solve a system of equations
(Eq. (2)). The LSQR routines for the different frameworks
can be found in the lsqr_hip.cpp, lsqr_stdpar.cpp,
lsqr_openmp_gpu.cpp, lsqr_sycl.cpp, and
lsqr_cuda.cu source code files. Each of these routines
can be executed by solvergaiaSim.cpp solver code,
depending on how you compile solvergaiaSim.cpp.

Inside the repository, the following artifacts are available:

TABLE II: Compilation Flags on NVIDIA architecture

P. Frameworks Compilation Flags

CUDA -gencode=arch=compute_XX,code=sm_XX
HIP -gpu-architecture=sm_XX
SYCL

acpp -acpp-platform=cuda
-acpp-targets=cuda:sm_XX
-acpp-gpu-arch=sm_XX

DPC++ -fsycl -fsycl-targets=nvptx64-nvidia-cuda
-Xsycl-target-backend
-cuda-gpu-arch=sm_XX

OpenMP
clang++ -fopenmp -fopenmp-targets=nvptx64-nvidia

-cuda -Xopenmp-target=nvptx64-nvidia-cuda
-march=sm_XX

nvc++ -mp=gpu -gpu=ccXX,sm_XX
PSTL

acpp -acpp-platform=cuda -acpp-stdpar
-acpp-targets=cuda:sm_XX
-acpp-stdpar-unconditional-offload
-acpp-gpu-arch=sm_XX

nvc++ -stdpar=gpu -gpu=ccXX,sm_XX

1) README.md: file with the compilation and execution
instructions of the code.

2) LICENSE: license file with the licence under which the
code is released.

3) Makefile.examples: Some samples Makefiles to
show how to compile the source code for all the different
architectures.

4) src folder containing all the source code.
• solvergaiaSim.cpp: solver source code.
• lsqr_*: source codes with the different LSQR

implementations.
• gaiasim_includes: common headers files
• other source files

5) include: common headers files for the Gaia AVU-
GSR application

6) Scripts: This folder contains, sorted by used archi-
tecture, a sample SLURM script to compile and execute
the Gaia AVU-GSR application. Those files are merely
examples and must be modified according to the local
machine configuration (i.e., compilers’ paths and source
code’s paths must be adjusted accordingly). You will
find different folders in the Scripts folder (one for
each GPU architecture). Inside the architectures folders,
two more folders are present:

• comp: Sample SLURM scripts to compile the code,
one for each programming framework

• test: Sample SLURM scripts to execute the Gaia
AVU-GSR application, one for each programming
framework

To better help with the understanding of the GPU architec-
tures and cluster name association, Table IV shows how to
interpret the content inside the Script folder.

B. Artifact Identification

1) Relation To Contributions: Two classes of experiments
were performed:

1162

TABLE III: Compilation Flags on AMD architecture

P. Frameworks Compilation Flags

HIP -offload-arch=gfx90a
-munsafe-fp-atomics

SYCL
acpp -acpp-platform=rocm

-acpp-targets=generic
-acpp-gpu-arch=gfx90a
-munsafe-fp-atomics

DPC++ -fsycl -fsycl-targets=amdgcn-amd-amdhsa
-Xsycl-target-backend
-offload-arch=gfx90a

OpenMP
clang++ -fopenmp -fopenmp-targets=x86_64,

-fopenmp-targets=amdgcn-amd-amdhsa
-Xopenmp-target=amdgcn-amd-amdhsa
-march=gfx90a

amdclang++ -fopenmp -offload-arch=gfx90a
-munsafe-fp-atomics

PSTL
acpp -acpp-platform=rocm -acpp-stdpar

-acpp-targets=hip:gfx90a
-acpp-stdpar-unconditional-offload
-acpp-gpu-arch=gfx90a
-munsafe-fp-atomics

clang++ -hipstdpar
-hipstdpar-path=$(HIPSTDAR_ROOT)
-offload-arch=gfx90a
-munsafe-fp-atomics

TABLE IV: Cluster name to GPU model reference table

GPU - Cluster reference table
Cluster name GPU vendor & model
CascadeLake NVIDIA V100s
TeslaT4 NVIDIA T4
EpiTo NVIDIA A100
GraceHopper NVIDIA H100
Setonix AMD MI250X

1) In §VI-A, we evaluated the performance portability of
five optimized implementations of the solver across
five different platforms, four based on NVIDIA GPU
architecture (H100, A100, V100 and T4) and one based
on AMD GPU architecture (MI250X). The performance
portability is objectively measured using the PP metric
defined by John Pennycook (Eq. (1)). This test aims
to evaluate if the different languages provide portable
solutions without a significant performance loss. The
results of these tests are illustrated in Fig. 3.

2) In §VI-E, we validate the correctness of the five opti-
mized implementations of the code against the CUDA
version in production, by taking as input two benchmark
datasets with a size of 42 GB and 306 GB.

2) Expected Reproduction Time (in Minutes): A single
execution of solvergaiaSim.cpp (100 iterations with
a single version of LSQR among HIP, C++ PSTL, SYCL,
CUDA, or OpenMP) should not exceed 5 minutes.

C. Artifact Setup (incl. Inputs)

The hardware and software employed in our work are
described in §V-A, Appendix A, and Table I.

a) Datasets / Inputs: The datasets used by the PP are
synthetic but distributed in the system as the real data. In the
README.md file, the instructions on how to run the different
tests with an input dataset of a given size are present. The size
of the dataset to be passed in input to the system to solve is
given at runtime in GB to the executing command of the solver.
Once the solver reads this parameter, it randomly generates,
given a certain seed, a dataset with the specified size and it
runs the solution for 100 iterations, as specified in the scripts
in the Scripts/<target_arch>/test directory inside
the code repository). In these cases, it was not important to
obtain the solution at convergence but to measure the iteration
time, that 100 iterations proved to be sufficiently stable.

The real datasets used in the code validation section are
produced by the ESA Gaia mission and cannot be shared due
to a non disclosure agreement, hence motivating the need to
provide a synthetic (but mathematically equivalent) dataset to
perform tests.

b) Installation and Deployment: To compile the code,
gcc version ≥12.2.0 is needed. The compilers used on
NVIDIA and AMD architectures are detailed in Table I of
the article. Remember to check all the paths inside the compi-
lation scripts to reflect your local installation, particularly the
environment variables that define the libraries paths (which
are documented inside the scripts), as well as the source code
relative and absolute paths inside the scripts and Makefiles.

1) Artifact Execution: We briefly summarize the procedure
adopted to execute the tests detailed in §VI. The two classes
of tests are independent with each other, no output from one
test are taken as input to the other test.

In §VI-A, we measured the perfromance portability of the
five optimized code versions on the five considered platforms
with the PP metric defined by John Pennycook, reported in
Eq. (1). The PP results are reported in Figure 3. To calculate
the PP, the solver was executed on one GPU of Gracehopper
(H100), EpiTo (A100), CascadeLake-V100, CascadeLake-T4,
and Setonix, with an input memory set to 10 GB. The same
test were executed for an input dataset of 30 GB only on H100,
A100, V100, and MI250X and for an input dataset of 60 GB
only on H100 and MI250X.

The LSQR was run for 100 iterations. To evaluate the PP,
we calculated the “application efficiency” that we derived,
in turn, from the “best observed performance” of a specific
code version among all the considered platforms. We evaluated
the “best observed performance” of each code version as the
lowest LSQR iteration time average over 100 iterations among
the considered platforms.

1163

