
Performance and Power: Systematic Evaluation of AI
Workloads on Accelerators with CARAML

Chelsea Maria John

, Stepan Nassyr

, Carolin Penke

, Andreas Herten

Jülich Supercomputing Centre
Forschungszentrum Jülich

Jülich, Germany

Abstract—The rapid advancement of machine learn-
ing (ML) technologies has driven the development of
specialized hardware accelerators designed to facilitate
more efficient model training. This paper introduces the
CARAML benchmark suite, which is employed to assess
performance and energy consumption during the training
of transformer-based large language models and computer
vision models on a range of hardware accelerators, in-
cluding systems from NVIDIA, AMD, and Graphcore.
CARAML provides a compact, automated, extensible,
and reproducible framework for assessing the performance
and energy of ML workloads across various novel hard-
ware architectures. The design and implementation of
CARAML, along with a custom power measurement tool
called jpwr, are discussed in detail.

Index Terms—Machine Learning, Energy, NLP, Com-
puter Vision, AI, Performance Measurement, Benchmark,
GPU, IPU, Accelerators

I. Introduction
Fueled by the growing interest in training ever larger deep

neural networks, such as large language models and other
foundation models, the demands for hardware specialized on
these workloads have grown immensely. Graphics processing
units (GPUs) have evolved from their origins in computer
graphics to become the primary computational engines of
the AI revolution. While the central processing unit (CPU)
controls a program’s execution flow, it offloads compute-
intensive highly-parallel tasks to the GPU (the accelerator).
Evolving from a pioneering company, NVIDIA has emerged
as the dominant player in the market as of 2024, spearheading
current hardware developments. Other vendors, such as AMD
and Intel, also provide GPUs aiming to accelerate model
training and inference.

Another promising class of AI accelerators is based on the
idea of distributed local per-compute-unit memory together
with on-chip message passing, in contrast to a shared memory
hierarchy, typical to classical CPUs and GPUs. Vendors fol-
lowing this dataflow approach include Graphcore, Cerebras,
Groq, SambaNova, and Tenstorrent.

Performance characteristics not only vary between gen-
erations and vendors, but depend on the node or cluster
configuration in which the accelerator is embedded, includ-
ing CPU, memory, and interconnect. When evaluating and
comparing these heterogeneous hardware options, e.g. for
purchase decisions in an academic or industrial setting, it
is not sufficient to compare hardware characteristics such
as number of cores, thermal design power (TDP), theoretic
bandwidth, or peak performance in FlOp/s. Their effect on
workload performance is not straightforward, and the acceler-
ator architectures might barely be comparable. Performance

data reflecting the actual intended workloads, collected on
various competing systems independently of vendor interests,
offer highly valuable information. Power consumption is one
such important metric in this regard.

In particular within the field of machine learning, having a
structured, automatic benchmarking tool to investigate the
effect of hyperparameters, such as learning rate and batch
size, and to identify optimal settings is important. When
training large models across multiple cluster nodes, additional
hyperparameters are necessary to define the parallelization
layout, leveraging various forms of parallelism. Moreover,
hardware configurations, such as those related to processor
affinity or network communication, must be systematically
explored.

As a framework to collect this data, we present
the CARAML benchmark suite, a Compact, Automated,
Reproducible Assessment of Machine-Learning workloads on
novel accelerators. Further, we contribute performance data
on various accelerators, collected with CARAML, includ-
ing energy measurements, as well as first-hand experiences
with encountered challenges. The machine learning work-
loads include the training of a Generative Pretrained Trans-
former (GPT)-based large language model using PyTorch,
as well as training of a ResNet50 model implemented in
TensorFlow. Energy measurements are facilitated by our
jpwr tool, which we also contribute with this paper.

The remaining paper is structured as follows: in section II
we provide background information on the state-of-the-art
AI workloads included in CARAML in the fields of natural
language processing and image recognition. Details on the
investigated hardware configurations. More details on the
implementation of the benchmark, including a description
of used tools, requirements, and execution instructions, are
presented in section III. Performance results, in terms of
throughput (images/s, tokens/s) for various batch sizes, are
reported in section IV. Additional energy metrics such as
images/Wh and tokens/Wh provide another layer of insight.
In section V, we briefly discuss the difficulties encountered
in the benchmark development in terms of hardware and
software compatibility and comparability, and how they are
resolved. Final conclusions, take-away messages, and future
plans are given in section VI.

II. Background
Deep learning constitutes an important workload of high

performance computing (HPC) clusters, only increasing in
significance in recent years. A neural network aims to gener-
alize an input-output relation observed in its training data. A

1164979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00158

chain of matrix products and activation functions, reflecting
a neural network architecture, is applied to the batched input
data in a forward pass. The backward pass, also called back-
propagation, updates the matrix elements (the “weights”)
using further matrix products, This operation reflects a step
of (stochastic) gradient descent to minimize the loss function
representing the difference between computed and true out-
put of the sample.

Although specialized network architectures like transform-
ers and convolutional neural networks have been developed
for specific tasks, they rely on the fundamental building block
of matrix multiplication. Since matrix multiplications are
inherently parallel, many-core hardware architectures, such
as GPUs and other accelerators optimized for this process,
are crucial.

A. Natural Language Processing
The advent of large language models based on transformer

architectures [1] has revolutionized the field of natural lan-
guage processing (NLP). These models have enabled signif-
icant advancements across a wide range of tasks, including
speech recognition, text classification, natural language un-
derstanding, and generation. By leveraging shared founda-
tional models, these tasks can now be effectively addressed
with additional fine-tuning or in-context learning, allowing
for greater flexibility and efficiency in various domains.

Language models use large text corpora as training data to
predict the next piece of text (a token) given the preceding
context. The original transformer architecture consists of
an encoder and a decoder connected via a cross-attention
mechanism. Attention is a key operation in this architecture,
characterized by its quadratic complexity in the sequence
length. It involves matrix-matrix products of learned token
representations, allowing the model to capture relationships
between tokens while accounting for their relative positions.

Scaling up transformer models is achieved by stacking mul-
tiple transformer layers, each built around an attention mech-
anism, along with feed-forward layers, residual connections,
and normalization. This increases the number of learnable
parameters, making larger networks more capable, especially
when trained on sufficiently large datasets. To handle the
computational demands of such large models, parallelization
techniques are essential. State-of-the-art methods include 3D
parallelism [2], [3] (combining data, tensor, and pipeline par-
allelism), sequence parallelism [4], activation recomputation
[4], and optimizations like flash attention [5].

The NLP benchmark task in CARAML utilizes the
Megatron-LM framework [2], [6], a robust, research-focused
software platform developed by NVIDIA using PyTorch.
Megatron-LM has been instrumental in advancing large-scale
language model training, incorporating and pioneering the
previously mentioned features. The BigCode Project fork of
Megatron-LM with ROCm adaptations is used for AMD and
forked version of Graphcore application examples is used on
Graphcore.

B. Computer Vision
Computer vision (CV), particularly its core task of image

classification, has been a significant driver of deep learning
advancements due to its numerous real-world applications.

• NVIDIA A100 GPU (SXM4):
108 SM (each: 64 CUDA cores, 4 Tensor Cores)
Peak performance FP16: 312TFlOp/s
Memory: 40GB HBM2e

• NVIDIA H100 GPU (PCIe):
114 SM (each: 128 CUDA cores, 4 Tensor Cores)
Peak performance FP16: 756TFlOp/s
Memory: 80GB HBM2e

• NVIDIA H100 GPU (SXM5)
132 SM (each: 128 CUDA cores, 4 Tensor Cores)
Peak performance FP16: 990TFlOp/s
Memory: 94GB HBM2e

• NVIDIA GH200 Superchip:
CPU: NVIDIA Grace (Arm Neoverse-V2), 72 cores
GPU: NVIDIA Hopper H100, 132 SM (each: 128
CUDA cores, 4 Tensor Cores)
Peak performance FP16 : 990TFlOp/s
Memory: 96GB HBM3 (GPU) at 4TB/s, up to
480GB LPDDR5X (CPU) at up to 512GB/s
(8532MHz)

• AMD MI250 GPU:
 GPU built from two Graphics Compute Dies (GCD)

as Multi-Chip Module (MCM). The numbers below
refer to one MCM, i.e. two logical GPUs as seen by
the operating system.
2× 104 CU (each: 64 stream processors, 4 Matrix
Cores)
Peak performance FP16: 362.1TFlOp/s
Memory: 128GB HBM2e

• Graphcore GC200 IPU :
1472 processor cores (IPU cores)
Peak performance FP16: 250TFlOp/s
Memory: 900MB, distributed to cores

Fig. 1. List of evaluated accelerators. NVIDIA’s Streaming Multiproces-
sors are abbreviated with SM. AMD’s Compute Units are abbreviated
with CU. Peak performance is given without sparsity.

The architecture of convolutional neural networks (CNNs)
effectively addresses challenges such as vanishing and explod-
ing gradients by employing successive layers of convolutional
filters, defined by learned parameters. It became evident that
the massively parallel architecture of GPUs is well-suited for
the computational demands of CNNs, leading to substantial
improvements in training efficiency and model performance
[7].

Residual connections were introduced by the ResNet model
family [8] and solved the problem of degradation, i.e. the coun-
terintuitive observation of higher training errors in deeper
networks with more parameters.

While the transformer architecture has also found its way
into image recognition [9], convolutional neural networks are
extremely mature and widely used in production environ-
ments, and represent an important benchmark case. Together
with transformers, they cover a wide portion of currently
relevant deep learning paradigms.

In CARAML, a benchmark to train a ResNet50 model, i.e.
a ResNet model with 50 convolutional layers from scratch,
is curated from a forked version of the official TensorFlow
CNN benchmark. The benchmark employs data-parallelism
with Horovod to use multiple GPUs. In data-parallelism, each
device holds a model copy but performs a backpropagation

1165

for a different batch of input data, combining the gradients
after each step using an all-reduce collective operation.

C. Accelerators
GPUs have become the standard hardware for accelerating

neural network training. However, while processing power
has advanced rapidly in recent years, memory bandwidth
has not kept pace, leading to potential bottlenecks. Accel-
erators based on data-flow architectures, such as Graphcore
IPUs [10], offer a promising alternative by addressing these
limitations. Unlike traditional architectures that rely on a
shared memory hierarchy, IPUs leverage distributed per-
core memory, which allows for faster data loading due to
the physical proximity of memory to each core. This design
enables all cores to operate independently, making the pro-
cessing of irregular or sparse neural network architectures
more efficient. In terms of Flynn’s taxonomy [11], this can be
considered a MIMD (multiple instruction streams, multiple
data streams) architecture, while GPUs follow a SIMD (single
instruction stream, multiple data streams) approach.

Figure 1 provides a list of accelerators that have been
explored in this work utilizing the CARAML benchmarks.
The complete node configurations, including CPU, memory
and interconnect, are documented in Table I.

We examine two generations of NVIDIA GPUs (A100 and
H100) in various configurations. The A100 node is part of the
JURECA DC [12] cluster at Jülich Supercomputing Centre,
while the other nodes are part of the JURECA evaluation
platform [13] or the WestAI [14] cluster. The two H100
node variants mainly differ in the CPU model, intra-node
bandwidth and the amount of GPU memory.

The NVIDIA GH200 superchip is built up from a Grace
CPU and a Hopper GPU that are connected on chip by
a high-bandwidth, low-latency interconnect. The GPU can
directly access the CPU memory without explicit transfers,
potentially accelerating hybrid workloads. The two GH200
nodes we investigate differ in their configuration: A node
of the JEDI system contains 4 NVIDIA GH200s, while the
GH200 node of the JURECA evaluation platform only has
one GH200.The amount of per-node memory is the same in
both cases.

The AMD MI200 node from the JURECA evaluation
platform contains four MI250 GPUs. Similar to the GH200,
it can be seen as combining multiple devices on a single chip.
Each MI250 contains two Graphics Compute Dies, that are
seen as a GPU by the operating system. From that viewpoint,
each node would contain 8 GPUs. Each pair of devices may
have a different transfer bandwidth [15].

There are many programming paradigms with different
compatibility characteristics [16]. CUDA is well-established and
serves as a blueprint for other programming models (HIP), or
as a backend for portability layers such as OpenACC or SYCL.
While the software ecosystems for data-flow architectures are
growing, they are not yet as mature and supported by third-
party software as GPU programming models. A clear leader
or common standard among the competitors has not yet been
established. Graphcore systems can be instructed using the
Poplar software development kit. At a higher level, machine
learning frameworks such as PyTorch and TensorFlow can
be seen as portability layers, serving various platforms via

vendor-specific backends. This approach of using a common
codebase for various architectures is followed by the bench-
marks in this paper wherever possible. The limits of this
approach are described in section V.

D. Related Work
Since the advent of modern computing technologies, bench-

marks have been an important tool to assess the performance
of hardware systems, spanning from consumer devices [17]
and accelerators [18], to HPC clusters as major research
facilities [19]. Synthetic benchmarks, which concentrate on
specific yet commonly used compute patterns, are valuable
in this context [20]. However, the performance metrics they
provide can be difficult to apply to more complex, real-world
applications.

Benchmarks that incorporate the workloads of real appli-
cations, or their variations, are thus extremely valuable for
evaluating hardware capabilities. They also offer a way to
assess the effects of parameter choices or code optimizations.

In the field of machine learning, the MLPerf set of bench-
mark suites [21] is an established industry standard supported
by all major vendors. Various MLPerf suites focus on train-
ing at device or cluster level [22], [23], or on performing
inference across various devices [24]. Results are collected as
a coordinated effort in a yearly industry-wide competition.
Based on the premise of lacking (performance) portability,
vendors are expected to port and optimize a reference code
for their architecture, showcasing its capabilities. Established
competition rules act as clearly defined guardrails and make
a comparison possible. In this competitive context, the choice
of time-to-solution as a benchmark metric over throughput-
based metrics makes sense, as the latter ones could be
optimized at the expense of the first one. The downside of the
time-to-solution metric, which here refers to the runtime until
a specified accuracy is achieved, is its high computational
cost.

Similar to MLPerf, the SPEC benchmarks [18] are a
consortium-driven effort to benchmark the performance of
hardware systems in terms of general-purpose algorithms. It’s
closed source code is not freely available and does not contain
ML specific workloads.

CARAML on the other hand focuses on the user rather
than the vendor perspective. As a free and open source
framework under a permissive MIT license, it empowers users
to evaluate the out-of-the-box performance of accelerators
with minimal code adaptions. It relies on two widely used
machine learning frameworks (PyTorch and TensorFlow) as
portability layers. Focusing on throughput and performance
in images or tokens per second allows for quick evaluation
without the need to perform full training runs, even with
limited computational resources. This resource-efficiency and
immediate feedback, together with CARAML’s high level
of automation, allows its user to rapidly explore an archi-
tecture’s (hyper-) parameter space or to perform parameter
ablation studies.

Recent years have seen growing efforts to minimize en-
vironmental impact of HPC systems, motivated by an on-
going climate crisis and a changing energy landscape. To
this end, measuring energy consumption of HPC hardware
and workloads has come more into focus. Efforts to assess

1166

TABLE I
Systems analyzed with CARAML. CPU cores are given as 72 c for 72 cores.

Platform GH200
JEDI

GH200
JURECA

H100
JURECA

H100
WestAI

MI200
JURECA

IPU-M2000
JURECA

A100
JURECA

Accelerator
4× NVIDIA

GH200-120GB
(1× 72 c Grace,

1× H100)

1× NVIDIA
GH200-480GB

(1× 72 c Grace,
1× H100)

4× NVIDIA
H100 GPU
(PCIe)

4× NVIDIA
H100 GPU
(SXM5)

4× AMD
MI250 GPU
(OAM)

4× Graphcore
GC200 IPU

4× NVIDIA
A100 GPU
(SXM4)

CPU 2× 72 c Intel
Xeon Platinum
8452Y

2× 32 c Intel
Xeon Platinum
8462Y

2× 48 c AMD
EPYC 7443

2× 48 c AMD
EPYC 7413

2× 64 c AMD
EPYC 7742

CPU–Acc.
Connect
(intra-node)

NVLink-C2C 900GB/s PCIe Gen 5 128GB/s PCIe Gen 4 64GB/s

Acc.–Acc.
Connect
(intra-node)1

NVLink4
900GB/s

- NVLink42

600GB/s
NVLink4
900GB/s

Infinity Fabric
500GB/s

IPU-Link3

256GB/s
NVLink3
600GB/s

Interconnect
internode4

4× IB NDR
(4×200Gbit/s)

- - 2× IB NDR
(2×400Gbit/s)

2× IB HDR
(2×200Gbit/s)

- 2× IB HDR
(2×200Gbit/s)

Memory 4× 120GB
LPDDR5X
(CPU), 4×
96GB HBM3
(GPU)

480GB
LPDDR5X
(CPU), 96GB
HBM3 (GPU)

512GB DDR5-
4800 (CPU),
80GB HBM2e
(GPU)

512GB DDR5-
4800 (CPU),
94GB HBM2e
(GPU)

512GB DDR4-
3200 (CPU),
128GB
HBM2e (GPU)

512GB DDR4-
3200 (CPU)

512GB DDR4-
3200 (CPU),
4× 40GB
HBM2e (GPU)

TDP / device 680W† 700W† 350W 700W 560W 300W 400W

JUBE Tag JEDI GH200 H100 WAIH100 MI250 GC200 A100
1 Bidirectional bandwidths per device.
2 GPU0 and GPU1 and GPU2 and GPU3 are connected through NVLink bridges, each with 12 NVLink4 connections (each 25GB/s).
3 Each IPU in a node is connected to other IPUs in- and out-of-node with 10 IPU-Links. Intra-node, an IPU connects to two other IPUs with
2 links, and with one IPU with 4 links. At 32GB/s bidirectional bandwidth per link, an IPU has hence an accumulated intra-node connection
bandwidth of 256GB/s.

4 NVIDIA InfiniBand is abbreviated to IB.
† The TDP for the GH200 superchips is for the full package, i.e. including the CPU and GPU devices.

energy efficiency on a cluster level [25] are now accompanied
by the development of tools for a more fine-grained assess-
ment [26]. AI workloads such as large language models in
particular have come under scrutiny due to the significant
energy footprint required for their training [27], [28]. The
jpwr tool was developed as a compact prototype to fulfil
the requirements of incorporating energy measurement in the
CARAML benchmark suite.

III. The CARAML benchmark
The CARAML codebase is accessible at https://github.

com/FZJ-JSC/CARAML. The repository features a clean
and straightforward structure, consisting of a README.md file
and two main directories: llm_training and resnet50. By
focusing on these two representative benchmark cases, the
repository is easy to navigate and deploy, enabling users to
quickly gather relevant metrics without unnecessary complex-
ity.

Our approach is to maximize automation in order to
facilitate ease of use, reproducibility, and compactness of the
benchmarks. To this end, the benchmark codes themselves
are not part of the repository. The repository contains the
scaffolding code, that automatically downloads codebases,
packages, and execution containers and sets up the required
compute environment. To achieve the outlined level of au-
tomation, CARAML relies heavily on the JUBE [29], [30] au-
tomation and benchmarking framework. The reported energy

measurements are extracted from hardware counters using
the self-developed jpwr framework.

The used Docker container images are provided by the
hardware vendors, containing the respective machine learning
frameworks, with additional steps to make them usable for
CARAML benchmarks. More details can be found in sec-
tion V.

A. Benchmark Details

1) LLM Training: For the LLM training benchmark in
CARAML, a GPT decoder model is trained from scratch
using a subset of the OSCAR data that is preprocessed
using GPT-2 tokenizers. The benchmark for NVIDIA GPUs
is curated from a specific commit version of Megatron-LM1

to make it compatible with all NVIDIA GPU generations.
For AMD devices, the BigCode Project fork2 is used, which
contains adaptations to utilize ROCm instead of CUDA. In the
case of Graphcore, a forked version of a vendor-provided
application example3 is used. All benchmarks employ jpwr
to provide a power measurement feature. This necessitates
performing a git patch to Megatron-LM after cloning the
repository. All these steps are automated by JUBE. The

1https://github.com/NVIDIA/Megatron-LM
2https://github.com/bigcode-project/Megatron-LM
3https://github.com/chelseajohn/examples

1167

patch further contains fixes to streamline the benchmark’s
automated execution.

The sizing of the specific network architectures, e.g. in
terms of number of layers and parallelization configuration,
are performed with the aim to fully utilize the hardware
system’s capabilities. This means that not all accelerators
train the exact same model. Due to the different programming
paradigm and having only 4 GC200 IPUs available during
creation of the suite, only a 117M parameter GPT decoder
LLM was trained on the Graphcore device, instead of the
800M parameter GPT decoder model that is used on NVIDIA
and AMD hardware. Further JUBE configurations for models
containing 13B and 175B parameters are provided in the
suite. They can be executed when necessary resources are
available, and were tested on NVIDIA GH200 devices.

Megatron-LM leverages several optimization features, in-
cluding flash attention, distributed optimizers, activation re-
computation, mixed precision, and rotary positional embed-
dings, in conjunction with various parallelization strategies
such as data, tensor, pipeline, and sequence parallelism. For
models with 800M parameters, which fit within a single
device on both AMD and NVIDIA hardware, only data par-
allelism is utilized. For the larger model configurations with
13B and 175B parameters, tensor, pipeline, and sequence
parallelism are also enabled. The parallel implementation is
done using PyTorch Distributed. The benchmark’s through-
put is measured in terms of tokens/second which is calcu-
lated by dividing global_batch_size × sequence_length
with elapsed_time_per_iteration. The benchmark uses
all the possible optimization features like flash attention,
rotary positional embeddings, distributed optimizers and
mixed precision and is terminated based on the value of the
--exit-duration-in-mins command line argument in Megatron-
LM.

To work around the limited available memory of the Graph-
core IPU, we chose a smaller GPT model size (117M), and
further employ pipeline parallelism to distribute the model’s
layers (including the embedding layer) to four devices, using
Poplar [31]. This decreases the memory demand per device.
Our evaluated system (IPU-POD4 with four IPU, see Table I)
contains four GC200 IPUs, which means that we use a single
replica and a single instance (i.e. no data parallelism). Scaling
to more nodes can be done by employing more instances using
PopDist and Horovod. It is possible to use synthetic data
with the benchmark instead of OSCAR data. The benchmark
is executed for one epoch and the throughput is measured
again in terms of tokens/second, but calculated by dividing
global_batch_size with elapsed_time_per_iteration, as
the global_batch_size is given in number of tokens and not
number of samples.

2) ResNet50 Training: The CARAML ResNet50 bench-
mark for NVIDIA and AMD is curated from the forked
version of official TensorFlow benchmarks4. The main addi-
tion in the forked version is the power measurement using
jpwr (see section subsubsection III-A4). The benchmark uses
the ResNet50 model, but other models like inception3,
vgg16, and alexnet can also be utilized. The benchmark
trains a ResNet50 model from scratch for 100 iterations

4https://github.com/chelseajohn/tf_cnn_benchmarks

and outputs the throughput in images/second computed
by dividing the global_batch_size by elapsed_time_
per_iteration. Training data can be passed as an argument
to the benchmark, or else synthetic data is used. The bench-
mark is scaled to multiple GPUs using data parallelism imple-
mented with Horovod. The benchmark uses mixed precision
and the openXLA [32] compiler for accelerating training.

When targeting Graphcore devices, CARAML uses a
forked version of vendor-provided application examples, sim-
ilar to LLM training, that incorporated power measurement
using jpwr (see section subsubsection III-A4. The benchmark
uses the ResNet50 model, but ResNet18 and ResNet34 mod-
els can also be executed with modified configuration files.
Similar to the TensorFlow benchmark, used for NVIDIA and
AMD devices, a ResNet50 model is trained from scratch for
one epoch and images/second is used as the throughput
metric. Using the Poplar library, provided by Graphcore,
the benchmark can be scaled to multiple IPUs using data
parallelism when using a single instance; for multiple in-
stances, PopDist and Horovod are used. It is possible to pass
training data as an argument or use synthetic data generated
either on the host CPU and transferred to the IPU or
generated directly on the IPU. Mixed precision training and
other custom device optimizations like memory and device
mapping, 8-bit transfers, and fused preprocessing are used to
make the training efficient.

3) Automation with JUBE: The JUBE [29], [30] workflow
environment facilitates reproducibility and ease of use of
the provided benchmarks. Each of the two benchmarks is
fully characterized by configuration files, called JUBE scripts,
where hyperparameters and execution steps are defined.

A JUBE script can be in XML or YAML format. For
illustrative reasons, we provide the scripts for LLM training
in YAML (llm_training/llm_benchmark_nvidia_amd.yaml
and llm_training/llm_benchmark_ipu.yaml) and the
script for training the image classification model in XML
(resnet50/resnet50_benchmark.xml).

The execution steps include downloads, compilation, train-
ing, and verification. Different systems and steps are executed
by supplying the required tags. The JUBE runtime interprets
the script, resolves dependencies and submits jobs to the
Slurm batch system. The job templates are populated from a
system-specific configuration file, platform.xml, making the
approach system-agnostic. JUBE presents the benchmark re-
sults, including a throughput figure-of-merit (images/second
and tokens/second) along with energy consumed per device
in Watt hour (Wh) during the course of the model training
in the benchmark, in compact tabular form after execution.

The JUBE scripts can be utilized to define a set of exper-
iments aimed at exploring the impact of various parameters
on performance, such as batch size, optimizers, and learn-
ing rate. JUBE simplifies the process of conducting model
layout and scaling experiments by automatically generating
job scripts with different parameter permutations. Beyond
machine learning hyperparameters, this exploration can be
extended to system-level configurations, including number of
CPU cores or threads, CPU binding strategies and accelerator
affinity in terms of NUMA domains.

4) Power Measurements with jpwr: jpwr is a modular
tool for measuring power and energy of different compute

1168

devices, currently supporting methods for querying AMD
and NVIDIA GPUs, as well as specific methods for getting
system power measurements from NVIDIA Grace-Hopper
chips and Graphcore IPUs. The code is available at https:
//github.com/FZJ-JSC/jpwr/ under an AGPL-3.0 license. It
can be used either as a command-line tool jpwr, or within
Python code as a context manager get_power. The command
line tool wraps other applications, specifying the method
to extract power measurements via command line switch,
determined by the examined hardware.

The following example shows how jpwr is used to get
energy measurements for an application call stress-ng --gpu
8 -t 5 on an AMD GPU supporting ROCm, writing the results
to a CSV file:
jpwr --methods rocm --df-out energy_meas --df-filetype csv

stress-ng --gpu 8 -t 5↪→

The next example shows how the context manager can be
invoked for GH200 GPU and system measurements, to save
gathered metrics in the object measured_scope:
from jpwr.gpu.pynvml import power
from jpwr.sys.gh import power as gh_power
from jpwr.ctxmgr import get_power
[...]
met_list=[power(),gh_power()]
with get_power(met_list, 100) as measured_scope:

application_call()
print(measured_scope.df)

The context manager initiates a power-measurement loop
in a separate thread, which periodically queries power con-
sumption using device-specific interfaces, saving data points
along with their timestamps. At the end of the operation,
these data points are used to calculate the total amount of
energy consumed. The device-specific interfaces, referred to
as “methods”, are implemented as individual modules that
can be passed to the context manager.

As backends, vendor-provided libraries and a sysfs
interface are employed to extract hardware counters.
NVIDIA GPUs use pynvml [33], which provides bindings
for the NVIDIA Management Library, which is also used
by the popular NVIDIA System Management Interface
(nvidia-smi). For AMD GPUs, we use the Python module
rsmiBindings [34], which is shipped with the ROCm Sys-
tem Management Interface (rocm-smi). Graphcore IPUs are
queried using the Graphcore IPU Info library (gcipuinfo
[35]), which is also available as a Python module. To also
include CPU metrics for GH200 CPU/GPU superchips, the
Linux kernel’s sysfs interface is used by reading data from
device files under the path /sys/class/hwmon/ [36] (called
gh in the tool). Multiple backends can be used at the same
time, which is useful for GH200, where both pynvml and
sysfs methods can be used, or in exotic systems with
multiple types of accelerator. The modular structure of these
methods ensures they are easily maintained and allows for
the seamless addition of further interfaces.

jpwr saves the measured data as Pandas DataFrames in-
ternally and this data can be exported. For the command-
line tool, specifying --df-out and --df-filetype arguments
sets the output directory and filetype for the DataFrames
accordingly. The tool will save all available power and
energy data in the specified directory using the spec-
ified filetype (HDF5’s .h5 or .csv). For the context
manager, the measured_scope.df DataFrame contains the

power measurement data, and energy_df, additional_data =
measured_scope.energy() returns an energy DataFrame derived
from the measurement data in energy_df and a dictionary
of additional DataFrames in additional_data.

The tool works per-node, i.e. for an MPI or other types of
multi-node applications, writing the result files would result
in a race condition. To combat this, the tool allows adding a
suffix to all result files with the --df-suffix option. Further-
more, the suffix string can contain a %q{VARIABLE} statement,
which will interpret the VARIABLE environment variable at
runtime. i.e. for a job submitted with Slurm, --df-suffix
"%q{SLURM_PROCID}" can be used to add the MPI rank as a suffix
to the file names.

B. Benchmark Execution
After cloning the CARAML repository, each benchmark

can be executed with just a few JUBE commands, providing
the desired benchmark’s JUBE script and a tag to define
the target architecture. The system tags can be found in the
overview of considered systems in Table I.

For the LLM training benchmark, the required
system and model parameters are to be set in
llm_training/llm_benchmark_nvidia_amd.yaml
(for NVIDIA and AMD systems) or
llm_training/llm_benchmark_ipu.yaml (for Graphcore).

For the ResNet50 benchmark, the required system and
model parameters and the path to the downloaded ImageNet
data need to be set in resnet50_benchmark.xml.

More details can be found in Appendix A.

IV. Results
In the following, we report throughput measurements ob-

tained from the hardware systems described in Table I along-
side the corresponding energy consumption data collected
during the execution of the CARAML benchmarks. The
benchmarks were conducted with careful consideration of
CPU binding, MPI threading, and GPU affinity to ensure
optimal conditions on the examined machines.

A. LLM Training
Figure 2 provides throughput results in tokens/second

per GPU for NVIDIA systems of various generations and
the AMD MI250 GPU, for global batch sizes from 16 to
4096. All experiments train a decoder-only transformer model
with 800M parameters using a subset of the OSCAR dataset
preprocessed using GPT-2 tokenizers. Since the 800M model
fits on a single device, data parallelism can be employed to
scale the model across multiple accelerators within a node.
The model was trained on an entire node for each system,
utilizing data parallelism and micro-batch-size of 4, when
multiple accelerators were available. All systems contained
4 GPUs, except the GH200 node in JURECA which has only
one (see Table I).

For the AMD node, we report two sets of results to draw
a complete picture and make a nuanced comparison possible
in the context of Multi-Chip Modules (see details in Table I).
The first set of results (AMD MI250:GCD) uses 4 GCDs (2
GPUs) with data parallelism of 4, while the second set (AMD
MI250:GPU) uses all 8 available GCDs (4 GPUs) with data
parallelism of 8. When using data parallelism of 8 the global
batch size of 16 is not possible since it is not divisible by

1169

0

10000

20000

30000

40000

50000

Pe
rfo

rm
an

ce
To

ke
ns

/s
/G

PU

10
69

1

11
21

9

12
27

4

11
94

1

12
35

9

11
90

4

12
54

3

11
98

5

12
58

8

11
69

1

11
63

3

11
88

5

12
50

6

11
73

7

12
32

0

12
16

1

12
62

717
53

1

18
46

8

18
88

4

19
14

2

19
44

3

19
51

1

19
57

9

19
39

8

19
63

5

21
56

5 24
38

1

26
01

5

26
27

4

27
57

9

27
95

0

28
16

6

28
28

1

28
42

6

33
59

2

35
85

6

37
38

0

37
97

6

37
35

1

37
79

1

37
91

8

38
08

5

39
04

542
98

0

44
92

6

46
18

2

45
26

8

46
89

2

47
16

9

47
27

2

47
50

5

33
87

8

35
93

9

37
55

0

38
57

9

39
47

2

39
97

4

39
67

0

40
48

1

40
60

6

Batch Size Performance on NVIDIA & AMD GPUs using Meagtron-LM with 800M GPT Model
AMD MI250:GCD (JRDC)
AMD MI250:GPU (JRDC)
NVIDIA A100-SXM (JRDC)
NVIDIA H100-PCIe (JRDC)
NVIDIA H100-SXM (WestAI)
NVIDIA GH200 (JRDC)
NVIDIA GH200 (JEDI)

0

500

En
er

gy
/G

PU
W

h

30
2

30
5

29
9

31
1

29
7

31
0

29
9

31
7

30
851

0

52
8

53
0

51
6

52
0

50
7

53
5

52
4

36
9

37
9

38
3

38
2

38
5

38
4

38
8

38
4

38
4

31
5

33
1

33
6

33
5

34
3

34
4

34
5

34
6

34
856

5

58
9

59
8

60
6

59
0

59
4

58
3

57
9

58
665

8

67
5

68
6

67
1

68
8

68
9

68
6

68
4

51
8

52
7

53
3

52
9

53
8

54
3

53
4

54
6

54
3

16 32 64 128 256 512 1024 2048 4096
Global Batch Size

0

100000

200000

300000

To
ke

ns
/E

ne
rg

y
1/

W
h

12
7k

13
2k 14
7k

13
8k 14
9k

13
8k 15
1k

13
6k 14
7k

82
k

79
k

80
k

87
k

81
k

87
k

81
k

86
k

17
1k

17
5k

17
7k

18
0k

18
1k

18
2k

18
1k

18
1k

18
4k

24
6k 26

5k 27
8k

28
2k

28
9k

29
2k

29
3k

29
4k

29
4k

21
3k

21
9k

22
4k

22
5k

22
7k

22
9k

23
3k

23
6k

23
9k

23
5k

23
9k

24
2k

24
2k

24
5k

24
6k

24
8k

25
0k

23
5k 24
5k

25
3k

26
2k

26
3k

26
5k

26
7k

26
6k

26
9k

Fig. 2. Throughput and energy efficiency for LLM training on NVIDIA and AMD systems using a 800M GPT model.

micro-batch-size times data parallel. In each case, the data is
normalized per data parallel (i.e. by 4 and 8, respectively).
Additionally, we present the average total energy consumed
per GPU during one hour of model training, along with an
energy efficiency metric, calculated as the number of tokens
processed per unit of energy consumed.

In general, one can see the performance improvements in
more recent GPU hardware generations, with GH200 nodes
yielding a throughput of up to 47 505 Tokens/s/GPU, 2.45×
higher than throughput achieved on A100 GPU nodes. This
can be alluded to having more cores and SMs, faster CPU-
to-GPU-NVLink connection, TDP, and fast memory. It is
evident, that choosing a larger batch size is beneficial for
throughput. However, when training a neural network in a
production setting, this increased GPU utilization must be
balanced against the potential drawback of slower conver-
gence, which could impact the overall training efficiency of
the neural network.

Different variants of accelerators were examined, namely
the H100 incorporated in the JURECA evaluation platform
(referred to here as JRDC) and the H100 in the WestAI
cluster, as well as the GH200 in JEDI and the GH200 in
JRDC (see Table I), and different results can be inferred.

When comparing the two GH200 configurations, we see

that a device on a single-accelerator node (GH200 (JRDC))
yields a 20% higher performance than a device on a multi-
accelerator node (GH200 JEDI)), accompanied by a 20%
higher energy consumption. Hence, the tokens/energy ef-
ficiency per device is similar; even slightly better for the less
performant JEDI case. On JEDI, all devices engage in data-
parallel model training, and the additional communication
overhead, together with the lower amount of CPU memory
available per device, could be the reason for the lower perfor-
mance per device.

Another large throughput difference can be observed be-
tween the two H100 systems, with the WestAI variant pro-
cessing 1.3× as many tokens as the JRDC variant. This
could be due to the higher available bandwidth from NVLink
connections between GPUs and the SXM GPU form factor,
which comes with a higher power envelope (TDP).

For AMD, using 4 GCDs (2 GPUs) performs slightly better
per device than using 8 GCDs (4 GPUs), again representing
the overhead of higher parallelization. This overhead leads
to a higher energy consumption per device and lower energy
efficiency when using 8 GCDs (4 GPUs).

In terms of energy efficiency, the results indicate that the
H100-PCIe (JRDC) outperforms all other devices by up to
25%, even against the newer technology of GH200 chips,

1170

TABLE II
Performance and energy consumption data for training a 117M
GPT model for one epoch on IPU GC200 in M2000 POD4. Units

for the entries are given in the second row.

Batch Size Tokens/Time Energy/Epoch/IPU Tokens/Energy
1/s Wh 1/Wh

64 64.99 15.68 4.08
128 97.21 18.20 7.03
256 129.96 18.37 13.93
512 155.72 18.56 27.60
1024 172.94 19.07 53.71
2048 183.37 20.05 102.13
4096 188.88 21.88 187.22
8192 191.86 25.47 321.34
16384 193.41 33.00 496.43

which provide a throughput twice as high. This is likely
related to the limited power budget of the PCIe card, moving
its operation mode to a more power-efficient spot. Another
factor could be that the other H100 variants, especially the
GH200s, are not yet completely saturated in the examined
benchmark scenario, as they have higher SM counts.

Table II provides performance and energy efficiency results
for the Graphcore machine. Here, the vendor benchmark
specifies IPU POD16 as the minimum requirement for GPT-
2 PyTorch model training [37]. As we only have access to an
IPU POD4, a smaller GPT model with 117M parameters is
used to benchmark the hardware with energy measurements
for global batch sizes from 64 to 16 384. The larger batch
sizes may not be practical for model convergence, but were
investigated to understand the limitations of the system. The
model layers are split across 4 IPUs and trained for one epoch
(global batch size samples) using synthetic data. We see
in Table II that the throughput (tokens/second) increases
with the batch sizes, saturating the accelerator, and uses a
maximum of 33Wh. The performance is very low compared
to GPUs but can partially be explained by the required
pipeline parallelism. This form of parallelism introduces a
pipeline bubble [2] and is not as efficient as data parallelism.

B. ResNet50 Training
The ResNet50 training benchmark was performed on all

available systems with global batch sizes 16 to 2048.
Figure 3 reports the throughput of the ResNet50 training

process in images per second on a single device on various
systems (see Table I), as well as consumed energy for the
whole epoch (processing all images of the input dataset once),
and energy efficiency in images/Wh. ImageNet data was used
as input, containing 1 281 167 images.

As expected, the performance increases from older to newer
GPU generations. Similar to the LLM training benchmark
(see Figure 2), we see the WestAI H100 node, with higher-
TDP SXM form factor, outperforming the PCIe variant when
considering performance per node, with similar energy foot-
prints. Again, GH200 (JRDC) performs better than GH200
(JEDI). This holds true especially for larger batch sizes,
which can likely benefit from 4× as much available CPU
memory per GPU, allowing for faster data loading. As seen
for ResNet50 before, the PCIe-variant of the H100 (JRDC),

TABLE III
Performance and energy data for training a ResNet50 model

for one epoch on a single IPU GC200 in M2000 POD4. Units for
the entries are given in the second row.

Batch Size Images/Time Energy/Epoch Images/Energy
1/s Wh 1/Wh

16 1827.72 32.09 39925.87
32 1857.90 31.73 40382.19
64 1879.29 31.75 40346.18
128 1888.11 31.67 40452.50
256 1887.23 31.58 40563.65
512 1891.74 31.49 40689.85
1024 1893.07 31.50 40668.79
2048 1889.87 31.53 40636.28
4096 1891.58 31.51 40660.14

appears to have the best energy efficiency amongst the
NVIDIA GPUs, closely followed by the GH200 (JRDC). The
reasons seem to stem from a combination of TDP, memory
capacity, and bandwidth.

To provide data for more nuanced comparisons in the
context of MCMs, as already explained for the LLM results,
also for ResNet50, two benchmark runs on the AMD MI250
node were conducted. One run (AMD MI250:GPU) utilized 1
GPU (2 GCDs), requiring data parallelism of 2, and another
run (AMD MI250:GCD) utilized only 1 GCD, without paral-
lelism. Using 2 GCDs naturally leads to a higher throughput,
and the device is used more efficiently. This leads to slightly
lower amounts of energy needed to process the whole dataset,
and a slightly higher energy efficiency.

The AMD MI250 gives the best efficiency in terms of
images per unit of energy for higher batch sizes, while for
smaller batches the H100 and GH200 (JRDC) devices are
more energy efficient.

In the case of Graphcore, the vendor-based TensorFlow
ResNet50 model training benchmark contains optimizations
catering to the IPU execution strategy. When running the
benchmark for a single epoch, the IPU first compiles an
optimized model graph, which takes close to an hour. It
is excluded from the timings presented here. The compiled
model graph upon execution is able to complete an epoch
with 1 281 167 samples in 10 to 15 minutes.

Table III provides results on throughput, energy consump-
tion, and energy efficiency for the ResNet50 benchmark on
a Graphcore GC200 IPU. The model performance does not
scale on increasing the global batch size. This is likely related
to the limitation of not being able to process a micro-batch-
size of more than 16 due to limited on-chip RAM (SRAM)
and having to execute multiple sequential calls to fetch
data from the chip-external memory (DRAM). The energy
efficiency compared to classical GPUs looks very promising.

The heatmaps in Figure 4 (4a to 4g) explore the impact
of data-parallelism and global batch size, giving throughput
results for all examined architectures. These extensive results
for various configurations can be used to estimate the training
time required to train a ResNet50 model efficiently.

The heatmaps also contain multi-node results for systems
where resources were available. The throughput increases

1171

0

1000

2000

3000

4000

5000

6000

Pe
rfo

rm
an

ce
Im

ag
es

/s

52
1 77

1 97
1 11

52

12
47

13
19

65
0 99

4 14
86 18

43 22
16 24

07 25
34

94
9

14
87 16

87 20
89

19
24 20

82

12
98 15

25

22
27

27
66 31

68 34
11 35
20

36
02

14
79

21
69

29
13

35
23 39

69 42
14 43

82

43
83

10
03

18
89

34
98

44
84

53
40

59
05 61

42 63
30

10
05

19
38

34
20

45
25

51
60 54

64 56
90

57
63AMD MI250:GCD (JRDC)

AMD MI250:GPU (JRDC)
NVIDIA A100-SXM (JRDC)
NVIDIA H100-PCIe (JRDC)
NVIDIA H100-SXM (WestAI)
NVIDIA GH200 (JRDC)
NVIDIA GH200 (JEDI)

102

2 × 102
3 × 102
4 × 102
6 × 102

En
er

gy
/E

po
ch

W
h

(lo
gs

ca
le

)

68
8

38
0

23
9

16
5

12
9

11
1

69
4

38
6

22
5

15
2

11
5

98 89

40
6

37
4

31
3

27
4 32

4 39
1

29
8

21
0

19
0

17
9

18
5

18
9

19
0

15
0

40
1

22
9

19
5

19
1

19
0

19
6

20
2

20
333

3

20
5

17
4

17
3

17
9

18
4

19
1

19
6

40
6

29
2

23
3

21
1

21
3

20
6

21
0

18
7

(16, 1) (32, 1) (64, 1) (128, 1) (256, 1) (512, 1) (1024, 1) (2048, 1)
(Global Batch Size, #devices)

104

2 × 103

3 × 103
4 × 103

6 × 103

Im
ag

es
/E

ne
rg

y
1/

W
h

(lo
gs

ca
le

)

18
61

33
67

53
58

77
80 99

27 11
51

5

18
46

33
22

56
88

84
36 11

10
8

13
11

2

14
42

9

31
58 34
26 40

87 46
81

39
55

32
7542

94

60
94 67

37

71
61

69
39

67
88

67
54 85

49

31
94

55
89 65

82

66
96

67
41

65
49

63
56

63
22

38
51

62
37 73

81

74
24

71
66

69
54

67
22

65
31

31
57 43

81 54
98 60
69

60
09

62
19

61
06 68

53

ResNet-50 TensorFlow Benchmark on 1 Device of Nvidia & AMD Systems
 with Energy Measurements using ImageNet Data (1 Epoch = 1281167 Samples)

Fig. 3. Throughput and energy consumption for ResNet50 model training on a single device of NVIDIA and AMD systems.

with the global batch size as expected. In the case of Graph-
core, the highest throughput was obtained using 2 IPUs for
a global batch size of 16, this can be explained due to the
batch size fitting into the on-chip RAM, and using fewer IPU
links for data transfer.

Judging the results overall, it can be seen that GPUs
tend to perform better for larger batch sizes and number of
GPUs. In nearly all GPU cases, the best value achieved is
for the largest batch size using most GPUs, indicating that
the GPUs are not yet saturated, and the limiting factor is the
available memory. For Graphcore IPUs performance behavior
is relatively flat over a large range of the parameter space,
and is best when the batch size fits into the on-chip RAM
and multiple calls to DRAM is avoided.

V. Technical Challenges
A. Software

In CARAML, benchmarks are curated to compare the
accelerators with minimal parameter adjustments using open
source codebases. For this purpose, NVIDIA and AMD GPUs
are tested using the same baseline code. The distinct exe-
cution strategy of Graphcore IPUs necessitates a separate
codebase, posing a challenge to ensure comparable hyperpa-
rameters between IPUs and GPUs.

The NVIDIA Megatron-LM code base incorporates hard-
ware specific optimizations, with the current version focusing
on the Hopper architecture, for example making use of its
Transformer Engine. To ensure compatibility with the Am-
pere architecture, CARAML rolls back to a Megatron-LM
commit that can be executed on all devices without losing
other performance optimizations.

Typically, new optimizations, such as flash attention,
are first made available on NVIDIA hardware, with
AMD accelerators receiving support later. Currently, the
flash-attention2 implementation in ROCm is still un-
der development and supports head dimensions only up
to 128, whereas the CUDA implementation on NVIDIA
GPUs already supports head dimensions up to 256 and
flash-attention3.

B. Containers
Using containers for reproducible workloads promises to

simplify the creation of reproducible environments, but set-
ting them up in performance-sensitive HPC environments can
be challenging. Issues include locating vendor-supported con-
tainers for specific software versions and managing conflicting
package dependencies within the container, often with limited
permissions.

1172

16 32 64 128 256 512 1024 2048 4096
Global Batch Size

1
2

4
Nu

m
be

r o
f I

PU
s

1827 1857 1879 1888 1887 1891 1893 1889 1891

2299 1743 1803 1843 1849 1875 1864 1856 1873

1624 1804 1909 1975 1972 1973 2015 2023 2003

ResNet-50 TensorFlow Benchmark on Graphcore GC200 (JRDC)

1700

1800

1900

2000

2100

2200

Im
ag

es
/s

ec

(a) JURECA IPU-M2000

16 32 64 128 256 512 1024 2048 4096
Global Batch Size

1
2

3
4

5
6

7
8

16
Nu

m
be

r o
f G

PU
 C

hi
p

Di
es

520 771 970 1151 1246 1319 OOM OOM OOM
650 993 1485 1842 2216 2406 2533 OOM OOM
531 891 1476 2141 2400 3015 3147 3451 OOM
626 1183 1796 2715 3342 4037 4377 4707 OOM
645 1113 1013 2706 3693 4179 4951 5115 OOM
456 1040 1637 2672 4045 4682 5181 5531 6406
588 1066 1943 3234 4400 5267 5810 6427 7257
650 876 2269 3196 4904 5733 6775 7391 8006
552 1122 2140 3863 5979 8827 10499 12198 13795

ResNet-50 TensorFlow Benchmark on AMD MI250 (JRDC)

0

2000

4000

6000

8000

10000

12000

Im
ag

es
/s

ec

(b) JURECA MI200

16 32 64 128 256 512 1024 2048 4096
Global Batch Size

1
2

3
4

6
8

Nu
m

be
r o

f G
PU

s

948 1486 1686 2088 1924 2081 OOM OOM OOM

907 1497 2324 2904 3657 3841 3675 OOM OOM

793 1522 3074 4264 5061 5703 6681 6041 OOM

959 1938 3240 4605 5941 7419 7482 6790 OOM

670 1743 3185 4851 7756 8710 11345 11769 11559

951 1849 3346 6116 9023 11114 13314 14767 13349

ResNet-50 TensorFlow Benchmark on NVIDIA A100-SXM (JRDC)

0

2000

4000

6000

8000

10000

12000

14000

Im
ag

es
/s

ec

(c) JURECA A100-SXM

16 32 64 128 256 512 1024 2048 4096
Global Batch Size

1
2

3
4

Nu
m

be
r o

f G
PU

s

1298 1525 2226 2765 3168 3411 3520 3601 OOM

1086 1973 3576 4138 5579 6232 6673 6873 7004

1078 1713 3181 5080 6763 8658 9512 10115 10404

1128 1982 3645 5713 7815 10636 11302 13158 13577

ResNet-50 TensorFlow Benchmark on NVIDIA H100-PCIe (JRDC)

0

2000

4000

6000

8000

10000

12000

Im
ag

es
/s

ec

(d) JURECA H100-PCIe

16 32 64 128 256 512 1024 2048 4096
Global Batch Size

1
2

3
4

Nu
m

be
r o

f G
PU

s

1478 2168 2913 3522 3969 4213 4381 4382 OOM

1424 2617 4088 5554 6754 7753 8331 8678 8705

1472 2920 4577 6320 8714 10254 11601 12629 12899

1446 3167 5469 7733 9825 11589 13941 15921 17073

ResNet-50 TensorFlow Benchmark on NVIDIA H100-SXM (WestAI)

0

2000

4000

6000

8000

10000

12000

14000

16000

Im
ag

es
/s

ec

(e) WestAI H100-SXM

16 32 64 128 256 512 1024 2048 4096
Global Batch Size

1
2

3
4

6
8

Nu
m

be
r o

f G
PU

s
1005 1938 3420 4525 5160 5464 5689 5762 OOM

984 1966 3457 5934 8357 9809 10566 10965 11290

972 1880 3913 7004 11181 13704 15164 15735 16394

1009 1940 3876 7054 12227 16494 19262 20864 21495

754 1628 3753 7443 13414 17615 26018 29422 26801

972 1575 3794 7593 12289 23411 32903 37960 40259

ResNet-50 TensorFlow Benchmark on NVIDIA GH200 (JEDI)

0

5000

10000

15000

20000

25000

30000

35000

40000

Im
ag

es
/s

ec

(f) JEDI GH200

16 32 64 128 256 512 1024 2048 4096
Global Batch Size

1
Nu

m
be

r o
f G

PU
s

1002 1889 3498 4484 5339 5905 6142 6330 OOM

ResNet-50 TensorFlow Benchmark on NVIDIA GH200 (JRDC)

0

5000

Im
ag

es
 p

er
 se

c

(g) JURECA GH200

Fig. 4. Throughput for ResNet50 training depending on number of GPUs and global batch size on various systems. OOM stands for Out of Memory,
i.e. the batch size is too large for the memory of the device.

Solving these challenges required multiple iterations of
container testing, finally leading to the creation of custom
containers, inheriting from vendor-provided containers. To
manage the installation of additional packages within the
container, we utilize pip with the --prefix, --no-deps,
and --ignore-installed options, and manually adjust the
PYTHONPATH. The container’s isolation from the system en-
vironment necessitates defining custom bind paths and the
development of wrapper scripts to export environment vari-
ables.

Utilizing the shared resources of HPC systems requires
usage of job schedulers (Slurm) and message transport li-
braries (MPI, NCCL). As the employed containers need to
bring their own MPI installation, some effort needs to be
taken to align the out-of-container distribution setup with the
in-container installation. For our setup, the involved PMIx
configurations need to be explicitly made compatible by
manually setting PMIX_SECURITY_MODE=native out-of-container,

but within a Slurm-distributed job5.

C. System

In order to ensure a smooth user experience, some non-
trivial, HPC-related technical fixes have to be implemented.
We document them here to highlight on system-specific is-
sues, which can be helpful when adding more system support
for future benchmarks.

As with many HPC systems, the systems at Jülich Su-
percomputing Centre feature a high-speed interconnect (In-
finiBand) between the nodes. IP connectivity is only avail-
able using InfiniBand devices (IP over Infiniband, IPoIB).
PyTorch needs to be made aware of the different for-
mat of the hostname, which contains an appended i to

5srun env PMIX_SECURITY_MODE=native apptainer ...

1173

the MASTER_ADDR variable6. Further, a fixed torchrun.py
script is required for execution on such a system. While
not yet being fixed in the main PyTorch codebase7 a
patched version is available in the benchmark repository
(llm_training/aux/fixed_torch_run.py).

With AI-distributed training often depending on external
software like PyTorch and Horovod [38] to spawn multiple
processes, errors due to conflicting MPI ranks with Slurm
are encountered at times and have to be fixed.

Further, during the benchmarking process, the critical im-
pact of correct CPU binding, optimal number of threads, and
GPU affinity on performance for each system was carefully
studied. It was found that a GPU-centric approach to affinity
is useful, creating one Slurm task per GPU and distributing
them to CPU cores with affinity to respective GPUs. At the
same time, it is important to create CPU masks that are open
enough for NCCL to place its helper thread. JEDI, as one
example, features four Grace-Hopper superchips, so that the
Slurm options --ntasks=4 --cpus-per-task=72 --gpus-per-task=1
give the proper affinity. JURECA A100 nodes, as another
example, feature EPYC processors in which not all CPU
chiplets have GPU affinity. Due to this, explicitly targeting
the proper NUMA domains with --cpu-bind is a complex, but
useful approach.

VI. Conclusions

As AI continues to experience rapid growth and the market
is seeing a growing influx of AI accelerators, evaluating
accelerator performance using real world applications is cru-
cial. In this paper, we introduced CARAML, a benchmark
suite designed to assess AI workloads on accelerators with
energy measurements. CARAML uses the JUBE framework
to create compact, automated benchmarks for both LLM
and Computer Vision training. The benchmarks incorpo-
rate the modular jpwr tool to measure energy consumption.
CARAML is further capable to perform ablation studies to
identify hardware and model configurations for optimal per-
formance. The details of the framework and results obtained
using CARAML on seven different accelerators systems from
NVIDIA, AMD and Graphcore that differ either in generation
or configuration were discussed in detail.

The results confirm that the latest accelerator generations
yield a better performance, but the energy efficiency is in-
fluenced by more factors in the hardware and network con-
figuration. The GH200 generally gives the best performance,
related to the CPU-to-GPU-NVLink connection, TDP, and
fast memory. The PCIe-flavor of the H100 usually gives the
best energy-efficiency, a result of operation at an efficient
power operating point.

While the surveyed Graphcore accelerator system could
not yield a competitive performance to classical GPUs, the
results on energy efficiency are very promising, outperforming
GPUs in this regard for some benchmarks. This relies on code

6Coincidentally, the ib0 interface is ordered after the en0 interface,
such by default the wrong interface is picked. For Jülich Supercomputing
systems, the hostnames of IPoIB network are equal to the en0-network
hostnames with an appended i.

7The issue is open upstream since 2022: https://github.com/pytorch/
pytorch/issues/73656; meanwhile a patched version is provided on PyPI
for convenience, https://pypi.org/project/torchrun-jsc/.

that is optimized for the execution on an IPU’s data-flow
architecture, which can yield performance improvements.

Several technical challenges were encountered while au-
tomating the CARAML benchmark setup. Solutions required
a deep understanding of networking specifics, AI framework
backends, and how containers interact with their environ-
ment.

As future work, we plan to further develop CARAML
by incorporating continuous benchmarking capabilities and
enhancing its usability. We also aim to expand the suite by
including additional AI training and inference benchmarks.

Acknowledgment
Part of this work was funded by the German Federal

Ministry for Economic Affairs and Climate Action (BMWK)
through the project OpenGPT-X (project no. 68GX21007D).
Additional support was provided by the EuroHPC Joint
Undertaking under Grant Agreement 955513, co-funded by
the German Federal Ministry of Education and Research
(BMBF) under funding reference 16HPC029 through the
MAELSTROM project.

Work presented here made extensive use of JURECA-
DC, the JURECA-DC Evaluation Platform, the WestAI
infrastructure, and the JUPITER enablement platform JEDI,
which we greatly acknowledge.

We would like to express our gratitude to Jan Ebert
and Jan Robert Finkbeiner for their valuable insights and
discussions on configuring neural network architectures.

Reproducibility
The source codes of CARAML and jpwr are avail-

able at https://github.com/FZJ-JSC/CARAML and https:
//github.com/FZJ-JSC/jpwr. The results shown in the pa-
per can be reproduced using CARAML by following the
instruction entailed in subsection III-B and the corresponding
readme files.

References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.
[Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[2] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. A. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer,
B. Catanzaro, A. Phanishayee, and M. Zaharia, “Efficient large-
scale language model training on GPU clusters using Megatron-
LM,” 2021. [Online]. Available: https://arxiv.org/abs/2104.04473

[3] C. M. John, C. Penke, A. Herten, J. Ebert, and S. Kesselheim,
“OpenGPT-X — training large language models on HPC systems,”
Poster presented at the International Supercomputing Conference
(ISC) 2023, May 2023, Hamburg, Germany.

[4] V. A. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch,
M. Shoeybi, and B. Catanzaro, “Reducing activation recomputation
in large transformer models,” Proceedings of Machine Learning and
Systems, vol. 5, pp. 341–353, 2023.

[5] T. Dao, “FlashAttention-2: Faster attention with better parallelism
and work partitioning,” in The Twelfth International Conference
on Learning Representations, 2024. [Online]. Available: https:
//openreview.net/forum?id=mZn2Xyh9Ec

[6] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro, “Megatron-lm: Training multi-billion parameter
language models using model parallelism,” 2020. [Online]. Available:
https://arxiv.org/abs/1909.08053

1174

[7] K. Chellapilla, S. Puri, and P. Simard, “High Performance
Convolutional Neural Networks for Document Processing,” in
Tenth International Workshop on Frontiers in Handwriting
Recognition, G. Lorette, Ed., Université de Rennes 1. La Baule
(France): Suvisoft, Oct. 2006, http://www.suvisoft.com. [Online].
Available: https://inria.hal.science/inria-00112631

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” 2021. [Online].
Available: https://arxiv.org/abs/2010.11929

[10] Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza. Dissecting
the Graphcore IPU Architecture via Microbenchmarking. [Online].
Available: http://arxiv.org/abs/1912.03413

[11] M. Flynn, “Very high-speed computing systems,” Proceedings of the
IEEE, vol. 54, no. 12, pp. 1901–1909, 1966.

[12] P. Thörnig, “JURECA: Data centric and booster modules
implementing the modular supercomputing architecture at jülich
supercomputing centre,” J. Large-scale Res. Facil. JLSRF, vol. 7,
no. A182, Oct. 2021. [Online]. Available: https://doi.org/10.17815/
jlsrf-7-182

[13] JURECA Evaluation Platform Overview. [On-
line]. Available: https://apps.fz-juelich.de/jsc/hps/jureca/
evaluation-platform-overview.html

[14] WestAI. [Online]. Available: https://westai.de/
[15] A. Herten, “First Benchmarks with AMD Instinct MI250 GPUs at

JSC,” 2022. [Online]. Available: https://juser.fz-juelich.de/record/
916416

[16] ——, “Many cores, many models: GPU programming model vs.
vendor compatibility overview,” in Proceedings of the SC ’23
Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, ser. SC-W ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p.
1019–1026. [Online]. Available: https://doi.org/10.1145/3624062.
3624178

[17] UserBenchmark. [Online]. Available: https://www.userbenchmark.
com

[18] G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman,
S. Che, M. Colgrove, H. Feng, A. Grund, R. Henschel, W.-
M. W. Hwu, H. Li, M. S. Müller, W. E. Nagel, M. Perminov,
P. Shelepugin, K. Skadron, J. Stratton, A. Titov, K. Wang, M. van
Waveren, B. Whitney, S. Wienke, R. Xu, and K. Kumaran, “SPEC
ACCEL: A standard application suite for measuring hardware
accelerator performance,” in High Performance Computing
Systems. Performance Modeling, Benchmarking, and Simulation,
S. A. Jarvis, S. A. Wright, and S. D. Hammond, Eds. Cham:
Springer International Publishing, 2015, pp. 46–67. [Online].
Available: https://doi.org/10.1007/978-3-319-17248-4_3

[19] A. Herten, S. Achilles, D. Alvarez, J. Badwaik, E. Behle,
M. Bode, T. Breuer, D. Caviedes-Voullième, M. Cherti, A. Dabah,
S. El Sayed, W. Frings, A. Gonzalez-Nicolas, E. B. Gregory,
K. Haghighi Mood, T. Hater, J. Jitsev, C. John, J. H. Meinke, C. I.
Meyer, P. Mezentsev, J.-O. Mirus, S. Nassyr, C. Penke, M. Röm-
mer, U. Sinha, B. von St. Vieth, O. Stein, E. Suarez, D. Willsch, and
I. Zhukov, “Application-driven exascale: The JUPITER benchmark
suite,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, ser. SC
’24. New York, NY, USA: Association for Computing Machinery,
2024, to appear.

[20] K. Asanović, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek,
D. Wessel, and K. Yelick, “A view of the parallel computing
landscape,” Commun. ACM, vol. 52, no. 10, p. 56–67, oct 2009.
[Online]. Available: https://doi.org/10.1145/1562764.1562783

[21] P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos,
D. Kanter, P. Micikevicius, D. Patterson, G. Schmuelling,
H. Tang, G.-Y. Wei, and C.-J. Wu, “MLPerf: An industry
standard benchmark suite for machine learning performance,”
IEEE Micro, vol. 40, no. 2, pp. 8–16, 2020. [Online]. Available:
https://doi.org/10.1109/MM.2020.2974843

[22] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius,
D. Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks,
D. Chen, D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang,
D. Kang, D. Kanter, N. Kumar, J. Liao, D. Narayanan,
T. Oguntebi, G. Pekhimenko, L. Pentecost, V. Janapa Reddi,
T. Robie, T. St John, C.-J. Wu, L. Xu, C. Young, and

M. Zaharia, “MLPerf training benchmark,” in Proceedings of
Machine Learning and Systems, I. Dhillon, D. Papailiopoulos,
and V. Sze, Eds., vol. 2, 2020, pp. 336–349. [Online].
Available: https://proceedings.mlsys.org/paper_files/paper/2020/
file/411e39b117e885341f25efb8912945f7-Paper.pdf

[23] S. Farrell, M. Emani, J. Balma, L. Drescher, A. Drozd,
A. Fink, G. Fox, D. Kanter, T. Kurth, P. Mattson, D. Mu,
A. Ruhela, K. Sato, K. Shirahata, T. Tabaru, A. Tsaris,
J. Balewski, B. Cumming, T. Danjo, J. Domke, T. Fukai,
N. Fukumoto, T. Fukushi, B. Gerofi, T. Honda, T. Imamura,
A. Kasagi, K. Kawakami, S. Kudo, A. Kuroda, M. Martinasso,
S. Matsuoka, H. Mendonca, K. Minami, P. Ram, T. Sawada,
M. Shankar, T. t. John, A. Tabuchi, V. Vishwanath, M. Wahib,
M. Yamazaki, and J. Yin, “MLPerf™ HPC: A holistic benchmark
suite for scientific machine learning on HPC systems,” in 2021
IEEE/ACM Workshop on Machine Learning in High Performance
Computing Environments (MLHPC). Los Alamitos, CA, USA:
IEEE Computer Society, 11 2021, pp. 33–45. [Online]. Available:
https://doi.org/10.1109/MLHPC54614.2021.000092

[24] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling,
C.-J. Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou,
R. Chukka, C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke,
D. Fick, J. S. Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao,
T. S. John, P. Kanwar, D. Lee, J. Liao, A. Lokhmotov, F. Massa,
P. Meng, P. Micikevicius, C. Osborne, G. Pekhimenko, A. T. R.
Rajan, D. Sequeira, A. Sirasao, F. Sun, H. Tang, M. Thomson,
F. Wei, E. Wu, L. Xu, K. Yamada, B. Yu, G. Yuan, A. Zhong,
P. Zhang, and Y. Zhou, “MLPerf inference benchmark,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 446–459. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00045

[25] W. Feng and K. W. Cameron, “The Green500 list: Encouraging
sustainable supercomputing,” Computer, vol. 40, 2007. [Online].
Available: https://doi.org/10.1109/MC.2007.445

[26] J. P. Gutiérrez Hermosillo Muriedas, K. Flügel, C. Debus,
H. Obermaier, A. Streit, and M. Götz, “perun: Benchmarking
energy consumption of high-performance computing applications,”
in Euro-Par 2023: Parallel Processing, J. Cano, M. D. Dikaiakos,
G. A. Papadopoulos, M. Pericàs, and R. Sakellariou, Eds. Cham:
Springer Nature Switzerland, 2023, pp. 17–31. [Online]. Available:
https://doi.org/10.1007/978-3-031-39698-4_2

[27] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia,
D. Rothchild, D. So, M. Texier, and J. Dean, “Carbon emissions
and large neural network training,” 2021. [Online]. Available:
https://arxiv.org/abs/2104.10350

[28] A. S. Luccioni, S. Viguier, and A.-L. Ligozat, “Estimating the
carbon footprint of BLOOM, a 176B parameter language model,”
J. Mach. Learn. Res., vol. 24, no. 1, mar 2024. [Online]. Available:
https://www.jmlr.org/papers/volume24/23-0069/23-0069.pdf

[29] T. Breuer, J. Wellmann, F. Souza Mendes Guimarães, C. Himmels,
and S. Luehrs, “JUBE,” May 2024. [Online]. Available: https:
//doi.org/10.5281/zenodo.11394333

[30] S. Lührs, D. Rohe, A. Schnurpfeil, K. Thust, and W. Frings,
“Flexible and Generic Workflow Management,” in Parallel
Computing: On the Road to Exascale, ser. Advances in parallel
computing, vol. 27, International Conference on Parallel Computing
2015, Edinburgh (United Kingdom), 1 Sep 2015 - 4 Sep 2015.
Amsterdam: IOS Press, Sep 2016, pp. 431 – 438. [Online].
Available: https://doi.org/10.3233/978-1-61499-621-7-431

[31] poplibs. [Online]. Available: https://github.com/graphcore/poplibs
[32] xla. [Online]. Available: https://github.com/openxla/xla
[33] pynvml. [Online]. Available: https://pypi.org/project/pynvml/
[34] pyrsmi. [Online]. Available: https://github.com/ROCm/pyrsmi
[35] Graphcore IPU Info Library (gcipuinfo). [Online]. Available:

https://docs.graphcore.ai/projects/gcipuinfo/en/latest/
[36] NVIDIA Grace Performance Tuning Guide. [Online]. Available:

https://docs.nvidia.com/grace-performance-tuning-guide.pdf
[37] IPU GPT-2 README. [Online]. Available: https://github.com/

graphcore/examples/tree/master/nlp/gpt2/pytorch#gpt-2
[38] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed

deep learning in tensorflow,” 2018. [Online]. Available: https:
//arxiv.org/abs/1802.05799

Appendix
To execute the CARAML benchmark, clone the CARAML

repository and use the corresponding JUBE script and a tag
to identify the target architecture. The available system tags
are listed in the overview of systems in Table I

1175

a) LLM Training:
• Set the required system and model parameters in

llm_training/llm_benchmark_nvidia_amd.yaml(for
NVIDIA and AMD systems) or
llm_training/llm_benchmark_ipu.yaml(for
Graphcore)

• To pull the required container and build packages, use
container tag as:
– NVIDIA A100 and H100 GPUs

jube run llm_training/llm_benchmark_nvidia_amd.yaml
--tag container H100↪→

– NVIDIA GH200 and JEDI GPUs
jube run llm_training/llm_benchmark_nvidia_amd.yaml

--tag container GH200↪→

– AMD MI250
jube run llm_training/llm_benchmark_nvidia_amd.yaml

--tag container MI250↪→

– Graphcore GC200
jube run llm_training/llm_benchmark_ipu.yaml --tag

container↪→

• To run the benchmark with defined configurations for
800M GPT model with tokenized OSCAR data provided
with the repository do:
jube run llm_training/llm_benchmark_nvidia_amd.yaml --tag

A100 800M↪→

A100 can be replaced with H100, WAIH100, GH200,
JEDI and MI250 for the respective systems and 800M can
be replaced with 13B and 175B for systems with available
node resources.

• To run the benchmark with defined configurations for
117M GPT model on Graphcore with synthetic data do:
jube run llm_training/llm_benchmark_ipu.yaml --tag 117M

synthetic↪→

If tag synthetic is not given, the benchmark will use the
tokenized OSCAR data.

• To combine the energy data into a single CSV file and
post-process results do:
jube continue llm_training/llm_benchmark_nvidia_amd_run

-i last↪→

Or
jube continue llm_training/llm_benchmark_ipu_run -i last

• To get the final result in tabular form do:
jube result llm_training/llm_benchmark_nvidia_amd_run -i

last↪→

Or
jube result llm_training/llm_benchmark_ipu_run -i last

b) ResNet50 Training:
• Set the required system and model parameters

and the path to downloaded ImageNet data in
resnet50_benchmark.xml

• To pull the required container, use container tag as:
– NVIDIA A100 and H100 GPUs

jube run resnet50/resnet50_benchmark.xml --tag
container H100↪→

– NVIDIA GH200 and JEDI GPUs
jube run resnet50/resnet50_benchmark.xml --tag

container GH200↪→

– AMD MI250
jube run resnet50/resnet50_benchmark.xml --tag

container MI250↪→

– Graphcore GC200
jube run resnet50/resnet50_benchmark.xml --tag

container GC200↪→

• To run the benchmark with defined configurations do:
jube run resnet50/resnet50_benchmark.xml --tag A100

Or with synthetic data
jube run resnet50/resnet50_benchmark.xml --tag A100

synthetic↪→

A100 can be replaced with H100, WAIH100, GH200,
JEDI, MI250 and GC200 for the respective systems.

• To combine the energy data into a single CSV file and
post-process the results do:
jube continue resnet50/resnet50_benchmark_run -i last

• To get the final result in tabular form do:
jube result resnet50/resnet50_benchmark_run -i last

1176

