
High-Performance, Scalable Geometric Multigrid
via Fine-Grain Data Blocking for GPUs
Oscar Antepara, Samuel Williams, Hans Johansen

Lawrence Berkeley National Laboratory
Berkeley, California, USA

{oantepara, swwilliams, hjohansen}@lbl.gov

Mary Hall
University of Utah

Salt Lake City, Utah, USA
mhall@cs.utah.edu

Abstract—We present a performance study of geometric multi-
grid (GMG) on NVIDIA, AMD, and Intel GPU-accelerated su-
percomputers. The approach employs fine-grain data blocking in
BrickLib, which reduces data movement in the GMG V-cycle by
optimizing storage order for stencil access and communication.
Our GMG attains 73% in a peak performance portability metric,
and 87% parallel efficiency when weak scaling to 512 GPUs
on all three GPU-accelerated supercomputers. Analysis shows
stencil performance and MPI communication is well-correlated
with a traditional linear model from which we can extract
empirical latency, overhead, bandwidth, and throughput for
comparison to theoretical GPU and network limits. Observations
show NVIDIA GPUs provide the lowest overhead and highest
throughput per process with AMD and Intel GPUs delivering
comparable performance. Conversely, despite all three platforms
employing the same Slingshot network, sustained bandwidth and
latency vary widely when each GPU is dedicated one NIC.

Index Terms—GPU, performance portability, multigrid, data
blocking, latency, network

I. INTRODUCTION

Linear solvers are widely used in scientific computing and
engineering applications as part of the numerical solution for
partial differential equations (PDEs) in the form Ax = b.
Geometric multigrid (GMG) [1] is a matrix-free approach,
with the main advantage that simple stencil calculations for
the linear operator have the potential to be computationally
fast and efficient, with near-linear scaling.

With ongoing trends towards heterogeneous architectures,
multigrid implementations on CPUs/GPUs are relevant due
to their wide use in scientific computing. Multigrid uses a
nested hierarchy of meshes in a V-cycle, where error on finer
meshes is reduced using approximate solutions on coarser
meshes, through a series of restriction, smoothing, and in-
terpolation operations recursively applied on all meshes. As
a result, porting multigrid to new emerging supercomputer
architectures and maximizing performance continue to present
unique challenges, with more GPUs per node, and different
ratios of FLOPs, memory and network bandwidth. The hi-
erarchical stencil operations lead to complex, memory- and
communication-bound performance, especially deep in the
multigrid cycle where the problem size becomes smaller and
performance is limited by data movement, communication, and
any associated latency or overheads.

In this paper, we optimize memory and on-node
communication-related data movement using BrickLib [2], to

provide fine-grain data blocking [3], [4]. In Bricklib, lexico-
graphical ijk data layouts are comprised of smaller bricks
(e.g. 83) of contiguous data. When coupled with a vector code
generator, BrickLib has demonstrated significant reduction in
data movement and increased arithmetic intensity for stencil
application as compared to tiled implementations [5]. More-
over, bricks can be stored in an optimized physical ordering
to avoid on-node packing for communication [6].

Prior work in BrickLib focused on optimizing just stencil
application [7]; in this paper we use bricks for all operations
in the multigrid V-cycle, including inter-layer interpolation
and restriction. These optimizations enable bricks to achieve
data reuse across neighboring bricks in 3 dimensions of a
grid, as well as across levels in multigrid. We additionally
reduce communication costs by exploiting message aggrega-
tion across multiple smoothing operations, using GPU-Aware
MPI and optimized CPU-GPU-NIC bindings, and improving
NIC communication performance for small messages.

The performance and performance-portability of the GMG
implementation is assessed on NVIDIA, AMD and Intel
GPUs on Perlmutter-NERSC, Frontier-OLCF, and Sunspot-
ALCF. We introduce performance models to evaluate latency,
throughput, and bandwidth for computation and communica-
tion throughout the multigrid V-cycle and across architectures.
Our performance portability evaluation is rigorously based on
fraction of a roofline model [8] theoretical arithmetic intensity,
to compare computation kernels across different GPUs.

This paper makes the following unique contributions:

• To the best of our knowledge, it is the first GMG
performance analysis on the three most recent DOE GPU-
accelerated supercomputers.

• Our performance portability assessment includes a GMG
implementation in SYCL for INTEL GPUs, and com-
pares it to both NVIDIA and AMD GPUs.

• We present performance results and models for GMG
computation and communication on all multigrid levels.

• GMG attains better than 73% of the theoretical on-node
peak performance portability metric [9], and 87% parallel
efficiency when weak scaling to 512 GPUs on all three
GPU-accelerated supercomputers.

1177979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00159

II. RELATED WORK

For structured grid applications, stencil computations are
the core of the geometric multigrid algorithm. The literature
for stencil optimizations is extensive (an incomplete list might
include [4], [10]–[13]), with block and tiling optimizations
often used to improve cache reuse on both CPUs and GPUs.
However, as new supercomputer architectures evolve with
higher peak multi-node performance, the growing gap between
DRAM bandwidth and floating point operations (FLOPs)
has focused research on increasing performance through data
locality, particularly for bandwidth-bound computations.

Other efforts have introduced MG frameworks that could
efficiently exploit resources on GPU architectures. Examples
of recent multiphysics applications, where multigrid solvers
are key for elliptic equations, on structured or unstructured
grids include [14]–[17]. Many of these efforts have been
focused on GPU acceleration and, to some extent performance
portability, since the focus is on different supercomputers with
different GPU vendors. However, because of the complexity
of multigrid solvers, it is an ongoing challenge to do detailed
performance analysis and explore optimization techniques
that exploit increasing GPU parallelism, GPU memory, and
network bandwidth.

Performance analysis and optimization for geometric multi-
grid on many core and GPU architectures include [18]–[23]; in
most cases, platform-specific approaches were used for GPUs,
such as blocking optimizations, auto-tuned approaches, and
methods to reduce communication costs. Clearly, techniques
tailored to certain programming models or GPUs are limited,
indicating a need for more performance portability efforts as
supercomputers continue to diversify system architectures.

Additional work has explored MG optimizations for
smoother operations [24]–[26] or communication optimiza-
tions [27], by comparing performance improvements against
GPU bandwidth or enabling performance on a specific archi-
tecture or programming model. In [28], the authors examined
speedups for mixed precision implementations for AMG on
the most recent GPU devices, such as NVIDIA H100, AMD
MI250X, and INTEL PVC. However, their focus was on the
speedups enabled by mixed precision in an iterative refinement
strategy, compared to double precision. Our work expands the
efforts by evaluating portability and scalability for Geometric
Multigrid solvers by using fine-grain data blocking, including a
new set of optimization strategies and performance evaluation
models for GPU-accelerated architectures.

III. BRICKS - OPTIMIZED LAYOUT FOR BLOCK
STRUCTURED GRIDS

For completeness, this section summarizes salient aspects of
BrickLib from previous work [2], [5]. Additionally, in [29],
there is a description of several applications where BrickLib
provided a boost in performance. The section ends with a brief
discussion of new operators added for this paper to support
GMG.
Brick data layout and fine-grained data blocking: The brick
data layout uses fine-grained data blocking (similar to refer-

BrickLib DSL Input
Dec lare i n d i c e s
i = Index (0)
j = Index (1)
k = Index (2)

Dec lare g r i d
input = Grid (” x ” , 3)
o u t p u t = Gr id (”Ax” , 3)
a l p h a = Cons tRef (”MPI ALPHA”)
b e t a = Cons tRef (”MPI BETA”)

E x p r e s s c o m p u t a t i o n
o u t p u t [i , j , k] i s assumed
c a l c = a l p h a * input (i , j , k) + \

b e t a * input (i + 1 , j , k) + \
b e t a * input (i − 1 , j , k) + \
b e t a * input (i , j + 1 , k) + \
b e t a * input (i , j − 1 , k) + \
b e t a * input (i , j , k + 1) + \
b e t a * input (i , j , k − 1)

o u t p u t (i , j , k) . a s s i g n (c a l c)

Fig. 1. Python-syntax BrickLib DSL code to specify a 7-pt stencil for
applyOp() function in the V-cycle.

ences [3], [4], [30]) for stencil loops, without traditional “ghost
cell” approaches and their associated memory overheads.
In this paper, bricks are 3D blocks stored contiguously in
memory, specifically 83 or 43 for our experiments, as described
in Section V. These fine-grained data blocks take advantage of
hardware features that optimize data movement of contiguous
addresses, such as multi-word cache lines, prefetch engines,
and TLBs. In contrast, when using a conventional array data
layout for 3D stencils, an 83 tile touches a large number of
separate address streams, resulting in more streams and cache
misses, resulting in more data movement.
BrickLib domain-specific library: BrickLib is a domain-
specific library and code generator, in which the brick data
layout provides indirection from ijk stencil grids. Using
a simple python-like stencil DSL, code transformations and
optimizations can be applied and the final optimized kernel
is able to target a specific architecture without low-level
performance optimization in end-user code. Figure 1 shows the
DSL input for a 3D, radius 1 star-shaped stencil over 7 points,
which is used in the V-cycle smooth operation, for example.
This format is fairly flexible, including larger stencils, non-
constant coefficients, conditionals, and different coarse/fine
index spaces. It is then transformed to create compile-time
layouts, improve register and intermediate reuse, and inject
GPU (or CPU) intrinsic instructions optimized for the stencil
radius and brick dimensions.
Vector code generation: BrickLib uses a domain-specific
vector code generator [5] to target both CPUs and GPUs. It
uses a common internal abstraction of vectors to structure the
generated code, and subsequently map to architecture-specific
instructions, including SIMT code for GPUs, and wide SIMD
instructions for CPUs.

There are three essential domain-specific optimizations in
vector code generation. First, vector folding as described by

1178

Yount [31] creates longer vectors by collapsing brick dimen-
sions. Second, in a stencil pattern, some input data is reused
from computing neighboring output points, but shifted in the
3D domain requiring data reorganization in the vectors as ob-
served by Henretty et al. [32]. BrickLib’s vector code generator
detects this reuse of array common subexpressions [33], [34],
exploiting reuse in buffers and shifting iteration spaces rather
than data. Third, for high-order stencils, it is often profitable
to eliminate redundant loads by scattering an input to all the
outputs that use it to avoid data movement associated with
the large amount of temporary data when gathering; vector
scatter is used when profitable in conjunction with the reuse of
buffers described above in a vector version of the associative
reordering via statement splitting approach described by Stock
et al. [35].
New operators in BrickLib for multigrid. In this paper, we
extend BrickLib for multigrid computations. Because GMG
has different coarse and fine grids that interact, additional sten-
cils are needed for restriction and interpolation. In restriction,
fine cells are coarsened by volume-averaging to the coarse
grid cells, brick by brick, which requires no communication
between neighbors, just between multigrid levels. Similarly,
interpolation copies values from the coarse grid to correct fine
grid data. This is a piecewise-constant interpolation that also
does not require communication.

IV. EXPERIMENTAL SETUP

A. GPU Architectures

Perlmutter [36] is the HPE Cray EX supercomputer at
the National Energy Research Scientific Computing Cen-
ter (NERSC), Lawrence Berkeley National Laboratory. Each
Perlmutter GPU node contains one AMD EPYC 7763 CPU
and four of NVIDIA Ampere A100 GPUs [37]. Each GPU
includes 108 streaming multiprocessors (SM) each with four
warp schedulers of 16 integer units and 8 double-precision
floating point units. The GPU provides a peak performance
of about 9.77 TFLOP/s in double-precision. The SMs each
include a 192KB shared memory/data cache and share a 40
MB L2 cache and 40 GB of HBM accessible at 1.5TB/s. The
GPUs are individually connected to the CPU with a PCIe
4.0 x16 link providing 32 GB/s. Nodes are connected with
a Slingshot 11 interconnect system providing up to 25 GB/s
bandwidth per NIC.

Frontier [38] is the most recent supercomputer at the
Oak Ridge National Laboratory. Each node comprises one
64-core AMD EPYC 7A53 CPU and four AMD MI250X
GPUs [39]. Each MI250X instantiates two Graphical Compute
Dies (GCDs) each with 110 compute units (CU). Each CU
includes four 16-wide 64b SIMD units to execute either integer
or floating-point instructions and a small L1 cache. Each
GCD also includes an 8MB L2 cache, provides a peak FP64
performance of about 24 TFLOP/s, and is connected to 4 HBM
stacks of 64 GB providing 1.6 TB/s. Network connection
between nodes uses Slingshot 11 system with the NIC attached
directly to the GCDs. Thus, compared to Perlmutter’s A100,
each MI250X GCD provides more than twice the peak FLOP

rate for FP64, comparable HBM bandwidth and network
bandwidth with the difference that the NICs are attached
directly to the GCDs.

Sunspot [40] is a testbed for application and software de-
velopment prior to Aurora supercomputer at Argonne National
Laboratory. Each Sunspot node consists of two Intel Xeon
CPU Max Series (codename Sapphire Rapids or SPR) and six
Intel Data Center GPU Max Series (codename Ponte Vecchio
or PVC) [41]. Each PVC GPU is a two tile architecture
interconnected by Xe links with the other PVC GPUs. Each
stack has 64-GB of HBM, 208MB L3 per stack and 448KB L1
with two 80KB lcache per Xe-core. The entire GPU supports a
total of 1024 execution units, each with a SIMD width of 512b.
Eight EUs are grouped together into an Xe-core with a shared
cache. Sixteen Xe-core form a slice, and four slices form a
stack providing a peak FP64 performance of about 16TFLOP/s
and 1.64TB/s of memory bandwidth per stack. Compared to
Perlmutter’s A100 and Frontier’s MI20X GCD, a PVC stack
provides similar memory bandwidth, about 1.6× higher peak
FLOP rate for FP64 than A100, and about 0.6× TFLOP/s
less than AMD MI250X GCD. Interconnect is provided by
Slingshot 11 with eight NICs per node giving the same NIC
bandwidth as Perlmutter and Frontier but a higher overall
network bandwidth compared to Perlmutter and Frontier.

B. Compilers and Profiling Tools

Our work evaluates a geometric multigrid solver on three
different GPU supercomputers. Table I shows the corre-
sponding GPU programming model, modules, compilers, and
environment variables for Perlmutter, Frontier, and Sunspot.
Notice that on Perlmutter and Frontier, high performance is
attainable using GPU-Aware MPI. Conversely, on Sunspot, we
observed that not using the GPU-Aware MPI feature delivered
better performance. It is important to point out that Sunspot
is a test and development System with early versions of the
Aurora software development kit in an early deployment state
with non-final system configurations and could get hardware
and software instabilities.

Perlmutter and Frontier additional environment variables
are dedicated to managing message protocols that go
through the fabric to decide between eager or rendezvous
protocols according to message sizes. In addition, using
FI_CXI_RX_MATCH_MODE=hardware enables hardware
support for message matching by the Cassini NIC — an
execution mode that could provide performance improvements
for specific MPI ranks, as mentioned in [42].

Profiling timings are completed by recording events or wall-
clock time to capture kernel and MPI operations timings
using CUDA, HIP, or SYCL. For performance portability
analysis, which consists of metrics from the roofline model [8],
we gather the data with the profilers NVIDIA Nsight Com-
pute [43], RocProf [44], and Intel Advisor [45] for NVIDIA-,
AMD-, and Intel GPUs, respectively.

1179

TABLE I
COMPILER VERSIONS, FLAGS AND ENVIRONMENT VARIABLES USED FOR CUDA, HIP AND SYCL ON PERLMUTTER-NERSC, FRONTIER-OLCF AND

SUNSPOT-ALCF.

HPC System Progr. Model Modules Compiler version Env. variables
Perlmutter-NERSC CUDA cudatoolkit, NVHPC 23.9, MPICH GPU SUPPORT ENABLED=1

nvidia CUDAToolkit 12.2, MPICH OFI NIC POLICY=GPU
PrgEnv-nvidia/8.5.0, FI CXI RDZV EAGER SIZE=0

nvcc/12.2, FI CXI RDZV THRESHOLD=0
cray-mpich/8.1.28, FI CXI RDZV GET MIN=0
libfabric/1.15.2.0

Frontier-OLCF HIP PgrEnv-amd, PrgEnv-amd/8.3.3, MPICH GPU SUPPORT ENABLED=1
craype-accel-amd-gfx90a amd/5.3.0, MPICH OFI NIC POLICY=GPU

ROCm 5.3.0, FI CXI RDZV EAGER SIZE=0
AMD clang/15.0.0, FI CXI RDZV THRESHOLD=0
cray-mpich/8.1.28, FI CXI RDZV GET MIN=0
libfabric/1.15.2.0 FI CXI RX MATCH MODE=hardware

Sunspot-ALCF SYCL oneapi oneapi/eng-compiler/
2023.12.15.001,
icpx/2024.0.0,

mpich/52.2-1024/icc-all-pmix-gpu,
libfabric/1.15.2.0

C. Geometric Multigrid Solver

Geometric multigrid is a matrix-free iterative solver which
accelerates convergence by creating a hierarchy of grid levels
by recursively updating an initial guess on the finest grid
with corrections produced on coarsest grids to improve overall
convergence rate. NOTE: there are many variations of multi-
grid; the point of this paper is not to optimize numerical
convergence, but to demonstrate performance portability using
bricks for the typical elements of GMG.

In finite volume geometric multigrid, the V-cycle updates
an initial guess “down” through all grid levels to compute a
correction to the solution. With h defined as the grid size on
the finest grid, on each coarser level the grid size is multiplied
by two and represented by the superscript 2h, 4h, . . . , etc.
Figure 2 shows a schematic of the hierarchy of grids and the
main operations:

• Apply the linear operator to the approximate solution.
We use a simple 7 point stencil defined at the finest
resolution, xh.

• Do a point Jacobi smoothing operation to xh (alternative
smoothers could include successive over-relaxation or
Gauss-Seidel with similar performance characteristics).

• Compute the residual at the finest level rh = bh −Axh.
• Apply a restriction operator to the residual. In finite

volume context, a coarse cell contains 8 fine cells, and
its average is b2h = Rh(rh).

• Solve Ax2h = b2h by applying the linear operator and
smoothing the correction x2h.

• Recursively coarsen until the coarse problem is suffi-
ciently small to solve directly using point Jacobi (again,
other solvers might be more effective).

• Apply an interpolation operator to approximate xh. This
is done with piece-wise constant interpolation from the
coarse grid to the fine grid and updating the solution by
xh = xh + I2h(x2h)

progress within V-cycle

Smooth on Axh = bh

rh = fh - Luh (residual)
f2h = restrict(rh)

 Smooth on Ax2h = b2h

 Smooth on Ax4h = b4h

multiple Smooth’s on Ax8h = b8h

(or Iterative Solver)

Smooth on Ax4h = b4h

Smooth on Axh = bh

Smooth on Ax2h = b2h

rh = bh - Axh (residual)
b2h = restrict(rh)

r2h = b2h – Ax2h

b4h = restrict(r2h)

r4h = b4h – Ax4h

b8h = restrict(r4h)

xh += interpolate(x2h)

x2h += interpolate(x4h)

x4h += interpolate(x8h)

Fig. 2. Geometric multigrid V-cycle schematic that represents the process
to solve a linear problem Ax = b on a set of hierarchy grids where V-cycle
operations as smoothing, restriction and interpolation+increment are depicted.
At the coarsest level, a direct or an iterative solver is used to eventually correct
the solution at the finest grid.

• Apply the linear operator and smooth the updated solu-
tion, xh.

The amount of coarse grid data is 1/8 that of the finer grid in
3D; we therefore expect that the computation time scales eight
times between levels. For communication operations related
to the grid surface, this is a 2D set on a 3D region, so we
expect the data volume to scale by four times between levels
(for large grids - we will see that other factors dominate on
smaller grids).

Algorithms for this GMG V-cycle are listed in Algorithm
1 and 2. We define applyOp as applying the 7-point stencil
to the solution. This requires ghost cells from exchange()
of surface data from one subdomain to 26 neighboring subdo-
mains using MPI_ISend, MPI_IRecv, MPI_WaitAll
functions. Smoothing is performed in smooth+residual,
which simultaneously calculates the residual. The residual
is averaged from eight fine cells into one coarse cell in
restriction, which is written into the right-hand side
for the next coarsest level. interpolation+increment

1180

uses a piece-wise constant interpolation from a coarse cell to
increment eight elements in the next finest grid.

Algorithm 1 Geometric Multigrid
1: while maxNormRes > 1e− 10 do
2: V-cycle()
3: Compute maxNormRes <<<>>>
4: end while

Algorithm 2 V-cycle
1: for level = 0, 1, . . . , numLevels do
2: for iteration = 0, 1, . . . ,max smooths do
3: exchange()
4: applyOp <<<>>>
5: smooth+ residual <<<>>>
6: end for
7: restriction <<<>>>
8: initZero <<<>>>
9: end for

10: \\Bottom Solver at level = numLevels
11: for iteration = 0, 1, . . . ,max smooths do
12: exchange()
13: applyOp <<<>>>
14: smooth <<<>>>
15: end for
16: for level = numLevels, numLevels− 1, . . . , 0 do
17: interpolation+ increment <<<>>>
18: for iteration = 0, 1, . . . ,max smooths do
19: exchange()
20: applyOp <<<>>>
21: smooth+ residual <<<>>>
22: end for
23: end for

To test our multigrid implementation using fine-grain data
blocking, we use a simple stencil for 3D Poisson’s equation in
a cubic domain with periodic boundary conditions. Again, we
choose this multigrid model problem for easy performance
comparison and load balancing, although BrickLib can also
generate code for more complicated stencils, data distribution,
and domain boundary conditions. The right hand side of the
equation is initialized to b = sin(2πx)sin(2πy)sin(2πz),
where x, y and z are spatial locations. The matrix operator A is
the standard 7 point stencil with center coefficient α = −6/h2

and neighboring cells with β = 1/h2 and h is the grid spacing
on a given level. The residual is computed as r = b−Ax and
the smoothing function is a point Jacobi operation defined as
x := x + γ(Ax − b), with γ = h2/12. The convergence
criterion is when the maximum residual in the entire domain
is less than 1e-10.

V. IMPLEMENTATION DETAILS AND OPTIMIZATIONS

Geometric multigrid solvers are a combination of com-
putation and communication operations. Our work examines
several optimizations, settings, and tools to achieve higher

performance on modern supercomputers’ GPUs and networks;
this requires several key optimizations:
Fine-grain data blocking: BrickLib provides fine-grain data
blocking that uses hardware features to optimize data move-
ment of contiguous addresses and reduce memory overheads.
BrickLib provides a code generator that applies code trans-
formations and optimizations for stencil computations using a
Python-like stencil domain-specific library (DSL in Figure 1).
The 7-point stencil in applyOp() is repeatedly applied to
the entire domain, and is one of the most time consuming
operations on a V-cycle, especially on the coarsest level
where it is applied until the coarse solution is obtained.
For the remaining point-wise operations, such as smooth,
residual and the inter-layer operations, restriction
and interpolation+increment using fine-grain data
blocking data structures enhance data locality and thus im-
prove performance on GPU-like architectures. Therefore, we
have set optimal brick sizes according to our observations, as
8 × 8 × 8 elements on Perlmutter and Frontier and a brick
size of 4 × 4 × 4 on Sunspot to exploit their corresponding
GPU architectures to reduce data movement and improve on-
node performance. For the applyOp() operation, which uses
the vector code generator to compute the 7-point stencil, we
set the number of threads per block equal to SIMD width
for each architecture, where for NVIDIA is equal to 32, for
AMD is 64 and for INTEL we have found that 16 is the most
optimal selection. With the vector code generator, BrickLib
moves data through the register file for neighboring threads
by using shuffle primitives to achieve high-performance for
stencils on GPUs.
Communication-Avoiding: In the V-cycle, the exchange()
operation extracts surface data from each subdomain and
exchanges ghost zones between subdomains. Applying fine-
grain data blocking expands our ghost zone to the size of the
bricks, and as a result, the smoothing operation can be applied
multiple times without further communication, redundantly
computing results with other processes. This reduces the MPI
communication frequency by a factor of the ghost zone size,
but as a consequence, communication is done with all 26
neighbors (faces, edges, and corners). We use several BrickLib
MPI optimizations described in [6] to improve communication
performance: using an optimal brick layout to reduce data
movement, consolidating to minimize the number of messages,
and reducing latency with packing- and unpacking-free com-
munication buffers.
Optimal Mapping between CPU-GPU-NIC: Selecting the
correct mapping between CPU, GPU, and NIC is crucial to
avoid unnecessary data movement and increase performance
on applications that communicate data among several ranks
on intra- or inter-node systems. On Perlmutter and Sunspot,
the NICs are connected to the CPUs; meanwhile, on Frontier,
the NICs are connected directly to the GPUs. Consequently,
users should know and test their mappings to ensure that MPI
ranks are bound to their closest GPU-CPU-NIC or CPU-GPU-
NIC. On Perlmutter and Frontier, which use HPE Cray MPI,
the MPICH_OFI_NIC_POLICY=GPU variable can be used to

1181

select the NIC that is closest to the CPU or GPU being used
for each process. On Sunspot, affinity and rank placements are
done through the job script by manually assigning the cores,
GPUs, and NICs to interact over the shortest path possible.
GPU-Aware MPI Communication: MPI libraries on all the
GPU systems in this paper offer GPU-Aware MPI support
to perform MPI operations with GPU buffers. This feature
provides support for MPI operations for inter-node and intra-
node MPI transfers and also leverages the hardware to handle
data transfers efficiently on modern high-performance systems.
For this implementation, during the exchange() operation
use GPU-Aware MPI features that give high performance on
NVIDIA and AMD GPUs. On Sunspot, we observed better
results copying the data from the GPU to the CPU and then
performing MPI operations, so GPU-Aware MPI is not used
in those results.
Small Message Communication Protocols: As we descend
in the V-cycle, each level has an 8× smaller problem size.
Therefore, small message transfers that go through the NICs
for inter-node applications could encounter different imple-
mentations and protocols to do the communication between
processes. Consequently, faster communication as we descend
in the V-cycle is challenging since the default mechanisms
for small message transfers may not be the most adequate
for our application. The CXI provider allows setting different
message protocols by environment variables (see Table I)
that may improve MPI communication performance by using
the rendezvous protocol for small message sizes and NIC
hardware support, as we have observed on Frontier.

VI. PERFORMANCE OF THE V-CYCLE

This section’s experiments consist of 8 nodes and one MPI
rank per node, where we want to analyze the performance
of the computation kernels on a single GPU/GCD/tile and
communication operations using a single NIC. Each MPI
rank binds to one CPU and one NVIDIA A100, GCD AMD
MI250X, or Intel PVC tile. The domain consists of 5123

elements per node, and we measure the total time per level
across six multigrid levels. All timings are for the best map-
ping found, with GPU-Aware MPI on Perlmutter and Frontier,
and using host pointers for MPI communication on Sunspot
provided the best performance.

In Figure 3, the total execution time for all operations on
each multigrid level is shown, for all three platforms, using
communication-avoiding (CA) and all the optimizations avail-
able on each machine. The problem is considered converged
in 12 V-cycles, using 12 smooth steps on each level, and
at the coarsest level 100 smooth steps completely solve the
coarse grid problem (but leading to a significant increase in
wall clock time). Notet that this has been designed to proxy
GMG solvers and to evaluate performance portability of the
main GMG components individually.

Observe that our implementation presents good scaling
between levels, closer to 4×, which is the ratio of the
surface size between levels as we decrease the problem size
since communication dominates over computation for this

1.00e−03

1.00e−02

1.00e−01

1.00e+00

1.00e+01

0 − 512
3

1 − 256
3

2 − 128
3

3 − 64
3

4 − 32
3

5 − 16
3

6 − 8
3

Perlmutter (CA+opt)
Frontier (CA+opt)

Sunspot (CA)

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

 p
e

r
L

e
v
e

l
(s

)

Grid Level − Subdomain Size

Fig. 3. Total execution time per level in seconds to solve a constant coefficient
Poisson equation. Geometric multigrid uses a V-cycle with six levels deep,
with 100 smoothing iterations on the coarsest level. Total domain size consists
of 10243 elements distributed on eight nodes, where each node uses one CPU
and a single A100, MI250X GCD, or PVC tile.

test problem. It is also clear that GPU-Aware MPI has a
significant performance impact on Perlmutter and Frontier
compared to Sunspot. We note that Sunspot is still in an early
stage of maturity compared to Perlmutter and Frontier, which
have spent significantly more time making improvements for
production runs.

Another feature that we can observe in Figure 3 is the timing
differences between Perlmutter, Frontier and Sunspot at coars-
est levels, where the domain sizes are smaller and therefore,
small messages are getting communicated through the NIC
between subdomains. Perlmutter and Frontier systems can get
faster at the coarsest levels compared to Sunspot, and this is a
result achieved in a combination of using CA techniques plus
the environment variables from Table I, indicating that using
CXI settings and using rendezvous protocols could improve
the communication operations for the smaller problem sizes,
where GPU kernel computations are negligible compared to
communication.

In Figure 4, we present an additional comparison between
our GMG performance results and HPGMG, the CUDA
version of the open-source benchmark designed as a proxy
for finite volume based geometric multigrid linear solvers
[46]. To make the right comparison, we have compiled and
tested HPGMG-cuda with their second order finite volume
implementation for a 3D periodic 10243 domain distributed
across 8 nodes and each node using one CPU and one
A100 GPU. We have used their optimized implementation
for the GMG operators, selected the Jacobi smoother and a
sequence of point-relaxation steps for the bottom solvers, as in
our implementation. Relative performance against HPGMG is
evaluated using the time per V-cycle, and we can observe that
our implementation is 1.58× and 1.46× faster on Perlmutter
and Frontier, respectively. Similar performance is shown be-
tween HPGMG and our Sunspot result. However, is important
to note that our GMG implementation is portable and provides

1182

 0

 0.5

 1

 1.5

 2

HPGMG GMG−BRICKS

CUDA−Perlmutter
HIP−Frontier

SYCL−Sunspot

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

 w
rt

.
H

P
G

M
G

Fig. 4. Relative performance of our GMG implementation using Bricks, based
on the time spent per Vcycle, with respect to HPGMG. Note that HPGMG
is a CUDA-oriented implementation and it does not have a HIP or SYCL
version.

TABLE II
PERCENTAGE OF THE TOTAL TIME AT THE FINEST GRID (LEVEL 0) FOR
EACH OPERATION IN THE V-CYCLE USING COMMUNICATION AVOIDING

AND THE PERTINENT OPTIMIZATIONS ON ALL PLATFORMS AND
PROGRAMMING MODELS .

A100 MI250X PVC
GPU GCD Tile

Operation CUDA HIP SYCL
applyOp 25.0% 30.7% 22.5%

smooth+residual 54.5% 50.0% 53.1%
restriction 1.0% 1.1% 1.5%

interpolation+increment 1.9% 5.4% 2.5%
exchange 17.5% 12.8% 20.4%

relative better or similar performance, on all three GPUs,
compared to a architecture-driven optimized GMG version.

From the highest point of view, most of our solver’s time
is spent on the finest level. Table II shows the percentage
of the total time at the finest grid (5123 problem size) for
each kernel computation and the communication operation
on all platforms. The vast majority of time is spent on
applyOp, smooth+residual, and exchange. Similar
percentages for the computation kernels are achieved across
all GPUs, likely because fine-grain data blocking provides
similar performance across programming models and GPUs.
However, communication operations differ between Sunspot
and the other two systems, again likely due to GPU-Aware
MPI on Perlmutter and Frontier.

A. Latency, overheads, throughput and bandwidth anaylisis

To compare stencil performance and MPI communication to
theoretical GPU and network limits, we employ a traditional
linear model to extract empirical latency, overhead, bandwidth,
and throughput:

f(x) =
x

α+ x/β

For computation kernels, x is the problem size, f(x) is
GStencil/s, α is latency in nanoseconds and β is attainable

1.00e-03

1.00e-02

1.00e-01

1.00e+00

1.00e+01

1.00e+02

6 - 8
3

5 - 16
3

4 - 32
3

3 - 64
3

2 - 128
3

1 - 256
3

0 - 512
3

β=100.0 GStencil/s

α=4
e4

 n
s

α=2
e4

 n
s

α=1
e4

 n
s

α=5
e3

 n
s

Perlmutter HBM 1420 GB/s
Frontier HBM 1350 GB/s
Sunspot HBM 1215 GB/s

G
S

te
n

c
il/

s

Level - Subdomain Size

applyOp - Perlmutter
applyOp - Frontier
applyOp - Sunspot

f(x) = x / (α + x/β)

1.00e-03

1.00e-02

1.00e-01

1.00e+00

1.00e+01

1.00e+02

6 - 8
3

5 - 16
3

4 - 32
3

3 - 64
3

2 - 128
3

1 - 256
3

0 - 512
3

β=40.0 GStencil/s

α=4
e4

 n
s

α=2
e4

 n
s

α=1
e4

 n
s

α=5
e3

 n
s

Perlmutter HBM 1420 GB/s

Frontier HBM 1350 GB/s

Sunspot HBM 1215 GB/s

G
S

te
n

c
il/

s

Level - Subdomain Size

smooth+res - Perlmutter
smooth+res - Frontier
smooth+res - Sunspot

f(x) = x / (α + x/β)

Fig. 5. GStencils/s, using time per invocation, for the operation applyOp
(top) and smooth+residual (bottom) on Perlmutter, Frontier and Sunspot
at all the levels of the V-cycle. Dashed lines, in colors, show the theoretical
peak for this operation that consists of one read and one write using double
precision. Performance model f(x) describes the relation between latency
and performance and gives a clear insight about the latency differences on
all the machines and at which level computation becomes predominant in the
V-cycle.

GStencil/s. GStencil/s is the performance metric that evaluates
the speed of calculating one billion (109) stencil points per
second. For a given computation kernel, such as applyOp or
smooth+residual, this model indicates when a specific
problem size is mostly memory bandwidth-bound, or mostly
latency-bound.

Figure 5 shows the two most expensive computational
kernels in the V-cycle on a GStencil/s, computed with time per
invocation, and subdomain size plot. Dashed black lines are
our model with different empirical latency values, in nanosec-
onds, and with an empirical flat part being set at 100 GStencil/s
for applyOp and 40 GStencil/s for smooth+residual.
Colored dashed lines represent the theoretical GPU limits for
each architecture based on the kernels’ number of reads and
writes in double precision. For example, applyOp requires
one read and one write in double precision, so for Perlmutter’s
measured HBM with 1420 GB/s, we obtain a theoretical ceil-
ing for GStencil/s by dividing the GPU HBM bandwidth by the
number of reads plus writes multiplied by eight bytes (double

1183

1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e+04 1.0e+05 1.0e+06 1.0e+07 1.0e+08 1.0e+09

β=25.0 GBytes/s

α
=4

e5
 n

sα
=2

e5
 n

sα
=1

e5
 n

sα
=5

e4
 n

sα
=2

.5
e4

 n
s

Perlmutter BW 25 GB/s
Frontier BW 25 GB/s
Sunspot BW 25 GB/s

G
B

y
te

s
/s

Bytes

exchange - Perlmutter
exchange - Frontier
exchange - Sunspot

f(x) = x / (α + x/β)

Fig. 6. GB/s, using time per invocation, for the exchange operation on
Perlmutter, Frontier and Sunspot at all the levels of the V-cycle. The theoretical
peak for communication in this experiment is limited by the peak NIC
bandwidth at 25 GB/s. The performance model f(x) depicts the relation
between latency and bandwidth for MPI communications, where latency
dominates the V-cycle for total message size smaller than one MegaByte.

precision); the result is 88.75 GStencil/s for Perlmutter.
Figure 5 presents the GStencil/s attained by applyOp and

smooth+residual showing that our implementation that
uses fine-grain data blocking and vector operations for stencil
computations achieves near ideal performance throughput for
the finest grids, independent of the programming model or
the architecture. As we descend in the V-cycle, the problem
size shrinks and at level two or three, depending on the
kernel, the performance starts to drop linearly. Here, the kernel
performance correlates to empirical latency values between
5µs and 20µs. NVIDIA GPUs provide the lowest overhead
and highest throughput per process for both kernels, while
AMD and Intel GPUs provide comparable results.

We can derive a similar model to evaluate network through-
put and empirical latency and overhead. In this case, we can
use x as the total message size in bytes, f(x) is GB/s, α is
latency in nanoseconds, and β is attainable GB/s that we can
set as the NIC bandwidth. Since all three systems work with
Slingshot 11 as their network system, we can set the theoretical
attainable limit at 25 GB/s.

Figure 6 shows the GB/s attained at different levels by
doing the exchange operation. Note that this test using
a single node with one A100, MI250X GCD, or PVC tile
per node, which provides insight into the slowest part of the
network by exercising a single NIC directly. We can observe
that Frontier provides the highest bandwidth at 16 GB/s,
followed closely by Perlmutter. Sunspot falls behind since it
does not use the GPU-Aware MPI feature, which is still being
developed and optimized on that platform. Regardless, the
simple linear model correlates well with the empirical network
data, showing the Frontier system with the lowest overhead
and highest communication bandwidth, with Perlmutter and
Sunspot falling behind with peak bandwidths between 7 and
14 GB/s and latency values between 25 µs and 200 µs.

TABLE III
PERFORMANCE PORTABILITY METRIC PP BASED ON FRACTION OF THE

ROOFLINE FOR THE OPERATIONS IN THE V-CYCLE AT THE FINEST LEVEL.
USING BRICKLIB ACHIEVES A PP EQUAL TO 73% WHEN HARMONIC
AVERAGED ACROSS ALL PLATFORMS AND PROGRAMMING MODELS.

Operation A100 GCD tile PP
MI250X PVC

CUDA HIP SYCL
applyOp 90% 77% 66% 76%
smooth 98% 87% 64% 80%

smooth+residual 94% 87% 71% 83%
restriction 95% 79% 62% 76%

interpolation+increment 88% 42% 52% 55%
73%

Please note that these experiments included typical shared
network variability, as opposed to the best possible per-
formance that might be obtained from dedicated, isolated
compute nodes.

VII. PERFORMANCE PORTABILITY ON A SINGLE GPU

Next we explore the performance portability of the compu-
tational kernels on the finest grid in the V-cycle by comparing
performance on a single NVIDIA A100, AMD MI250X GCD,
or Intel PVC tile. We adopt the definition of performance
portability PP in [9], so that given a set of platforms and
programming models H for an application a solving problem
p is:

PP(a, p,H) =

{ |H|∑
i∈H

1
ei(a,p)

, if i is supported ∀i ∈ H

0, otherwise

As described in [7], in order to orthogonalize code gen-
eration efficiency from innate cache subsystem performance,
we examine two efficiencies ei(a, p) and two performance
portability metrics PP: one based on fraction of Roofline for
empirical arithmetic intensity and another based on fraction
of theoretical arithmetic intensity. Empirical roofline limits
were extracted from the mixbench benchmark [47] for the
NVIDIA A100 and AMD MI250X GPUs. In the case of Intel
PVC, the Roofline limits were found using Intel Advisor.

Table III presents performance portability based on the
fraction of peak Roofline performance, using the empirical
AI as ei(a, p). We compute metrics for all kernels in the V-
cycle at the finest grid. Our implementation attains a PP greater
than 73% when considering all architectures and programming
models.

TABLE IV
THEORETICAL ARITHMETIC INTENSITY (FLOP:BYTE) FOR THE V-CYCLE

OPERATIONS AT THE FINEST LEVEL.

Operation Theoretical AI (FLOP/B)
applyOp 0.50
smooth 0.125

smooth+residual 0.15
restriction 0.11

interpolation+increment 0.06

1184

TABLE V
PERFORMANCE PORTABILITY METRIC PP BASED ON FRACTION OF THE
THEORETICAL ARITHMETIC INTENSITY FOR THE OPERATIONS IN THE

V-CYCLE AT THE FINEST LEVEL. USING BRICKLIB ACHIEVES A PP EQUAL
TO 92% WHEN HARMONIC AVERAGED ACROSS ALL PLATFORMS AND

PROGRAMMING MODELS.

Operation A100 GCD tile PP
MI250X PVC

CUDA HIP SYCL
applyOp 98% 88% 86% 90%
smooth 96% 100% 94% 97%

smooth+residual 100% 100% 71% 88%
restriction 99% 99% 86% 94%

interpolation+increment 100% 74% 100% 90%
92%

 0

 25

 50

 75

 100

 0 25 50 75 100

4x

2x

1.5x

1.2x

1x
4x 2x 1.5x 1.2x 1x

%
 R

o
o
fl
in

e

P
o
te

n
ti
a
l
S

p
e
e
d
-U

p
 b

y
 i
m

p
ro

v
in

g
 P

e
rf

o
rm

a
n
c
e

% Theoretical AI

Potential Speed-Up by improving AI

Perlmutter

Frontier

Sunspot

smooth

smooth+residual

applyOp

restriction

interpolation+incr

Speedup =
100%
%Roofline
_________ x

100%
%Theoretical AI

Fig. 7. Potential Speed-Up plot for all the operations in the V-cycle at the
finest grid on one NVIDIA A100, one AMD MI250X GCD and one Intel
PVC tile using CUDA, HIP and SYCL. Our implementation attained over
70% of the Roofline and theoretical arithmetic intensity overall among all
operations, programming models and GPU architectures.

Table III demonstrates the data structure and vector code
generator’s ability to achieve peak memory bandwidth; it
is not an assessment of cache misses or data locality. To
that end, Table IV compares observed AI (approximately the
inverse of data movement) to the theoretical bounds based on
compulsory (cold) cache misses for each V-cycle operation
and GPU architecture. In essence, this assumes the ideal
bound for which each GPU has an infinite capacity, fully
associative cache. Proximity to this highly idealized bound
would represent near perfect cache performance using finite
hardware. Thus, we define an additional PP based on fraction
of theoretical arithmetic intensity and present the results for
each V-cycle operation and GPU in Table V. We observe
that our implementation on actual GPU caches achieves
nearly 92% portability when averaged over all architectures
and programming models, meaning that using an optimized
data layout and vector operations ensures GPUs keep data
movement very close to what could be attained with infinite
resources.

Figure 7 unifies these two performance portability efficien-
cies into a single plot where fraction of theoretical AI is the
x-coordinate and fraction of the Roofline is the y-coordinate
for memory bound operations. One can define a set of iso-
curves of constant potential speedup (any mix of improved
code generation/bandwidth with improved data locality) in
order to quantify overall implementation performance in this
equation:

Speedup =
100%

%Roofline
× 100%

%TheoreticalAI
.

Although GMG does not have any compute-bound kernels, an
equivalent expression could be used in that case by assuming
100% as theoretical arithmetic intensity.

In Figure 7, we measured fraction of theoretical AI and
fraction of the Roofline for the V-cycle operations on all three
GPU architectures. We can notice NVIDIA GPUs achieved
the highest performance efficiencies for all operations with a
potential speed-up of at most 1.2×. One GCD AMD MI250X
GPU presented high efficiencies for almost all operations with
a potential speed-up range between 1.2× and 1.5×, with an
outlier close to 4× for interpolation+increment, since that
kernel appears to unnecessarily move additional data, which
we are investigating. In addition, one Intel PVC tile presented
similar performance efficiencies with a slightly higher poten-
tial speed-up ranging between 1.5× and 2×.

VIII. SCALABILITY WITH FULL NODES

This section presents the scalability tests of our implemen-
tation up to 128 nodes on all three architectures, for a total
range of 8 to 512 NVIDIA A100 GPUs, 8 to 512 AMD
MI20X GPUs and 12 to 96 INTEL PVC GPUs, where one
AMD MI20X GPU contains two GCDs and one INTEL PVC
GPU has two tiles. Note that we show results for Perlmutter
and Frontier up to 128 nodes but up to 16 nodes on Sunspot,
since Sunspot is a testbed comprising 128 nodes and access
to the full system was not possible for this paper. For weak
and strong scalability tests, we map one MPI rank to one
A100 NVIDIA GPU, one GCD AMD MI250X GPU, and
one tile INTEL PVC GPU. With this configuration, an entire
Perlmutter node has four MPI ranks, a Frontier node has eight
MPI ranks, and a Sunspot node has twelve MPI ranks.

Figure 8 shows the performance throughput of our imple-
mentation in GStencil/s by using the total time to converge to
the solution of a linear system Ax = b with a subdomain size
of 5123 per rank on 2-16-128 nodes. Results show a good
scaling trend on all three architectures, with the difference
that each architecture node handles a different number of
ranks per node and each rank solves a 5123 problem size.
As a result, Frontier presents almost double GStencil/s per-
formance compared to Perlmutter, showcasing the ability of
AMD GPUs to pack more performance throughput in a single
node. Sunspot performance falls behind with performance in
GStencil/s closer to the Perlmutter numbers, even though it
had more GPUs available per node compared to the other
two systems. However, the main reason for this lack of

1185

1.00e-01

1.00e+00

1.00e+01

1.00e+02

1.00e+03

2 16 128
0

25

50

75

100

G
S

te
n

c
il/

s

%
 P

a
ra

lle
l
E

ff
ic

ie
n

c
y

Nodes

Perlmutter-GStencil/s
Frontier-GStencil/s
Sunspot-GStencil/s

Perlmutter-Parallel Efficiency
Frontier-Parallel Efficiency
Sunspot-Parallel Efficiency

Fig. 8. GStencil/s, using total time, and parallel efficiency for weak scalability
test solving a linear system Ax = b with a subdomain size of 5123 points
per rank. Perlmutter is using four ranks per node, where each rank binds to
one CPU/GPU. Frontier uses eight ranks per node, also binding each rank
to one CPU/GCD. Sunspot uses 12 ranks per node with each rank binding
to one CPU/tile. Our implementation achieves over 87% parallel efficiency
with Frontier getting close to 100 GStencil/s as each node can solve twice
the problem size compared to Perlmutter.

performance is the network drawbacks, especially for this
application where MPI communication constitutes closer to
20% of the time at the finest grid in the V-cycle.

In the same figure 8, we show the parallel efficiencies for
weak scaling, where our test achieves more than 87%. Note
that the parallel efficiencies on Perlmutter and Frontier follow
a similar trend, indicating that both systems are scaling at
similar rates, demonstrating the performance portability of our
implementation given that both systems have the same network
interconnect and one A100 NVIDIA GPU has comparable
GPU HBM to one GCD AMD MI250X.

Figure 9 shows the performance throughput in GStencil/s
for a strong scaling test where the total domain size is fixed
and consists of 10243 cells in Perlmuter, 2×10243 on Frontier
and 3× 10243 on Sunspot. We use the same configuration of
ranks-per-node in each architecture by using four ranks per
node on Perlmutter, where each rank is binded to one GPU,
eight ranks per node on Frontier with each rank binded to one
GCD and twelve ranks on Sunspot with each rank binded to
one tile. Thus, we keep the same fixed problem size to be
solved by each rank on all architectures, but we start doubling
the number of ranks in each dimension for a total of 128
nodes (512 GPUs) on Perlmutter and Frontier and 16 nodes
(96 GPUs) on Sunspot.

Observe that the performance throughput on Frontier is
close to double that of Perlmutter, which is what we could
expect as each Frontier node can handle twice the problem
size compared to Perlmutter. However, as we increase the
number of ranks with a fixed problem size, we are increasing
concurrency and solving a smaller problem on each rank,
pushing us into the latency limits as described in Section
VI-A. As computation and communication timings plateau at
latency/overhead limits, performance efficiencies start to drop

1.00e-01

1.00e+00

1.00e+01

1.00e+02

1.00e+03

2 16 128
0

25

50

75

100

G
S

te
n

c
il/

s

%
 P

a
ra

lle
l
E

ff
ic

ie
n

c
y

Nodes

Perlmutter-GStencil/s
Frontier-GStencil/s
Sunspot-GStencil/s

Perlmutter-Parallel Efficiency
Frontier-Parallel Efficiency
Sunspot-Parallel Efficiency

Fig. 9. GStencil/s, using total time, and parallel efficiency for strong
scalability test solving a linear system Ax = b with a total domain size
of 10243 on Perlmutter, 2× 10243 on Frontier and 3× 10243 on Sunspot.
Perlmutter is using four ranks per node, where each rank is binded to one
CPU/GPU. Frontier uses eight ranks per node with each rank binded to one
CPU/GCD. Sunspot uses 12 ranks per node with each rank binded to one
CPU/tile. Our implementation achieves close to 12 GStencil/s on Frontier but
performance becomes hinder by increasing concurrency on a fixed domain
since decreasing the problem size per rank makes the V-cycle to be latency
bound making parallel efficiency to nose dive.

as we increase concurrency and total time becomes constant.
On the other hand, Sunspot shows a similar performance
compared to Perlmutter, which is related to the lack of per-
formance of the MPI communications in the system. Finally,
we can consider that weak and strong tests show similar
performance efficiencies on the systems studied here, showing
the performance portability capabilities of our implementation
on systems with similar GPU and network capacities.

IX. DISCUSSION AND FUTURE WORK

Linear solvers, such as geometric multigrid, present some
challenges in achieving high performance on modern super-
computers since multigrid solvers rely on computation and
communication operations on a hierarchy of grids with a
dynamic range of orders of difference between the finest grid
and the coarsest grid. It becomes imperative to restructure
those operations to minimize data transfers at the GPUs and
the network, thus minimizing time-to-solution and improving
scientific applications that heavily use linear solvers in their
computational frameworks.

In this paper, we explore and shed some light on achieving
high performance on GPUs for GMG operations, such as
stencil computations and inter-grid operations, using fine-
grain data blocking and communication optimizations. Our
implementation can attain over 73% of the theoretical on-
node performance on all three GPU-accelerated systems and
presented a speedup of 1.6× per V-cycle compared against
a similar setup of HPGMG-CUDA. Effectively using fine-
grain data blocking can reduce unnecessary data movement
in the GPU memory hierarchy, and by optimizing stencil
computations using warp-based operations, we can reuse data

1186

more effectively at the register level, improving data locality
and performance on all GPUs and programming models.

Our work also shows that to attain high performance for
communication operations, the right CPU-GPU-NIC mapping,
GPU-Aware MPI feature, setting the most convenient mes-
saging protocols, and the use of an optimal data layout for
communications to reduce the number of messages and avoid
packing can be beneficial for GMG. In addition, deepening the
ghost zone size to avoid communicating data more frequently
can increase performance, especially at small problem sizes,
due to communication overheads being close to ten times
larger than kernel launching overheads.

In the context of performance analysis on a dynamic range
of problem sizes in the V-cycle, we found that traditional linear
models are well-correlated with computation and communi-
cation operations in our implementation, from which we can
extract empirical latency, overhead, bandwidth, and throughput
to compare to theoretical limits. As a result, NVIDIA GPUs
provide the lowest overhead and highest throughput for most
of the computation operations, while AMD and INTEL GPUs
provide comparable performance. Meanwhile, the Frontier
system showed better network performance in the latency and
bandwidth regions, with Perlmutter bringing a comparable
performance and Sunspot falling back since it is still a testbed
prior to Aurora and is a less mature system.

Parallel efficiencies reached 87% when weak scaling up
to 128 nodes (512 GPUs) and analyzing performance in
GStencil/s gives us an insight into the ability of the archi-
tecture nodes to deliver performance by packing more GPUs
per node. Strong scaling tests highlight the latency/overhead
drawbacks on a dynamic range of problem sizes in a V-cycle.
In order to improve strong scaling parallel efficiencies for
this application, we should focus our attention on improving
the latency/overhead of kernel launching on the GPUs and
of the MPI communications at the network or restructure the
algorithm to scale on latency bound applications by exploring
the ability to pack more computation from several ranks into
fewer ones to avoid network contention or solving small size
problems on the CPU where latency/overhead timings could
be significantly less than the GPU ones if the copy operations
between CPUs and GPUs are also being mitigated.

Future work will complete our studies on performance
portable techniques to improve our multigrid implementation
when facing small-size problems and enhancing strong scaling.
We will also extend our work to explore adaptive mesh refine-
ment, where specific grid regions are subjected to refinement
and load balancing becomes critical. Finally, we will also ex-
plore other smoothers, operators and bottom solvers that could
improve time-to-solution for multigrid solvers and evaluate
their performance and scalability on modern supercomputers.

ACKNOWLEDGMENT

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. De-
partment of Energy Office of Science and the National Nuclear
Security Administration. This research used resources of the

National Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231, resources
of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725. This work was done on a pre-
production supercomputer with early versions of the Aurora
software development kit, and we gratefully acknowledge the
computing resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357.

REFERENCES

[1] P. Wesseling and C. Oosterlee, “Geometric multigrid with applications to
computational fluid dynamics,” Journal of Computational and Applied
Mathematics, vol. 128, no. 1, pp. 311–334, 2001, numerical Analysis
2000. Vol. VII: Partial Differential Equations. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377042700005173

[2] T. Zhao, S. Williams, M. Hall, and H. Johansen, “Delivering
performance-portable stencil computations on cpus and gpus using
bricks,” in 2018 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), 2018, pp. 59–70.

[3] M. Araya-Polo, F. Rubio, R. de la Cruz, M. Hanzich, J. M. Cela,
and D. P. Scarpazza, “3d seismic imaging through reverse-time
migration on homogeneous and heterogeneous multi-core processors,”
Sci. Program., vol. 17, no. 1-2, pp. 185–198, Jan. 2009. [Online].
Available: http://dx.doi.org/10.1155/2009/382638

[4] C. Yount, J. Tobin, A. Breuer, and A. Duran, “Yask-yet another stencil
kernel: A framework for hpc stencil code-generation and tuning,” in
Proceedings of the Sixth International Workshop on Domain-Specific
Languages and High-Level Frameworks for HPC, ser. WOLFHPC ’16,
2016.

[5] T. Zhao, P. Basu, S. Williams, M. Hall, and H. Johansen, “Exploiting
reuse and vectorization in blocked stencil computations on cpus
and gpus,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3295500.3356210

[6] T. Zhao, M. Hall, H. Johansen, and S. Williams, “Improving
communication by optimizing on-node data movement with data
layout,” in Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
304–317. [Online]. Available: https://doi.org/10.1145/3437801.3441598

[7] O. Antepara, S. Williams, H. Johansen, T. Zhao, S. Hirsch, P. Goyal,
and M. Hall, “Performance portability evaluation of blocked stencil
computations on gpus,” in Proceedings of the SC ’23 Workshops
of The International Conference on High Performance Computing,
Network, Storage, and Analysis, ser. SC-W ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 1007–1018. [Online].
Available: https://doi.org/10.1145/3624062.3624177

[8] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, p. 65–76, apr 2009. [Online]. Available:
https://doi.org/10.1145/1498765.1498785

[9] S. Pennycook, J. Sewall, and V. Lee, “Implications of a
metric for performance portability,” Future Generation Computer
Systems, vol. 92, pp. 947–958, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X17300559

[10] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-
D blocking optimization for stencil computations on modern CPUs
and GPUs,” in Proc. ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2010.

[11] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni, and
D. Padua, “Hierarchical overlapped tiling,” in Proc. International Sym-
posium on Code Generation and Optimization (CGO), 2012.

1187

[12] D. Unat, T. Nguyen, W. Zhang, M. N. Farooqi, B. Bastem, G. Michel-
ogiannakis, A. Almgren, and J. Shalf, TiDA: High-Level Programming
Abstractions for Data Locality Management. Cham: Springer Interna-
tional Publishing, 2016, pp. 116–135.

[13] F. Luporini, M. Louboutin, M. Lange, N. Kukreja, P. Witte,
J. Hückelheim, C. Yount, P. H. J. Kelly, F. J. Herrmann, and
G. J. Gorman, “Architecture and performance of devito, a system for
automated stencil computation,” ACM Trans. Math. Softw., vol. 46,
no. 1, apr 2020. [Online]. Available: https://doi.org/10.1145/3374916

[14] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier,
J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner,
M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina,
and S. Zampini, “Mfem: A modular finite element methods
library,” Computers & Mathematics with Applications, vol. 81,
pp. 42–74, 2021, development and Application of Open-source
Software for Problems with Numerical PDEs. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0898122120302583

[15] W. Zhang, A. Myers, K. Gott, A. Almgren, and J. Bell,
“Amrex: Block-structured adaptive mesh refinement for multiphysics
applications,” The International Journal of High Performance
Computing Applications, vol. 35, no. 6, pp. 508–526, 2021.
[Online]. Available: https://doi.org/10.1177/10943420211022811

[16] P. Grete, J. C. Dolence, J. M. Miller, J. Brown, B. Ryan,
A. Gaspar, F. Glines, S. Swaminarayan, J. Lippuner, C. J. Solomon,
G. Shipman, C. Junghans, D. Holladay, J. M. Stone, and L. F. Roberts,
“Parthenon—a performance portable block-structured adaptive mesh
refinement framework,” The International Journal of High Performance
Computing Applications, vol. 37, no. 5, pp. 465–486, 2023. [Online].
Available: https://doi.org/10.1177/10943420221143775

[17] J. Watkins, M. Carlson, K. Shan, I. Tezaur, M. Perego, L. Bertagna,
C. Kao, M. J. Hoffman, and S. F. Price, “Performance portable ice-sheet
modeling with mali,” The International Journal of High Performance
Computing Applications, vol. 37, no. 5, pp. 600–625, 2023. [Online].
Available: https://doi.org/10.1177/10943420231183688

[18] S. Williams, D. D. Kalamkar, A. Singh, A. M. Deshpande,
B. Van Straalen, M. Smelyanskiy, A. Almgren, P. Dubey, J. Shalf, and
L. Oliker, “Optimization of geometric multigrid for emerging multi-
and manycore processors,” in SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1–11.

[19] J. Sebastian, N. Sivadasan, and R. Banerjee, “Gpu accelerated three
dimensional unstructured geometric multigrid solver,” in 2014 Inter-
national Conference on High Performance Computing & Simulation
(HPCS), 2014, pp. 9–16.

[20] D. Göddeke and R. Strzodka, “Cyclic reduction tridiagonal solvers
on gpus applied to mixed-precision multigrid,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 1, pp. 22–32, 2011.

[21] I. Stroia, L. Itu, C. Niţă, L. Lazăr, and C. Suciu, “Gpu accelerated
geometric multigrid method: Performance comparison on recent nvidia
architectures,” in 2015 19th International Conference on System Theory,
Control and Computing (ICSTCC), 2015, pp. 175–179.

[22] W. Ma, Y. Ao, and S. Williams, “Solving a trillion unknowns per second
with hpgmg on sunway taihulight,” Cluster Computing, vol. 23, pp. 493–
507, 2020.

[23] N. Onodera, Y. Idomura, Y. Hasegawa, S. Yamashita, T. Shimokawabe,
and T. Aoki, “Gpu acceleration of multigrid preconditioned
conjugate gradient solver on block-structured cartesian grid,” in
The International Conference on High Performance Computing in
Asia-Pacific Region, ser. HPCAsia ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 120–128. [Online].
Available: https://doi.org/10.1145/3432261.3432273

[24] M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards
a complete fem-based simulation toolkit on gpus: Unstructured grid
finite element geometric multigrid solvers with strong smoothers based
on sparse approximate inverses,” Computers & Fluids, vol. 80, pp. 327–
332, 2013, selected contributions of the 23rd International Conference
on Parallel Fluid Dynamics ParCFD2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045793012000345

[25] N. Zhang, M. Driscoll, C. Markley, S. Williams, P. Basu, and A. Fox,
“Snowflake: A lightweight portable stencil dsl,” in 2017 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2017, pp. 795–804.

[26] Q. Zhu, H. Luo, C. Yang, M. Ding, W. Yin, and X. Yuan, “Enabling
and scaling the hpcg benchmark on the newest generation sunway

supercomputer with 42 million heterogeneous cores,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’21. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3458817.3476158

[27] A. Bienz, W. D. Gropp, and L. N. Olson, “Reducing communication in
algebraic multigrid with multi-step node aware communication,”
The International Journal of High Performance Computing
Applications, vol. 34, no. 5, pp. 547–561, 2020. [Online]. Available:
https://doi.org/10.1177/1094342020925535

[28] Y.-H. M. Tsai, N. Beams, and H. Anzt, “Three-precision
algebraic multigrid on gpus,” Future Generation Computer
Systems, vol. 149, pp. 280–293, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X23002741

[29] M. Lakshminarasimhan, O. Antepara, T. Zhao, B. Sepanski, P. Basu,
H. Johansen, M. Hall, and S. Williams, “Bricks: A high-performance
portability layer for computations on block-structured grids,” The
International Journal of High Performance Computing Applications,
vol. 0, no. 0, p. 10943420241268288, 0. [Online]. Available:
https://doi.org/10.1177/10943420241268288

[30] J. Jayaraj, “A strategy for high performance in computational fluid
dynamics,” Ph.D. dissertation, University of Minnesota, 2013.

[31] C. Yount, “Vector folding: Improving stencil performance via multi-
dimensional simd-vector representation,” in 2015 IEEE 17th Interna-
tional Conference on High Performance Computing and Communica-
tions, 2015 IEEE 7th International Symposium on Cyberspace Safety and
Security, and 2015 IEEE 12th International Conference on Embedded
Software and Systems, Aug 2015, pp. 865–870.

[32] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and
P. Sadayappan, “Data layout transformation for stencil computations on
short-vector simd architectures,” in Compiler Construction. Springer,
2011, pp. 225–245.

[33] S. J. Deitz, B. L. Chamberlain, and L. Snyder, “Eliminating redundancies
in sum-of-product array computations,” in Proceedings of the 15th
international conference on Supercomputing. ACM, 2001, pp. 65–77.

[34] P. Basu, M. Hall, S. Williams, B. Van Straalen, L. Oliker, and P. Colella,
“Compiler-directed transformation for higher-order stencils,” in Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE Interna-
tional. IEEE, 2015, pp. 313–323.

[35] K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello, J. Ramanu-
jam, and P. Sadayappan, “A framework for enhancing data reuse via
associative reordering,” in ACM SIGPLAN Notices, vol. 49, no. 6. ACM,
2014, pp. 65–76.

[36] NERSC, “NERSC: Perlmutter gpu nodes,” 2024. [Online]. Available:
https://docs.nersc.gov/systems/perlmutter/architecture/

[37] NVIDIA, “NVIDIA A100 GPU architecture,” 2020. [Online].
Available: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-
center/nvidia-ampere-architecture-whitepaper.pdf

[38] OLCF, “OLCF: Frontier gpu nodes,” 2024. [Online]. Available:
https://docs.olcf.ornl.gov/systems/frontier user guide.html

[39] AMD, “AMD CDNA 2 architecture,” 2022. [Online]. Avail-
able: https://www.amd.com/system/files/documents/amd-cdna2-white-
paper.pdf

[40] ALCF, “ALCF: Sunspot gpu nodes,” 2024. [Online]. Avail-
able: https://www.alcf.anl.gov/support-center/aurorasunspot/getting-
started-sunspot

[41] INTEL, “INTEL IRIS XE GPU architecture,” 2023. [Online]. Available:
https://www.intel.com/content/www/us/en/docs/oneapi/optimization-
guide-gpu/2023-0/intel-iris-xe-gpu-architecture.html

[42] K. Kandalla, K. McMahon, N. Ravi, T. White, L. Kaplan, and M. Pagel,
“Designing the hpe cray message passing toolkit software stack for hpe
cray ex supercomputers,” ser. Cray User Group Proceedings, 2023.

[43] NVIDIA, “NVIDIA Nsight Compute CLI documenta-
tion,” 2024. [Online]. Available: https://docs.nvidia.com/nsight-
compute/NsightComputeCli/index.html

[44] AMD, “AMD rocProf documentation,” 2024. [On-
line]. Available: https://rocm.docs.amd.com/projects/rocprofiler/en/docs-
5.3.0/rocprof.html

[45] INTEL, “Intel Advisor documentation,” 2024. [Online].
Available: https://www.intel.com/content/www/us/en/docs/advisor/user-
guide/2024-2/overview.html

[46] N. Sakharnykh, “Heterogeneous HPGMG-FV im-
plementation using CUDA with Unified Memory,”
https://bitbucket.org/nsakharnykh/hpgmg-cuda/src/master/, 2021.

1188

[47] E. Konstantinidis and Y. Cotronis, “A quantitative roofline model
for gpu kernel performance estimation using micro-benchmarks and
hardware metric profiling,” Journal of Parallel and Distributed
Computing, vol. 107, pp. 37–56, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731517301247

1189

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

The paper focuses on the performance of geometric multi-
grid (GMG) on NVIDIA A100, AMD MI250X and INTEL
PVC GPU-accelerated supercomputers. The main contribu-
tions are listed as follows.

C1 Geometric Multigrid performance analysis on the
three most recent DOE GPU-accelerated supercom-
puters.

C2 Performance portability assessment that includes a
GMG implementation in SYCL for INTEL GPUs
and it is compared with NVIDIA and AMD GPUs.

C3 GMG attains better than 73% of the theoretical on-
node peak performance portability metric and 87%
parallel efficiency when weak scaling.

B. Computational Artifacts

We evaluated our geometric multigrid using BrickLib. The
source code is in GitHub and is available at

A1 https://github.com/OscarAntepara/
bricklib/tree/gmg brick/

The next table shows the relation between the computational
artifact and its relations to the contributions. The artifact exe-
cution will provide the necessary results and data to generate
the most relevant figures in the paper.

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Figure 3,4,5,6
C2 Table 3,5
C3 Figure 7,8

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The computational artifact provides the source code for
the implemented geometric multigrid using fine-grain data
blocking for NVIDIA A100, AMD MI250X, and INTEL PVC
GPU-accelerated supercomputers, such as Perlmutter, Frontier,
and Sunspot.

Expected Results

The experiment’s source code is in the examples/gmg
directory. Here, there are three directories, nvidia_cuda,
amd_hip, intel_sycl, where each one contains a
README file with the instructions needed to compile
and run the experiments on Perlmutter-NERSC, Forntier-
OLCF and Sunspot-ALCF. Each test is independent where
nvidia_cuda timings should be closer to amd_hip with
intel_sycl being behind.

Expected Reproduction Time (in Minutes)
The expected computational time of this artifact on Perl-

mutter and Frontier for the 8-node test is about 1 minute. On
Sunspot, it is about 2 minutes. The weak and strong scaling
tests take about 15 to 20 minutes on all machines.

Artifact Setup (incl. Inputs)
Hardware: Results presented in this paper were obtained

on an NVIDIA A100 GPU on Perlmutter at NERSC, AMD
MI250X GPU on Frontier at OLCF and Intel PVC GPU on
Sunspot at ALCF. In all experiments, we used only a single
process running on one A100 GPU, one GDC on MI250X,
and one tile on Intel PVC GPU.

Software: We evaluated our geometric multigrid
implementation using BrickLib. The source code is available at
https://github.com/OscarAntepara/bricklib/
tree/gmg_brick/ and can be cloned
using: git clone -b gmg_brick
https://github.com/OscarAntepara/
bricklib.git.

On Perlmutter the modules are:
• NVHPC 23.9
• CUDAToolkit 12.2
• PrgEnv-nvidia/8.5.0
• nvcc/12.2
• cray-mpich/8.1.28
• libfabric/1.15.2.0

And the environmental variables are:
• MPICH GPU SUPPORT ENABLED=1
• MPICH OFI NIC POLICY=GPU
• FI CXI RDZV EAGER SIZE=0
• FI CXI RDZV THRESHOLD=0
• FI CXI RDZV GET MIN=0
On Frontier the modules are:
• PrgEnv-amd/8.3.3
• amd/5.3.0
• craype-accel-amd-gfx
• ROCm 5.3.0
• AMD clang/15.0.0
• cray-mpich/8.1.28
• libfabric/1.15.2.0

And the environmental variables are:
• MPICH GPU SUPPORT ENABLED=1
• MPICH OFI NIC POLICY=GPU
• FI CXI RDZV EAGER SIZE=0
• FI CXI RDZV THRESHOLD=0
• FI CXI RDZV GET MIN=0
• FI CXI RX MATCH MODE=hardware
On Sunspot the modules are:
• oneapi/eng-compiler/2023.12.15.001
• icpx/2024.0.0
• mpich/52.2-1024/icc-all-pmix-gpu
• libfabric/1.15.2.0

1190

Datasets / Inputs: No Datasets or/and Inputs required.
Installation and Deployment: The README file in Brick-

Lib explains all the dependencies required. The requirements
are:

• C++14* compatible compiler
• OpenMP
• MPI library
• CMake
• Optional backends: CUDA, HIP and SYCL.

We uses CMake to find libraries. If some library fails to load,
be sure to check the find module for it in CMake and set the
corresponding paths.

Artifact Execution

After the artifact is compiled and built for each GPU-
accelerated supercomputer, there are job scripts for the 8-
node test, script_perlmutter.sh, in each directory in
examples/gmg.

At configuration/compilation time, users can do cmake
-DBRICK_GPU_AWARE=ON .. for Perlmutter, cmake
-DBRICK_USE_HIP=ON -DBRICK_GPU_AWARE=ON ..
for Frontier and cmake -DHAS_SYCL=ON .. for Sunspot
in a build directory created to test this artifact.

At run time, each test is done with "<exe> -s
512,512,512 -I 10 -l 6 -n 20" as parameters.
Where −s is the subdomain size, −I is the number of
iterations to gather timing statistics, −l is the number of
levels in the V-cycle and −n is the maximum number of
iterations allowed for the solver. Each experiment solves a
linear system by means of a geometric multigrid, where we
solve the problem ten times for warm-up and solve it another
ten times to gather timings statistics.

Artifact Analysis (incl. Outputs)

The output will include data used to generate the figures
in the paper. Data includes the average timing for each V-
cycle operation and per level, time per invocation for each
V-cycle operation, total time per level, total time to solve
the problem and performance in GStencil/s. In the output,
an example of the timing per each V-cycle operation and
per level is depicted as: level 0 applyOp [0.265012,
0.265184, 0.265346] (σ: 9.20184e-05), where
we have [min, avg, max] and (stdev) time across all ranks.

For the performance portability results that require GPU
roofline metrics, we present the command lines given to the
profiler for the performance portability analysis based on the
fraction of the roofline and a fraction of the arithmetic intensity
described in the paper.

On Perlmutter-NERSC, NVIDIA Nsight Compute com-
mand line to gather GPU metrics for double precision on a
specific kernel is depicted below:

ncu --set full -s 3 -c 2 \\
--kernel-name-base=demangled \\
-k regex:"applyOp_kernel" \\
-o reportApplyOp.%q{SLURM_PROCID} \\

.\exec

where roofline metrics in the report can be visualized using
the NVIDIA Nsight Compute API on your local machine.

On Frontier-OLCF, Amd-ROCProf is the profiler available
on Frontier-OLCF to collect GPU metrics. The command line
used is:

rocprof -i input_file.txt --timestamp on
-o my_output.csv <exe> <params>

AMD ROCm Profiler needs an input file with the kernel name
and the metrics to be collected. An example of the input file
is shown below:

kernel: <kernel_name>
pmc : SQ_INSTS_VALU_ADD_F16
SQ_INSTS_VALU_MUL_F16
SQ_INSTS_VALU_FMA_F16
SQ_INSTS_VALU_TRANS_F16
pmc : SQ_INSTS_VALU_ADD_F32
SQ_INSTS_VALU_MUL_F32
SQ_INSTS_VALU_FMA_F32
SQ_INSTS_VALU_TRANS_F32
pmc : SQ_INSTS_VALU_ADD_F64
SQ_INSTS_VALU_MUL_F64
SQ_INSTS_VALU_FMA_F64
SQ_INSTS_VALU_TRANS_F64
pmc : SQ_INSTS_VALU_MFMA_MOPS_F16
SQ_INSTS_VALU_MFMA_MOPS_BF16
SQ_INSTS_VALU_MFMA_MOPS_F32
SQ_INSTS_VALU_MFMA_MOPS_F64
pmc : TCC_EA_RDREQ_32B_sum TCC_EA_RDREQ_sum
TCC_EA_WRREQ_sum TCC_EA_WRREQ_64B_sum
gpu: 0

To compute roofline metrics as performance
in GFLOPS/s and arithmetic intensity can be
found here: https://docs.olcf.ornl.gov/systems/
frontier user guide.html#getting-started-with-the-rocm-
profiler.

On Sunspot-ALCF, Intel provides several tools for GPU
profiling. In this work, we have used Intel Advisor as the GPU
metrics collector for roofline metrics. To profile our application
with Intel Advisor, we used the following command line:

ZE_AFFINITY_MASK=0.0 advisor
--collect=roofline
--profile-gpu -- <exec> <params>

where ZE AFFINITY MASK = 0.0, is at the beginning
of the line to run our executable with one tile. Intel Advisor
will collect the information in a directory that will be needed
to create an html report with the next line:

advisor --report=all --project-dir=.
--report-output=roofline.html

The html file can be opened with a web browser and it
contains general information such as data movement across
the memory hierarchy, FLOP count, instructions executed, etc.

1191

